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Abstract. In this paper, we investigate the asymptotic behavior of solutions for a class of mixed
type impulsive neutral delay differential equations with constant jumps. Sufficient conditions are
given to guarantee that every non-oscillatory solution of the system tends to zero as t → ∞ . An
example illustrating the result is also presented.

1. Introduction

The asymptotic behavior of solutions of neutral delay differential equations has
been studied by two basic methods, by construction of Lyapunov functionals, see [1]–
[5] and by considering the asymptotic behavior of non-oscillatory and oscillatory solu-
tions respectively, for example, see [6, 7] and the references therein.

The theory of impulsive differential equations is not only richer than the corre-
sponding theory of differential equations but also represents a more natural frame-
work for mathematical modeling of many real world phenomena, see the monographs
[8, 9, 10].

In [11] Jiang and Shen investigated the following nonlinear neutral delay differen-
tial equation with constant impulsive jumps and forced term⎧⎨

⎩ [x(t)− px(t− τ)]′ +
n

∑
i=1

qi(t) f (x(t −σi)) = h(t), t �= tk,

x(t+k )− x(t−k ) = αk, k ∈ Z+,

(1.1)

and derived that every non-oscillatory/oscillatory solution tends to zero as t →∞. These
results were improved in [12].

In [13] Jiang and Sun considered the asymptotic behavior of every non-oscillatory/
oscillatory solution for the following forced nonlinear neutral differential equation in
first-order Euler form with constant impulsive jumps and unbounded delay⎧⎪⎨

⎪⎩
[x(t)−C(t)x(γ(t))]′ +

n

∑
i=1

Pi(t)
t

f (x(βit)) = h(t), t �= tk,

x(t+k )− x(t−k ) = αk, k ∈ Z+,

(1.2)
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and proved that every non-oscillatory/oscillatory solution tends to zero as t → ∞.
The aim of this paper is to investigate the asymptotic behavior of solutions of the

following mixed type impulsive neutral differential equation with constant jumps:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[x(t)−bx(t− τ)−C(t)x(γ(t))]′

+
n

∑
i=1

{
qi(t) f (x(t −σi))+

Pi(t)
t

g(x(βit))
}

= h(t), t �= tk,

x(t+k )− x(t−k ) = αk, k = 1,2,3, . . . ,

(1.3)

where b , τ , σi are given constants such that τ > 0, 0 < σ1 < σ2 < · · · < σn , γ is
monotone increasing for t > t0 and γ(t) � t , 0 < βi < 1 satisfying β1 < β2 < · · ·< βn ,
i ∈ Λ ; C , qi , Pi , h ∈ PC([t0,∞),R) where Λ = {1,2, . . . ,n} , t0 > 0, R denotes the
set of real numbers, for J ⊂ R , PC(J,R) denotes the set of all functions ϕ : J → R

such that ϕ is continuous everywhere except at some points tk , k ∈ Z+ and the limits
ϕ(t+k ) = limt→t+k

ϕ(t) , ϕ(t−k ) = limt→t−k
ϕ(t) exist with ϕ(tk) = ϕ(t−k ) , the sequence

{tk} , k ∈ Z+ is impulsive points satisfying 0 < t0 < t1 < · · · < tk < tk+1 < · · · → ∞ as
k → ∞ , the notation {αk} , k ∈ Z+ is a constant impulsive sequence, and Z+ denotes
the set of positive integers. Notice that problem (1.3) reduces to the problem (1.1) for
C = 0, Pi = 0 and to problem (1.2) for b = 0,qi = 0.

In this paper we derive sufficient conditions such that every non-oscillatory solu-
tion of system (1.3) tends to zero as t →∞. The rest of the paper is organized as follows.
In the next section, we present some preliminaries. In Section 3, we give and prove our
main result by a technique of construction. Finally, in Section 4, as an application of
our results, we present an example to illustrate the usefulness of the obtained results.

2. Preliminaries

Before going to prove our main result, we would like to state the hypotheses. Let
f ,g : R → R be continuous functions. Assume that:

(H1) There exists two constants M > 0 and N > 0 such that

| f (x)| � M|x| for x ∈ R; x f (x) > 0 for x �= 0,

and
|g(x)| � N|x| for x ∈ R; xg(x) > 0 for x �= 0.

