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Abstract. Given T > 0 , the Abel-like equation θ ′ = f0 + ∑ j∈N f jθ j is generalized to the case
where θ and θ ′ are real functions on [0,T ] subject to given state dependent discontinuities.
Each f j is a real function of bounded variation for which f j(0) = (−1) j+1 f j(T ) . Under ap-
propriate conditions, this equation is shown to admit a solution of bounded variation on [0,T ]
which is T -anti-periodic in the sense that θ (0) = −θ (T) . The contraction principle yields a
bound for the rate of uniform convergence to the solution of a sequence of iterates.

1. Introduction

For given T > 0, let i) NBV (2T ) designate the family of 2T -periodic functions
f : R → R of bounded variation on [0,2T ] and normalized in the sense that

f (t) =
(
f (t+)+ f (t−)

)
/2 (1)

for all t ∈ R and ii) NBV denote the real linear space of all functions in NBV (2T )
restricted to [0,T ] . For f ∈NBV , v( f ) will designate its total variation over the interval
[0,T ] . For a start, consider the Abel-like equation

θ ′ = f0 + ∑
j∈N

f jθ j (2)

on [0,T ] with T -anti-periodic boundary condition

θ (0) = −θ (T ) (3)

accompanied by the following assumption:

A1. f j lies in NBV and satisfies

f j(0) = (−1) j+1 f j(T )

for j ∈ {0,1,2, . . .} .

Mathematics subject classification (2010): 34A37, 34B15, 34B37, 34C25.
Keywords and phrases: Abel equation, anti-periodic solutions, state dependent jumps, Hilbert’s 16th

problem.

c© � � , Zagreb
Paper DEA-09-18

219

http://dx.doi.org/10.7153/dea-09-18


220 J.-M. BELLEY AND A. GUEYE

For r � 0, let Br denote the set of functions given by

Br =
{

f ∈ NBV : v( f ) � r, f (0) = − f (T )
}

(4)

and p� : [0,∞) → [0,∞] be the convex function given by the Maclaurin series

p�(r) = T
∞

∑
j=0

‖ f j‖1r
j (5)

where

‖ f j‖1 =
1
T

∫ T

0
| f j(t)|dt. (6)

Our general result (see Theorem 2), in the absence of state dependent discontinuities in
θ and θ ′ , reduces to the following.

THEOREM 1. Let (2) on [0,T ] be subject to both (3) and A1 and let Br and p� be
given by (4) and (5) respectively. If ‖ f0‖1 �= 0 and if there exists r0 > 0 for which
p�(r0) � r0 and p′�(r0) < 1 simultaneously then, in Bp�(r0) , there exists a unique
nontrivial solution θ of (2). Furthermore, θ is absolutely continuous on [0,T ] and
θ ′ ∈ NBV .

Note that the closed balls Br and

Br(2T ) =
{

f ∈ NBV (2T ) : v( f ) � r, f (t) = − f (t +T ) ∀t ∈ R
}

(7)

are equivalent. Furthermore, each f j in A1 can be extended from [0,T ] to [0,2T ] by
way of

f j(t +T ) = (−1) j+1 f j(t) (8)

and then to all of R by 2T-periodicity. Conserving the same notation f j for all these
extended functions, there is no loss of generality in studying (2) and

θ (t) = −θ (t +T ) (9)

simultaneously on R rather than (2) and (3) on [0,T ] , as we shall see. Clearly A1 is
equivalent to

A ′1. f j lies in NBV (2T ) and satisfies (8) for all t ∈ R and all j ∈ {0,1,2, . . .} .
Consequently, Theorem1 yields the following result on the existence of periodic

solutions of Abel-like equations.

COROLLARY 1. Let (2) on R be subject to both (9) and A ′1 and let p� be given
by (5). If ‖ f0‖1 �= 0 and if there exists r0 > 0 for which p�(r0) � r0 and p′�(r0) <
1 simultaneously then, in Bp�(r0)(2T ) given by (7), there exists a unique nontrivial
solution θ of (2). Furthermore, θ is absolutely continuous on bounded intervals and
θ ′ ∈ NBV (2T ) .
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The corollary can be viewed as a result on the number of limit cycles for Abel’s
equation (2) on R . It constitutes one more small contribution to Hilbert’s 16th problem.
In the next section, our more general Theorem 2 allows the presence of jumps in θ ′
of state dependent amplitude ak(θ ) at state dependent instant τk(θ ) ∈ [0,T ) for all
k ∈ N and jumps in θ of state dependent amplitude bl(θ ) at state independent instant
σl ∈ [0,T ) for all l ∈ N . These amplitudes are characterized by

ak(θ ) =

{
θ ′(τk(θ )+)−θ ′(τk(θ )−), 0 < τk(θ ) < T

θ ′(0+)+ θ ′(T−), τk(θ ) = 0
(10)

and

bl(θ ) =

{
θ (σl+)−θ (σl−), 0 < σl < T

θ (0+)+ θ (T−), σl = 0
(11)

respectively. Formulas (10) for τk(θ ) = 0 and (11) for σl = 0 will be evident once
we extend θ that satisfies (3) to a 2T -periodic function that satisfies (9) on R since
we will then have θ (0−) = θ (2T−) =−θ (T−) and θ ′(0−) = θ ′(2T−) =−θ ′(T−) .
We make the following assumptions regarding the instant and amplitude of the discon-
tinuities:

A2. ak : NBV → [−αk,αk] for some αk > 0 and there exists a′k � 0 such that

|ak(x)−ak(y)| � a′kv(x− y)

for all k ∈ N and all x,y ∈ NBV . We write

A = ∑
k∈N

αk, A′ = ∑
kıN

a′k

which we assume finite.

A3. τk : NBV → [0,T ) and there exists τ ′k � 0 such that

|τk(x)− τk(y)| � τ ′kv(x− y)

for all k ∈ N and all x,y ∈ NBV . We write

C = ∑
k∈N

αkτ ′k

which we assume finite.