(H2) For all 0 < t0 � t , the integral

G(t) =
∫ ∞

t
h(s)ds is convergent.

(H3) tk−τ , γ(tk) are not impulsive points for all k ∈Z+ and the limit limt→∞ α+
k = 0

where α+
k = max{αk,0} .
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To set the initial function, we define ρ1 = max{τ,σn} , ρ2 = min
{

γ(t0)
t0

,β1

}
, 0 < ρ =

min{t0−ρ1,ρ2t0} . Also, we define an initial value function

x(t) = ϕ(t), t ∈ [ρ ,t0], (2.1)

where ϕ ∈ PC([ρ , t0],R) = {ϕ : [ρ ,t0] → R : ϕ is continuous everywhere except at
some points tk , k ∈ Z+ and ϕ(t−k ) = limt→t−k

ϕ(t) , ϕ(t+k ) = limt→t+k
ϕ(t) exist with

ϕ(t−k ) = ϕ(tk)} .
The solution of problem (1.3) is defined as follows.

DEFINITION 1. A function x(t) is said to be a solution of system (1.3) satisfying
the initial value condition (2.1) if

(1). x(t) = ϕ(t) for 0 < ρ � t � t0 and x(t) is continuous for t � t0 , t �= tk , k ∈ Z+ ;

(2). x(t)− bx(t − τ)−C(t)x(γ(t)) is continuously differentiable for t > t0 , t �= tk ,
k ∈ Z+ and satisfies equation (1.3);

(3). x(t+k ) and x(t−k ) exist with x(t−k ) = x(tk) for all k ∈ Z+ and satisfies equation
(1.3).

The oscillatory and non-oscillatory solutions of system (1.3) are defined as follows.

DEFINITION 2. A solution x(t) of system (1.3) is said to be eventually positive
(negative) if it is positive (negative) for all sufficiently large t . It is said to be oscillatory
if it is neither eventually positive nor eventually negative. Otherwise, it is said to be
non-oscillatory.

Throughout this paper, we introduce the function H(t) defined by

H(t) =

⎧⎪⎪⎨
⎪⎪⎩

∫ ∞

t
h(s)ds, t ∈ (tk,tk+1],∫ ∞

t
h(s)ds+ α+

k−1, t = tk, k ∈ Z+,

(2.2)

where α+
k = max{αk,0} , k ∈ Z+ ∪{0} and α0 = 0.

3. Main result

THEOREM 1. Let the conditions (H1)–(H3) hold. Assume that for some ξ1,ξ2 >
0 , there exist two constants θ1,θ2 > 0 such that

| f (x)| � θ1, |x| � ξ1 and |g(x)| � θ2, |x| � ξ2. (3.1)

Suppose that

|b| = B < 1, lim
t→∞

|C(t)| = C < 1 such that B+C < 1, (3.2)
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and
n

∑
i=1

qi(t + σi) � 0,

∫ ∞

t0

n

∑
i=1

qi(s+ σi)ds = ∞, (3.3)

n

∑
i=1

Pi(t/βi)
t

� 0,
∫ ∞

t0

n

∑
i=1

Pi(s/βi)
s

ds = ∞. (3.4)

In addition, for sufficiently large t , assume that there exist constants λ1 > 0 and λ2 > 0
such that

∑
σi<r

∫ t−σi

t−r
q−i (s+ σi)ds+ ∑

σi>r

∫ t−r

t−σi

q+
i (s+ σi)ds � λ1, (3.5)

∑
βi<u

∫ ut

βit

(
Pi(s/βi)

s

)+

ds+ ∑
βi>u

∫ βit

ut

(
Pi(s/βi)

s

)−
ds � λ2, (3.6)

where a fixed constant u ∈ (0,βn] , λ < (1−|b|−C)/(M+N) and λ = max{λ1,λ2} ,
r ∈ [0,σn] , q+

i (s) = max{qi(s),0} , q−i (s) = max{−qi(s),0} and

((Pi(s/βi))/(s))+ = max{(Pi(s/βi))/(s),0},
((Pi(s/βi))/(s))− = max{(−Pi(s/βi))/(s),0} .

Then every non-oscillatory solution of equation (1.3) tends to zero as t → ∞ .

Proof. Firstly, we choose a positive integer N sufficiently large enough such that
there exists a positive integer m large enough satisfying γ(tm) , t − τ > tN and (3.5)–
(3.6) hold for t � tN , where N is the largest subscript satisfying γ(tm) , t − τ > tN .
Let x(t) be a non-oscillatory solution of equation (1.3). Without loss of generallity, we
will assume that x(t) is eventually positive solution. For the case x(t) is eventually
negative, the proof is similar and we omit it. Let x(t) > 0 for t � tN . For all t � tN , we
set

α(t) =
{

α+
Nt ; t > tN+1,

0; t ∈ [tN ,tN+1],
(3.7)

where Nt corresponds to the largest subscript of impulsive points in the interval t � tN .
Next, we define

y(t) = x(t)−bx(t− τ)−C(t)x(γ(t))

−
n

∑
i=1

[∫ t−r

t−σi

qi(s+ σi) f (x(s))ds+
∫ ut

βit

Pi(s/βi)
s

g(x(s))ds

]

+H(t)−α(t), (3.8)

where H(t) is as in (2.2). Now, we derive the derivative of a function α(t) . For t �= tk ,
we choose Δt sufficiently small such that there is no impulsive point in the interval
(t,t + Δt) . Then we have

α ′(t) = lim
Δt→0

α(t + Δt)−αt
Δt

= 0, t �= tk.
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From (3.8) and (H2)–(H3) , we get that for t �= tk , t �= tk +σi , t �= tk/βi , i∈ Λ , k ∈Z+ ,

y′(t) = [x(t)−bx(t− τ)−C(t)x(γ(t))]′ −
n

∑
i=1

[
qi(t − r+ σi) f (x(t − r))

−qi(t) f (x(t −σi))+
Pi(ut/βi)

rt
g(x(ut))r− Pi(t)

βit
g(x(βit))βi

]
−h(t)

= [x(t)−bx(t− τ)−C(t)x(γ(t))]′ +
n

∑
i=1

[
qi(t) f (x(t −σi))+

Pi(t)
t

g(x(βit))
]

−
n

∑
i=1

[
qi(t− r+ σi) f (x(t − r))+

Pi(ut/βi)
t

g(x(ut))
]
−h(t)

= −
n

∑
i=1

[
qi(t− r+ σi) f (x(t − r))+

Pi(ut/βi)
t

g(x(ut))
]

� 0. (3.9)

For t = tk , k = N +1,N +2, . . . , we have

H(t+k )−H(tk) = −α+
k−1. (3.10)

In addition, for t = tk , k = N +1,N +2, . . . , we obtain

y(t+k )− y(tk) = x(t+k )−bx(t+k − τ)−C(t+k )x(γ(t+k ))

−
n

∑
i=1

[∫ t+k −r

t+k −σi

qi(s+ σi) f (x(s))ds+
∫ rt+k

βit
+
k

Pi(s/βi)
s

g(x(s))ds

]

+H(t+k )−α(t+k )− x(tk)+bx(tk − τ)+C(tk)x(γ(tk))

+
n

∑
i=

[∫ tk−r

tk−σi

qi(s+ σi) f (x(s))ds+
∫ rtk

βitk

Pi(s/βi)
s

g(x(s))ds

]

−H(tk)+ α(tk)

= x(t+k )− x(tk)+H(t+k )−H(tk)−α(t+k )+ α(tk)

= αk −α+
k−1−α+

k + α+
k−1 = αk −α+

k � 0.

From (3.9) and the above inequality, we have y(t) is nonincreasing on [ tNu + r,∞) .

Now, we will claim that y(t) is convergence. Let L = limt→∞ y(t) , we will show
that L ∈ R . Otherwise, L = −∞ , then x(t) is unbounded. Indeed, if x(t) is bounded
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then it follows from (3.8) and (H1) that for some constants D > 0, E > 0,

y(t) = x(t)−bx(t− τ)−C(t)x(γ(t))

−
n

∑
i=1

[∫ t−r

t−σi

qi(s+ σi) f (x(s))ds+
∫ ut

βit

Pi(s/βi)
s

g(x(s))ds

]
+H(t)−α(t)

� x(t)−bx(t− τ)−C(t)x(γ(t))

−D

[
∑

σi<r

∫ t−σi

t−r
q−i (s−σi)ds+ ∑

σi>r

∫ t−r

t−σi

q+
i (s+ σi)ds

]

−E

[
∑

βi<u

∫ ut

βit

(
Pi(s/βi)

s

)+

ds+ ∑
βi>u

∫ βit

ut

(
Pi(s/βi)

s

)−
ds

]
+H(t)−α(t).