A4. bl : NBV → [−βl,βl ] for some βl > 0 and there exists b′l � 0 such that

|bl(x)−bl(y)| � b′lv(x− y)

for all l ∈ N and all x,y ∈ NBV . We write

B = ∑
l∈N

βl, B′ = ∑
l∈N

b′l
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which we assume finite.

A5. σl ∈ [0,T ) for all l ∈ N .
Given such discontinuities, we replace (2) with the more general equation

θ ′ = f0 + ∑
j∈N

f jθ j + ∑
k∈N

ak(θ )Jτkθ) + ∑
l∈N

bl(θ )J′σl
(12)

restricted to [0,T ] where, for arbitrary t0 ∈ [0,T ) , Jt0 : R→R denotes the 2T -periodic
function characterized by

Jt0(t) =

⎧⎪⎨
⎪⎩
−1/2, t0 < t < t0 +T

1/2, t0 +T < t < t0 +2T

0, t = t0, t0 +T, t0 +2T.

(13)

As we shall see, each term akθ )Jτk(θ) corresponds to a jump in θ ′ of amplitude ak(θ )
at state dependent instant τk(θ ) and each generalized derivative bl(θ )J′σl

is associ-
ated with a jump in θ of state dependent amplitude bl(θ ) at state independent instant
σl ∈ [0,T ) . (See for example [16] and [37] for the definition of a generalized periodic
function and its generalized derivative.) The conditions A < ∞ in A2 and B < ∞ in A4
imply that the sums ∑k∈N ak(θ )Jτk(θ) and ∑l∈N bl(θ )Jσl are of bounded variation on
[0,T ] . For (3) to hold, we impose

∑
k∈N

ak(θ ) = ∑
l∈N

bl(θ ) = 0 (14)

as an added requirement.
The concept of a solution of a differential equation satisfying T -anti-periodic

boundary condition (3) was introduced by Okochi [28] and subsequently proved useful
for a variety of nonlinear equations with or without state discontinuities (see [1], [2],
[13]–[15], [17]–[20], [23]–[27], [29], [33]–[36]). So far, there are no results in the liter-
ature on the existence of anti-periodic solutions of Abel’s equation, even in the absence
of state discontinuities. Results for this equation are limited to the existence of limit
cycles (see [4]–[12]) with some attention given to the center problem, which consists in
finding conditions guaranteeing that all solutions are periodic of given period (see [21],
[30] and the references therein). The equation θ ′ = θ without state discontinuities is an
Abel equation satisfying A1. Up to multiplication by a constant, its unique nontrivial
solution on [0,T ] is θ (t) = et , which is not T -anti-periodic for any T > 0. On the
other hand, θ ′ = cosωt + θ (ω = π/T ) without state discontinuities is also an Abel
equation that satisfies A1. Its particular solution θ (t) = (−cosωt +ω sinωt)/(1+ω2)
(0 � t � T ) is clearly T -anti-periodic for any T > 0. In this paper, our aim is to obtain
conditions that guarantee the existence of a solution of (12) on [0,T ] subject to (3),
A1–A5 and (14).

2. Main result

Before we state our main result, we introduce the following notions and nota-
tion. The family AC of real absolutely continuous functions on [0,T ] is an important
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subspace of NBV [3, p. 269] which in turn is a subset of the space L1 of Lebesgue
integrable functions on [0,T ] . Any θ ∈ NBV admits a derivative θ ′ ∈ L1 and v(θ ) �∫ T
0 |θ ′| [31, p. 104] with equality when θ ∈ AC [3, p. 273]. For X either NBV or AC ,

let XTap denote the subspace of all functions in X T -anti-periodic in the sense of (3).
Any θ ∈ XTap can be extended from [0,T ] to [0,2T ] by way of (9) and then to all R by
2T -periodicity, in which case the extended function satisfies (9) for all t ∈ R . We write
XTap(2T ) to denote the real linear space of such 2T -periodic extended functions and
note that XTap can be identified with XTap(2T ) . NBVTap with norm v and NBVTap(2T )
with total variation norm over any interval of length T are equivalent Banach spaces.

Given t0 ∈ [0,T ) , the 2T -periodic function Jt0 : R → R characterized by (13)
satisfies (1) and (9). It is also of bounded variation on [0,2T ] , so making it an element
of NBVTap(2T ) . Its restriction to [0,T ] clearly satisfies (3). On the right hand side
of (2) we add jumps to θ ′ (but not θ ) of state dependent amplitude ak(θ ) at state
dependent instant τk(θ )∈ [0,T ) for all k ∈N by introducing the term ∑k∈N ak(θ )Sτk(θ)
where

St0 =
1
2

+ Jt0

for any t0 ∈ [0,T ) . For condition (3) to be maintained, we assume ∑k∈N ak(θ ) = 0 and
so

∑
k∈N

ak(θ )Sτk(θ) = ∑
k∈N

ak(θ )Jτk(θ).

Similarly, if we add ∑l∈N bl(θ )S′σl
to the right hand side of (2), then each generalized

derivative bl(θ )S′σl
is associated with a jump in θ of state dependent amplitude bl(θ )

at state independent instant σl . Again for condition (3) to be maintained, we assume
∑l∈N bl(θ ) = 0 and so

∑
l∈N

bl(θ )S′σl
= ∑

l∈N

bl(θ )J′σl

in the sense of generalized functions. Thus we obtain (12) by adding discontinuities
that satisfy (14) to the right hand side of (2). Subject to A1–A5 and (14), studying (12)
and (3) simultaneously on [0,T ] is equivalent to studying (12) and (9) simultaneously
on R . This fact will be used to prove our results.

For arbitrary t ∈ [0,2T ] , let ρt denote the radius of convergence of the Maclaurin
series x �→ ∑ j∈N f j(t)x j and define

ρ = inf{ρt : 0 � t � 2T}. (15)

In what follows, we assume ρ �= 0. The Maclaurin series r �→ ∑∞
j=0 ‖ f j‖1r j converges

for all r ∈ (0,ρ) . Thus, for all r ∈ (0,ρ) we have convergence of the Maclaurin series
in the definitions

p0(r) = p�(t)+TA/2 = T

(
‖ f0‖1 +

A
2

+ ∑
j∈N

‖ f j‖1r
j
)

, (16)

p(r) = p0(r)+B = T

(
‖ f0‖1 +

A
2

+ ∑
j∈N

‖ f j‖1r
j
)

+B (17)
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and
q(r) = p′(r)+T (A′ +2C)+B′. (18)

Denote by εt0 the real 2T -periodic function

εt0(t) = − ∑
n∈Z\{0}

einω(t−t0)

n2ω2 , ω = π/T, i = +
√−1 (19)

with generalized derivative

ε ′t0 (t) = ∑
n∈Z\{0}

einω(t−t0)

inω
.

By comparing Fourier coefficients we obtain, for all t ∈ [t0,t0 +2T ] ,

εt0(t) =
6T (t− t0)−3(t− t0)2 −2T2

6

and

ε ′t0(t) =

{
T + t0− t, t0 < t < t0 +2T

0, t = t0, t0 +2T

respectively [22, p. 53]. Clearly εt0 is absolutely continuous and ε ′t0 is of bounded
variation on [0,2T ] . Furthermore, in the sense of generalized functions, 1+ ε ′′t0(t) is
precisely the Dirac delta function

δt0(t) = ∑
n∈Z

einω(t−to)

associated with an impulse that gives rise to a jump in ε ′t0 of amplitude 2T at instants
t0 +2kT for all k ∈ Z [37, p. 333]. It is easy to show that

Jt0(t) =
ε ′t0+T (t)− ε ′t0(t)

2T
(20)

for all t ∈ R . The generalized derivative J′t0 becomes the generalized function

J′t0 =
ε ′′t0+T − ε ′′t0

2T
=

δt0+T − δt0

2T
.

Let F0 and F be the operators on NBVTap(2T ) given explicitly by

F0(θ ) = f0 ∗ ε ′0 + ∑
j∈N

Gj(θ )+ ∑
k∈N

ak(θ )Hk(θ ) (21)

and
F(θ ) = F0(θ )+ ∑

l∈N

bl(θ )Jσl (22)
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where Gj and Hk are defined on NBVTap (2T ) by

Gj(θ ) = ( f jθ j)∗ ε ′0 (23)

and

Hk(θ ) = Jτk(θ) ∗ ε ′0 =
ετk(θ)+T − ετk(θ)

2T
(24)

with convolutions in the sense of generalized 2T -periodic functions. Clearly F0 and F
can be viewed as operators on either NBVTap or NBVTap(2T ) since the two spaces are
equivalent in the sense that an element of NBVTap is the restriction to [0,T ] of a unique
element of NBVTap(2T ) . We can now state our main result.

THEOREM 2. Suppose (12) with discontinuities on [0,T ] is subject to (3), A1–A5
and (14). Let p(r) and q(r) be given by (17) and (18), respctively, and Br be defined
by (4) for all r ∈ (0,ρ) where ρ > 0 is given by (15). If there exists r0 ∈ (0,ρ) for
which p(r0) � r0 and q(r0) < 1 simultaneously then, in the ball Bp(r0) , there exists
a unique solution θ of (12) on [0,T ] . Furthermore, we have θ −∑l∈N bl(θ )Jσl =
F0(θ ) ∈ Bp0(r0) ∩ACTap and θ ′ −∑l∈N bl(θ )J′σl

∈ NBVTap where Jσl is given by (13)
and F0(θ ) by (21).

REMARK 1. In Theorem2, the solution θ is nontrivial (i.e. θ �= 0) provided

f0 + ∑
k∈N

ak(0)Jτk(0) + ∑
l∈N

bl(0)J′σl
�= 0 (25)

as is the case when ‖ f0‖1 �= 0. For this reason θ in Theorem1 is nontrivial. To
prove Theorem2 we will show that F is a total variation norm contraction on Br0 .
Thus, under the conditions of the theorem, for any θ0 ∈ Br0 , the iterates {Fn(θ0)}∞

n=1
converge uniformly to the solution θ with uniform norm

∥∥θ −Fn(θ0)
∥∥

∞ bounded by
(see (37)) ∥∥θ −Fn(θ0)

∥∥
∞ � v

(
θ −Fn(θ0)

)
� 2λ nr0

1−λ
for λ = q(r0) .

We prove Theorem 2 in section 3. For θ ′ = θ we have p(r) = p�(r) = Tr . The
graph of p(r) for r > 0 fails to cross that of the identity and so the theorem is not
applicable here. In fact, the equation admits no nontrivial T -anti-periodic solution for
any T > 0, as mentioned in section 1. On the other hand, for θ ′ = cosωt + θ we
have p(r) = 2/ω + Tr and so the graph of p intersects that of the identity at r0 =
2/ω(1− T ) whenever 0 < T < 1, in which case q(r0) = p′(r0) = T < 1. Thus the
theorem guarantees the existence of a differentiable T -anti-periodic solution whenever
0 < T < 1. In reality, there exists such a solution for all T > 0, as mentioned in
section 1. Hence, Theorem2 only provides sufficient conditions for the existence of
anti-periodic solutions. It can yield information difficult to obtain otherwise, as the
following nontrivial examples show.
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EXAMPLE 1. Consider

θ ′(t) = (2t−T)+ ∑
j∈N

(2t−T ) j+1θ j(t)+ ∑
k∈N

ak(θ )Jτk(θ)(t)+ ∑
l∈N

bl(θ )J′σl
(t) (26)

for

ak(θ ) =
sinθ (T/k)

k2 , τk(θ ) =
T
2

cos2 θ (T/k), bl(θ ) =
sinθ (T/l)