From the conditions (H2)–(H3) and (3.5)–(3.6), we have that L = −∞ � K . This is a
contradiction and then x(t) is unbounded.

On the other hand, from x(t) is unbounded and limt→∞ y(t) = −∞ , we can choose
t∗ � max{tN +σn, tN +τ,tN/β1,γ(tm)} such that y(t∗)−H(t∗)+α(t∗) < 0 and x(t∗) =
max{x(t) : tN � t � t∗} . Therefore, it follows from (3.5)–(3.6) that

0 > y(t∗)−H(t∗)+ α(t∗)

= x(t∗)−bx(t∗− τ)−C(t∗)x(γ(t))

−
n

∑
i=1

[∫ t∗−r

t∗−σi

qi(s+ σi) f (x(s))ds+
∫ ut∗

βit∗
Pi(s/βi)

s
g(x(s))ds

]

+H(t∗)−α(t∗)−H(t∗)+ α(t∗)

� x(t∗)−|b|x(t∗)−Cx(t∗)

−Mx(t∗)

[
∑

σi<r

∫ t∗−σi

t∗−r
q−i (s−σi)ds+ ∑

σi>r

∫ t∗−r

t∗−σi

q+
i (s+ σi)ds

]

−Nx(t∗)

[
∑

βi<u

∫ ut∗

βit∗

(
Pi(s/βi)

s

)+

ds+ ∑
βi>u

∫ βit∗

ut∗

(
Pi(s/βi)

s

)−
ds

]

� x(t∗){1−|b|−C−Mλ1−Nλ2}
� x(t∗){1−|b|−C−λ (M +N)} > 0,

which is a contradiction and therefore L ∈ R .
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Integrating both sides of (3.9) from tN/β1 + σn to t , we obtain

∫ t

tN
β1

+σn

[
n

∑
i=1

qi(s− r+ σi) f (x(s− r))+
n

∑
i=1

Pi(us/βi)
s

g(x(us))

]
ds

= −
∫ t

tN
β1

+σn

y′(s)ds

= −y(t)+ y

(
tN
β1

+ σn

)
+ ∑

tN
β1

+σn<tk�t

[y(t+k )− y(tk)]

< y

(
tN
β1

+ σn

)
−L. (3.11)

From (3.3), (3.4) and (3.11), we have

f (x(t)) ∈ L1
([

tN
β1

+ σn,∞
)

,R

)
and g(x(t)) ∈ L1

([
tN
β1

+ σn,∞
)

,R

)
.

Hence, liminft→∞ f (x(t)) = 0 and liminft→∞ g(x(t)) = 0.
Now, we claim that

lim
t→∞

infx(t) = 0. (3.12)

Let {Sm} be a sequence such that Sm → ∞ as m → ∞ with limm→∞ f (x(Sm)) = 0 and
limm→∞ g(x(Sm)) = 0. We must show that liminfm→∞ x(Sm) = c = 0. If c > 0, then
there exists a subsequence {Smk} of {Sm} such that x(Smk ) � c/2 for some k suffi-
ciently large. From (3.1), we have f (x(Smk )) � θ1c and g(x(Smk)) � θ2c for some θ1c ,
θ2c > 0 and sufficiently large k . Then it is a contradiction because limk→∞ f (x(Smk )) =
0 and limk→∞ g(x(Smk)) = 0. Thus, (3.12) holds.

Observe that (3.11) implies

∫ ∞

t0

n

∑
i=1

qi(s− r+ σi) f (x(s− r))ds+
∫ ∞

t0

n

∑
i=1

Pi(rs/βi)
s

f (x(sr))ds < ∞. (3.13)

Set

z(t) = y(t)+
n

∑
i=1

[∫ t−r

t−σi

qi(s+ σi) f (x(s))ds+
∫ ut

βit

Pi(s/βi)
s

f (x(s))
]

ds−H(t)+ α(t).