100l2
(27)

and σl ∈ [0,T ) . Choosing αk = a′k = 1/k2 , βl = b′l = 1/100l2 and τ ′k = T we get
A = A′ = ζ (2) = π2/6, B = B′ = ζ (2)/100 = π2/600 and C = Tπ2/6. Furthermore
f j(t) = (2t−T) j+1 and so

‖ f j‖1 =
T j+1

j +2

for all j ∈ {0,1,2, . . .} and ρ = 1/T . We obtain by (17) and (18) the continuous
monotone increasing functions

p(r) =
T
2

(T +A)+T ∑
j∈N

T j+1

j +2
r j +B

=
1
2

(
T 2 +T

π2

6

)
− 1

r2

[
ln(1−Tr)+Tr+

(Tr)2

2

]
+

π2

600

= Tπ2/12− [
ln(1−Tr)+Tr

]
/r2 + π2/600

and

q(r) = p′(r)+
Tπ2

6
(1+4T)+

π2

600
= 2

[
ln(1−Tr)+Tr

]
/r3 +T2/(r−Tr2)+Tπ2(1+2T)/6+ π2/600

for 0 < r < 1/T . For example, if we take T = 0.1 and r0 = 1, then 0 < r0 < 1/T ,
p(r0) = 0.30406 < r0 and q(r0) = 0.21423 < 1. Hence, by Theorem2, (26) with
T = 0.1 admits, in the ball Bp(r0) , a unique nontrivial solution θ . Furthermore, this
solution is such that θ − ∑l∈N bl(θ )Jσl ∈ ACTap , θ ′ −∑l∈N bl(θ )J′σl

∈ NBVTap and
v(θ ) � 0.30406.

EXAMPLE 2. Consider, for ω given in (19),

θ ′(t) = cos(ωt)+ ∑
j∈N

cos j+1(ωt)θ j(t)+ ∑
k∈N

ak(θ )Jτk(θ)(t) (28)

where

ak(θ ) =
sinθ (T/k))

k2 , τk(θ ) =
T
2

cos2 θ (T/k), bl(θ ) = 0

and σl ∈ [0,T ) for all j,k, l ∈N . Choosing αk = a′k = 1/k2 , βl = b′l = 0 and τ ′k = T we
get A = A′ = ζ (2) = π2/6, B = B′ = 0 and C = Tπ2/6. We have f j(t) = cos j+1(ωt)
and so

‖ f0‖1 =
2
π
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and, by Wallis’ integrals,

‖ f j‖1 =
2
π

Wj+1

where

Wn(t) =

{
4p(p!)2/(2p+1)!, n = 2p+1

π(2p)!/2(p!)24p, n = 2p

for all n ∈ N . It is easy to see that ρt = 1/|cos(ωt)| and so ρ = 1. Hence (17) and
(18) become

p(r) = T
( 2

π
+

A
2

)
+

2T
π ∑

j∈N

Wj+1r
j

and

q(r) = p′(r)+
Tπ2

6
(1+2T) =

2T
π ∑

j∈N

jWj+1r
j−1 +

Tπ2

6
(1+2T)

for 0 < r < 1. For arbitrary T > 0 small enough we can find r0 ∈ (0,1) such that
p(r0) � r0 and q(r0) < 1 simultaneously. Thus by Theorem2 there exists for all T > 0
sufficiently small a unique nontrivial solution θ ∈ ACTap of (28) on [0,T ] for which
θ ′ ∈ NBVTap and v(θ ) � p(r0) .

If (12) is of the form

θ ′ = f0 + f1θ j + f2θ 2 + f3θ 3 + ∑
k∈N

ak(θ )Jτk(θ) + ∑
l∈N

bl(θ )J′σl
(29)

for f3 �= 0 then ρ = ∞ and so, for all r > 0, (17) and (18) become

p(r) = T
(
A/2+‖ f0‖1 +‖ f1‖1r+‖ f2‖1r

2 +‖ f3‖1r
3
)

+B (30)

and
q(r) = T

(
A′ +2C+‖ f1‖1 +2‖ f2‖1r+3‖ f3‖1r

2
)

+B′ (31)

respectively. Suppose that the graph of p : (0,∞)→ (0,∞) intersects that of the identity
ι(r) = r at some point r0 > 0, which we take to be the least of all such points of
intersection. But, the graph of the monotone increasing function p intersects that of the
identity ι(r) = r at r0 > 0 if and only if there exists a point r � r0 for which p′(r ) = 1
and p(r ) � r simultaneously. By way of the quadratic formula, there exists r such
that p′(r ) = 1 if and only if T‖ f1‖1 < 1, in which case

r =
(
−T‖ f2‖1 +

√
T 2‖ f2‖2

1 +3T(1−T‖ f1‖1)‖ f3‖1

)
/3T‖ f3‖1. (32)

Thus, if T‖ f1‖1 < 1 and if p(r) � r and q(r ) < 1 for r given by (32) then (29) fulfills
the conditions of Theorem2 and so admits, in Bp(r) , a unique nontrivial solution θ for
which θ −∑l∈N bl(θ )Jσl = F0(θ ) ∈ Bp0(r0)∩ACTap and θ ′ −∑l∈N bl(θ )J′σl

∈ NBVTap .
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EXAMPLE 3. Consider, for ω given in (19),

θ ′ = cosωt + θ + J0(t)θ 2 +
(
sin2ωt

)
θ 3 +

m

∑
k=1

ak(θ )Jτk(θ)(θ ) (33)

where ak and τk are again given by (27). Here we have f0(t) = cosωt , f1(t) = 1,
f2(t) = J0(t) and f3(t) = sin2ωt and so ‖ f0‖1 = ‖ f3‖1 = 2/π and ‖ f1‖1 = 2‖ f2‖1 =
1. Again B = B′ = 0 and choosing αk = a′k = 1/k2 and τ ′k = T we get A = A′ = ζ (2) =
π2/6 and C = Tπ2/6. Equations (30) and (31) now become

p(r) = T

(
2
π

+
π2

12
+ r+

1
2
r2 +

2
π

r3
)

and

q(r) = T

(
1+ r+

6
π

r2 +
π2

6
(1+2T)

)
.

Thus, if T < 1 (i.e. T < 1/‖ f1‖1 ), then p′(r ) = 1 for

r =
−Tπ +

√
T 2π2 +24Tπ(1−T)

12T
=

−π +
√

π2 +24π(T−1−1)
12

by (32). Furthermore, p(r ) � r and q(r) < 1 for all T > 0 small enough. Hence,
(33) is in the conditions of Theorem2 for all T ∈ (0,1) small enough. In other words,
for all T ∈ (0,1) small enough, (33) admits a unique nontrivial solution θ ∈ ACTap for
which θ ′ ∈ NBVTap and v(θ ) � r .

Suppose now that (12) is of the form

θ ′ = f0 + f1θ j + f2θ 2 + ∑
k∈N

ak(θ )Jτk(θ) + ∑
l∈N

bl(θ )J′σl
(34)

for f0 �= 0 and f2 �= 0. For all r > 0, (17) and (18) become

p(r) = T
(
A/2+‖ f0‖1 +‖ f1‖1r+‖ f2‖1r

2
)

+B

and

q(r) = p′(r)+T (A′ +2C)+B′ = T
(
A′ +2C+‖ f1‖1 +2‖ f2‖1r

)
+B′

respectively. Let the graph of the monotone increasing function p : (0,∞) → (0,∞)
intersect that of the identity at some point r0 > 0, which we take to be the least of all
such points of intersection. Such a point r0 exists if and only if there exists r > 0 for
which p′(r ) = 1 and p(r) � r (in which case r0 � r ). The condition p′(r ) = 1 yields

r =
(
1−T‖ f1‖1

)
/2T‖ f2‖1 (35)

and so r > 0 exists if and only if 0 < T‖ f1‖1 < 1. Thus, when 0 < T‖ f1‖1 < 1,
if p(r ) � r and q(r ) < 1 for r given by (35) then (34) fulfills the conditions of
Theorem2 and so admits, in Bp(r) , a unique nontrivial solution θ for which θ −
∑l∈N bl(θ )Jσl = F0(θ ) ∈ Bp0(r0) ∩ACTap and θ ′ −∑l∈N bl(θ )J′σl

∈ NBVTap .
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EXAMPLE 4. Consider, for ω given in (19),

θ ′ = cosωt + θ + J0(t)θ 2 +
m

∑
k=1

ak(θ )Jτk(θ)(θ ) (36)

where ak and τk are given by (27). Then f0(t) = cosωt , f1(t) = 1 and f2(t) = J0(t)
and so ‖ f0‖1 = 2/π and ‖ f1‖1 = 2‖ f2‖1 = 1. Again we have B = B′ = 0. Choosing
αk = a′k = 1/k2 and τ ′k = T we get A = A′ = ζ (2) = π2/6 and C = Tπ2/6. So we
have

p(r) = T

(
2
π

+
π2

12
+ r+

1
2
r2

)
and

q(r) = T

(
1+ r+

π2

6
(1+2T)

)
.

Reasoning as in Example 3, it follows that for all T ∈ (0,1) small enough, (36) admits
a unique nontrivial solution θ ∈ ACTap for which θ ′ ∈NBVTap and v(θ ) � p(r ) where

r =
(
1−T

)
/T

by (35).

In the absence of jumps in θ and θ ′ (i.e. A/2 =
(
A′ +4C′) = B = B′ = 0), (12)

becomes (2), p reduces to p� given by (5) and q = p′� . By Theorem2 we obtain The-
orem1 and Corollary 1. The condition q(r0) < 1 becomes superfluous when p�(r)− r
has more than one (and so exactly two) strictly positive distinct roots. In fact, if we
take for r0 the smaller of the two, then the graph of p� intersects that of the identity
ι(r) = r at r0 with slope p′�(r0) < 1 (i.e. q(r0) < 1) . Furthermore, for F given by (22)
and θ0 ∈ Br0 , the iterates {Fn(θ0)}∞

n=1 converge uniformly to θ with uniform norm∥∥θ −Fn(θ0)
∥∥

∞ bounded by

∥∥θ −Fn(θ0)
∥∥

∞ � 2λ nr0

1−λ
where λ = p′�(r0) .

3. Proof of Theorem 2

Let L1(2T ) denote, as usual, the Banach space of almost everywhere 2T -periodic
Lebesgue integrable functions f : R→R with norm (6) and essential supremum ‖ f‖∞ .
We write L1

Tap(2T ) for the subspace of all θ ∈ L1(2T ) that satisfy (9) almost every-
where. If x ∈ L1

Tap(2T ) and y ∈ L1(2T ) then x ∗ y , which is known to lie in L1(2T )
[22, pp. 4–5], satisfies (9) since

(x∗ y)(t) =
1

2T

∫ 2T

0
x(t − s)y(s)ds

= − 1
2T

∫ 2T

0
x(t +T − s)y(s)ds

= −(x∗ y)(t +T ).



230 J.-M. BELLEY AND A. GUEYE

This proves the following.

LEMMA 1. If x ∈ L1
Tap(2T ) and y ∈ L1(2T ) then x∗ y ∈ L1

Tap(2T ) .

Given x ∈ NBVTap(2T ) and t ∈ [0,T ] , there exists t ′ ∈ [0,T ] such that |x(t)| �
|x(t)− x(t ′)| and so we have

|x(t)| � v(x) (37)

for all t ∈ [0,T ] . By (9) we obtain (37) for all t ∈ R .

PROPOSITION 1. If x ∈ NBVTap(2T ) then x∗ ε ′0 ∈ ACTap(2T ) and

v
(
x∗ ε ′0

)
= T‖x‖1. (38)

Proof. By Lemma1, x∗ ε ′0 is T -anti-periodic. Given 0 � t1 � t2 � 2T we have

|(x∗ ε ′0)(t2)− (x∗ ε ′0)(t1)| � ‖xε ′t2 − xε ′t1‖1 � v(x)‖ε ′t2 − ε ′t1‖1

where

‖ε ′t2 − ε ′t1‖1 =
1

2T

∫
[t1,t2]

|ε ′t2 − ε ′t1 |+
1

2T

∫
[0,2T ]\[t1,t2]

|ε ′t2 − ε ′t1 |

� 1
2T

(∫
[t1,t2]

2T

)
+

1
2T

(∫
[0,2T ]\[t1,t2]

|t2 − t1|
)

and so
‖ε ′t2 − ε ′t1‖1 � 2|t2− t1|. (39)

By (39) we obtain

|(x∗ ε ′0
)
(t2)−

(
x∗ ε ′0

)
(t1)| � 2v(x)|t2− t1|

and so x ∗ ε ′0 is absolutely continuous on any interval of length 2T . Thus x ∗ ε ′0 ∈
ACTap(2T ) and so (x∗ ε ′0)

′ exists in L1
Tap(2T ) . Since

(
x ∗ ε ′0

)′ = x Lebesgue almost
everywhere [22, p. 13] we get

v
(
x∗ ε ′0

)
=

∫ T

0

∣∣(x∗ ε ′0
)′∣∣ =

∫ T

0
|x| = 1

2

∫ 2T

0
|x| = T‖x‖1

which proves (38). �

The following corollary is a consequence of (23), (24) and Proposition 1.

COROLLARY 2. The operators Gj and Hk map NBVTap(2T ) into ACTap(2T )
and so we have F0 : Br(2T ) → ACTap(2T ) for all r ∈ (0,ρ) .
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By (22) and A2 we have, for all θ ∈ NBVTap(2T ) ,

v
(
F0(θ )

)
� ∑

j∈N

v
(
Gj(θ )

)
+ ∑

k∈N

αkv
(
Hk(θ )

)

where, by (37) and (38),

v
(
Gj(θ )

)
= T‖ f jθ j‖1 � T‖ f j‖1v

(
θ
) j

and by (24)

v
(
Hk(θ )

)
= T‖Jτk(θ)‖1 =

T
2

. (40)

Thus, for all r ∈ (0,ρ) and all θ ∈ Br(2T ) , we have

v
(
F0(θ )

)
� p0(r)

for p0 given by (16) and so the operator F0 given by (21) is such that

F0 : Br(2T ) → Bp0(r)(2T )∩ACTap(2T )

by Corollary 2. We also have

v
(
bl(θ )Jσl

)
� βlv

(
Jσl

)
= βl. (41)

Thus

v
(
F(θ )

)
� v

(
F0(θ )

)
+ v

(
∑
l∈N

bl(θ )Jσl

)
� p0(r)+B = p(r)

for all θ ∈ NBVTap(2T ) such that v(θ ) < ρ , which proves the following corollary.

COROLLARY 3. If θ ∈ Br(2T ) for r ∈ (0,ρ) then

v
(
F(θ )

)
� p(r)

where p is given by (17).

For arbitrary θ1,θ2 ∈ Br(2T ) we have

v
(
F0(θ2)−F0(θ1)

)
� ∑

j∈N

v
(
Gj(θ2)−Gj(θ1)

)
+ ∑

k∈N

αkv
(
Hk(θ2)−Hk(θ1)

)
.

The identity x j − y j =
(

∑ j−1
k=0 x j−1−kyk

)
(x− y) along with (37) and (38) yields

v
(
Gj(θ2)−Gj(θ1)

)
= T‖ f jθ j

2 − f jθ j
1‖1 � T‖ f j

j−1

∑
k=0

θ j−1−k
2 θ k

1‖1v
(
θ2 −θ1

)
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and so
v
(
Gj(θ2)−Gj(θ1)

)
� T‖ f j‖1 jr j−1v

(
θ2−θ1

)
.

Using

ak(θ2)Hk(θ2)−ak(θ1)Hk(θ1)=
(
ak(θ2)−ak(θ1)

)
Hk(θ2)+ak(θ1)

(
Hk(θ2)−Hk(θ1)

)
we obtain

v
(
ak(θ2)Hk(θ2)−ak(θ1)Hk(θ1)

)
�

∣∣ak(θ2)−ak(θ1)
∣∣v(Hk(θ2)

)
+

∣∣ak(θ1)
∣∣v(Hk(θ2)−Hk(θ1)

)
.

By (20), (38) and (39) we have

v
(
Hk(θ2)−Hk(θ1)

)
= T‖Jτk(θ2) − Jτk(θ1)‖1 � 2T

∣∣τk(θ2)− τk(θ1)
∣∣

from which follows that

v
(
Hk(θ2)−Hk(θ1)

)
� 2Tτ ′kv(θ2−θ1)

by A3. Hence
v
(
ak(θ2)Hk(θ2)−ak(θ1)Hk(θ1)

)
� T (A′ +2C) (42)

by A2 and so
v
(
F0(θ2)−F0(θ1)

)
� q0(r)v

(
θ2−θ1

)
for q0 = q−B′ .

By A4 and v
(
Jσl

)
= 1 we have

v
(
bl(θ2)Jσl −bl(θ1)Jσl

)
�

∣∣bl(θ2)−bl(θ1)
∣∣v(Jσl

)
� b′lv

(
θ2−θ1

)
and so, if 0 < r < ρ , then

v
(
F(θ )

)
� v

(
F0(θ )

)
+ ∑

l∈N

v
(
bl(θ )Jσl

)
� p0(r)+B = p(r)

and

v
(
F(θ2)−F(θ1)

)
� v

(
F0(θ2)−F0(θ1)

)
+B′v

(
θ2−θ1

)
�

(
q0(r)+B′)v(θ2−θ1

)
= q(r)v

(
θ2 −θ1

)
for all θ ∈ Br(2T ) . Hence, if 0 < r < ρ , then F : Br(2T )→ Bp(r)(2T ) and F is a con-
traction on Br(2T ) when q(r) < 1. By Corollary 2, we have F(θ )−∑l∈N bl(θ )Jσl =
F0(θ ) ∈ ACTap(2T ) for all θ ∈ Br(2T ) . Theorem2 now follows by the contraction
principle.
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4. A refinement

By (38) we obtain

v
((

f0 + ∑
j∈N

f jθ j)∗ ε ′0
)

= T‖ f0 + ∑
j∈N

f jθ j‖1 (43)

for all θ ∈ NBVTap(2T ) such that v(θ ) < ρ . For any r ∈ (0,ρ) , the function

ϕr(t) = sup
{∣∣ f0(t)+ ∑

j∈N

f j(t)x j
∣∣ : −r � x � r, x ∈ Q

}

is Lebesgue integrable [32] and so we can define the monotone increasing function

χ(r) = T‖ϕr‖1 =
1
2

∫ 2T

0
ϕr(t)dt.

With respect to this notation (43) yields

v
((

f0 + ∑
j∈N

f jθ j)∗ ε ′0
)

� χ(r)

for all θ ∈ Br(2T ) . This, in conjunction with (40) and (41), gives

v
(
F0(θ )

)
� P0(r), θ ∈ Br(2T ) (44)

and
v
(
F(θ )

)
� P(r), θ ∈ Br(2T ) (45)

for

P0(r) = χ(r)+
TA
2

(46)

and

P(r) = P0(r)+B = χ(r)+
TA
2

+B. (47)

By Corollary 2, (44) and (45) we have F0 : Br(2T ) → BP0(r)(2T )∩ACTap(2T ) and F :
Br(2T ) → BP(r)(2T ) .

Similarly, for any r ∈ (0,ρ) , the function

ψr(t) = sup
{∣∣ d

dz ∑
j∈N

f j(t)z j
∣∣ : −r � z � r, z ∈ Q

}

is Lebesgue integrable and so we can introduce the function

φ(r) = T‖ψr‖1 =
1
2

∫ 2T

0
ψr(t)dt

which is monotone increasing in r > 0. By (38) we have

v
((

∑
j∈N

f j(θ j
2 −θ j

1 )
)∗ ε ′0

)
= T

∥∥∥ ∑
j∈N

f j(θ j
2 −θ j

1 )
∥∥∥

1
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for all θ1,θ2 ∈ Br(2T ) . For any t ∈ R , the mean value theorem yields

∑
j∈N

f j(t)
(
θ j

2 (t)−θ j
1(t)

)
=

(
∑
j∈N

f j(t) jθ j−1
t

)(
θ2(t)−θ1(t)

)

and so ∣∣∣ ∑
j∈N

f j(t)
(
θ j

2 (t)−θ j
1(t)

)∣∣∣ �
∣∣∣ ∑

j∈N

f j(t) jθ j−1
t

∣∣∣v(θ2−θ1
)

for some θt ∈ R between θ1(t) and θ2(t) (and so between −r and r ). From this
follows that

v
((

∑
j∈N

f j(θ j
2 −θ j

1 )
)∗ ε ′0

)
� φ(r)v

(
θ2 −θ1

)
which, in conjunction with (42), yields

v
(
F(θ2)−F(θ1)

)
� Q(r)v

(
θ2−θ1

)
; θ1,θ2 ∈ Br(2T )

for
Q(r) = φ(r)+T

(
A′ +2C

)
+B′. (48)

The contraction principle now yields the following result.

THEOREM 3. Given the simultaneous equations (12) and (3) on [0,T ] subject to
A1–A5, let P0(r) , P(r) and Q(r) be defined by (46), (47) and (48) and Br by (4) for all
r ∈ (0,ρ) where ρ is given by (15). If there exists R0 ∈ (0,ρ) for which P(R0) � R0

and Q(R0) < 1 simultaneously then there exists, in BP(R0) , a unique solution θ of
(12) on [0,T ] . Furthermore, θ −∑l∈N bl(θ )Jσl = F0(θ ) ∈ BP0(R0) ∩ACTap and θ ′ −
∑l∈N bl(θ )J′σl

∈ NBVTap where Jσl is given by (13) and F0(θ ) by (21).

In the context of Theorem3, θ is nontrivial if and only if (25) is satisfied. Fur-
thermore, for F on NBVTap given by (22) and θ0 ∈ BR0 , the iterates

{
Fn(θ0)

}∞
n=1

converge uniformly to θ with uniform norm
∥∥θ −Fn(θ0)

∥∥
∞ bounded by

∥∥θ −Fn(θ0)
∥∥

∞ � 2λ nR0

1−λ

for λ = Q(R0) .
We have

ϕr(t) � | f0(t)|+ ∑
j∈N

| f j(t)|r j

and so
χ(r) � ‖ f0‖1 + ∑

j∈N

‖ f j‖1r
j.

From this we obtain the two inequalities

P0(r) � p0(r), P(r) � p(r) (49)
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for 0 < r < ρ . Similarly we have

Q(r) � q(r) (50)

again for 0 < r < ρ . The following example shows that, in some cases, Theorem2 and
Theorem3 yield the same result in the sense that P = p and Q = q .

EXAMPLE 5. In the context of Example 1, (26) can be conveniently written as

θ ′(t) =
2t−T

1− (2t−T )θ (t)
+ ∑

k∈N

ak(θ )Jτk(θ)(t)+ ∑
l∈N

bl(θ )J′σl
(t)

provided (2t−T )θ (t) < 1. Hence ρt = 1/|2t−T | and so ρ = 1/T from which follows
that

ϕr(t) = sup

{∣∣∣ 2t−T
1− (2t−T)x

∣∣∣ : −r � x � r, x ∈ Q

}
=

|T −2t|
1− (T −2t)r

and

ψr(t) = sup

{∣∣∣ d
dz

( 2t−T
1− (2t−T )z

)∣∣∣ : −r � z � r, z ∈ Q

}
=

(2t−T)2

(1− (T −2t)r)2

for all t ∈ [0,2T ] and all r ∈ (0,1/T ) . Thus we have

χ(r) = 2
∫ T/2

0

T −2t
1− (T −2t)r

dt = −[
ln(1−Tr)+Tr

]
/r2

and

φ(r) = 2
∫ T/2

0

(T −2t)2

(1− (T −2t)r)2 dt = 2
[
ln(1−Tr)+Tr

]
/r3 +T2/(r−Tr2)

and so
P(r) = Tπ2/12− [

ln(1−Tr)+Tr
]
/r2 + π2/600

and

Q(r) = 2
[
ln(1−Tr)+Tr

]
/r3 +T 2/(r−Tr2)+Tπ2(1+2T)/6+ π2/600

for all r < 1/T . Hence P = p and Q = q from which follows that there is no gain in
using the refinements of this section for this example.

The next example shows that Theorem 3 can yield stronger results than Theorem2
in the sense that P �= p and/or Q �= q .

EXAMPLE 6. For all t ∈ [0,T ] , consider the equation

θ ′(t) =
∞

∑
n=0

(−1)n(2t−T)2n+2

(2n+1)!
θ 2n+1(t)+ ∑

k∈N

ak(θ )Jτk(θ)(t)+ ∑
l∈N

bl(θ )J′σl
(t) (51)
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with

ak(θ ) =
sinθ (T/k))

k2 , τk(θ ) =
T
2

cos2 θ (T/k), bl(θ ) =
sinθ (T/l))

100l2

and σl ∈ [0,T ) . Choosing αk = a′k = 1/k2 , βl = b′l = 1/100l2 and τ ′k = T we get
A = A′ = ζ (2) = π2/6, B = B′ = ζ (2)/100 = π2/600 and C = Tπ2/6. We also have
ρt = ∞ for all t ∈ [0,T ] and so ρ = ∞ . Here each f j can be extended to a T -periodic
function on R such that

f j(t) =

{
(−1)n(2t−T )2n+2/(2n+1)!, j = 2n+1, 0 � t � T

0, j = 2n, 0 � t � T

and so

‖ f j‖1 =

{
T 2n+2/(2n+1)!(2n+3), j = 2n+1

0, j = 2n.

Thus

p0(r) =
n=∞

∑
n=0

T 2n+2

(2n+1)!(2n+3)
r2n+1 +

Tπ2

12
, (52)

p(r) =
n=∞

∑
n=0

T 2n+2

(2n+1)!(2n+3)
r2n+1 +

Tπ2

12
+

π2

600
(53)

and

q(r) =
n=∞

∑
n=0

T 2n+2

(2n)!(2n+3)
r2n +

Tπ2(1+2T)
6

+
π2

600
(54)

for all r > 0.
Clearly

∞

∑
n=0

(−1)n(2t−T )2n+2

(2n+1)!
x2n+1 = (2t−T )sin

(
(2t−T )x

)

for all t ∈ [0,T ] and so we have for all t ∈ [0,T/2] and tm = max
{
0,(T/2−π/4r)

}
ϕr(t) = sup

{∣∣(2t−T )sin
(
(2t−T )x

)∣∣ : −r � x � r, x ∈ Q
}

=

{
(T −2t)sin

(
(T −2t)r

)
, tm < t � T/2

T −2t, 0 � t � tm

and

ψr(t) = sup
{∣∣∣ d

dz
(2t−T)sin

(
(2t−T )z

)∣∣∣ : −r � z � r, z ∈ Q
}

= sup
{
(2t−T )2

∣∣cos
(
(2t−T )z

)∣∣ : −r � z � r, z ∈ Q
}

= (2t−T )2
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for all r > 0. From these we obtain

χ(r) = 2
∫ tm

0
(T −2t)dt +2

∫ T/2

tm
(T −2t)sin

(
(T −2t)r

)
dt

= 2tm(T − tm)−2
d
dr

∫ T/2

tm
cos

(
(T −2t)r

)
dt

= 2tm(T − tm)− 1
r
(T −2tm)cos

(
(T −2tm)r

)
+

1
r2 sin

(
(T −2tm)r

)
=

{
(sinTr−TrcosTr)/r2, tm = 0

T 2/2−π2/8r2 +1/r2, 0 < tm � T/2

and

φ(r) =
T 3

3

for all r ∈ (0,∞) and so

P0(r) = Tπ2/12+

{
(sinTr−TrcosTr)/r2, 0 < r < π/2T

T 2/2−π2/8r2 +1/r2, r � π/2T

by (46),

P(r) = Tπ2/12+
π2

600
+

{
(sinTr−TrcosTr)/r2, 0 < r < π/2T

T 2/2−π2/8r2 +1/r2, r � π/2T

by (47) and

Q(r) =
T 3

3
+

Tπ2(1+2T)
6

+
π2

600
by (48). Regardless of T > 0, there exists a point R0 > 0 where the graph of P in-
tersects that of the identity. It now follows by Theorem3 and (25) that (51) admits, in
BP(R0) , a unique nontrivial T -anti-periodic solution for all T such that

T 3/3+Tπ2(1+2T)/6+ π2/600 < 1.

By (49), (52) and (53) we have P0(r) < p0(r) and P(r) < p(r) . Thus, if the graph of p
intersects that of the identity at some point r0 > 0, then R0 < r0 and so BP0(R0) � Bp0(r0)
and BP(R0) � Bp(r0) . Furthermore, by (50) and (54) we obtain Q(r) < q(r) for all r > 0.
Hence, for this example, the refinements of this section lead to sharper results.
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