From (H2)–(H3) and (3.13), we have

lim
t→∞

z(t) = μ exists.

Then, from (3.8), we obtain

lim
t→∞

[x(t)−bx(t− τ)−C(t)x(γ(t))] = μ . (3.14)
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Next, we will show that limt→∞ x(t) = 0. From the condition (3.2), we can choose
a sufficiently large T1 such that |b|+ |C(t)|< 1 for t > T1 . Set

η = lim sup
t→∞

x(t).

By liminft→∞ x(t) = 0, we get that there exist two sequences {un} and {vn} with
un → ∞,vn → ∞ as n → ∞ such that

lim
t→∞

x(un) = 0, lim
t→∞

x(vn) = η .

For all t > T1 , we divide the following nine possible cases to discuss.
Case 1. If b = 0 and limt→∞C(t) = 0 for t > T1 , then we get

lim
t→∞

x(t) = μ = 0.

Since limt→∞ x(t) exists and liminft→∞ x(t) = 0.
Case 2. If b = 0 and −1 < C(t) < 0 for t > T1 , then we have

μ = lim
n→∞

[x(un)−C(un)x(γ(un))] � Cη ,

and
μ = lim

n→∞
[x(vn)−C(vn)x(γ(vn))] � η ,

which imply that η � Cη . It follows from η � 0 and 0 < C < 1 that η = 0. This
shows limt→∞ x(t) = 0.

Case 3. If b = 0 and 0 < C(t) < 1 for t > T1 , then we obtain

μ = lim
n→∞

[x(un)−C(un)x(γ(un))] � 0,

and
μ = lim

n→∞
[x(vn)−C(vn)x(γ(vn))] � η −Cη ,

which imply that η(1−C) � 0. It follows that η � 0 and 0 < C < 1 which imply
η = 0. This shows limt→∞ x(t) = 0.

Case 4. If limt→∞C(t) = 0 and −1 < b < 0 for t > T1 , then we get

μ = lim
n→∞

[x(un)−bx(un− τ)] � Bη ,

and
μ = lim

n→∞
[x(vn)−bx(vn− τ)] � η ,

which imply that η � Bη . It follows that η � 0 and 0 < B < 1 which imply η = 0.
This shows limt→∞ x(t) = 0.

Case 5. If limt→∞C(t) = 0 and 0 < b < 1 for t > T1 , then we obtain

μ = lim
n→∞

[x(un)−bx(un− τ)] � 0,
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and

μ = lim
n→∞

[x(vn)−bx(vn− τ)] � η −Bη ,

which imply that η(1−B) � 0. It follows that η � 0 and 0 < B < 1 which yield
η = 0. This means limt→∞ x(t) = 0.

Case 6. If 0 < b < 1 and −1 < C(t) < 0 for t > T1 , then we have

μ = lim
n→∞

[x(un)−bx(un− τ)−C(un)x(γ(un))] � Cη ,

and

μ = lim
n→∞

[x(vn)−bx(vn− τ)−C(vn)x(γ(vn))] � η −Bη ,

which imply that η [1− (B+C)] � 0. It follows that η � 0 and 0 < B+C < 1 which
lead to η = 0. This implies limt→∞ x(t) = 0.

Case 7. If 0 < b < 1 and 0 < C(t) < 1 for t > T1 , then we obtain

μ = lim
n→∞

[x(un)−bx(un− τ)−C(un)x(γ(un))] � 0,

and

μ = lim
n→∞

[x(vn)−bx(vn− τ)−C(vn)x(γ(vn))] � η −Bη +Cη ,

which imply that η [1− (B+C)] � 0. It follows that η � 0 and 0 < B+C < 1 which
imply η = 0. This shows limt→∞ x(t) = 0.

Case 8. If −1 < b < 0 and −1 < C(t) < 0 for t > T1 , then we get

μ = lim
n→∞

[x(un)−bx(un− τ)−C(un)x(γ(un))] � Bη +Cη ,

and

μ = lim
n→∞

[x(vn)−bx(vn− τ)−C(vn)x(γ(vn))] � η ,

which imply that η [1− (B+C)] � 0. It follows that η � 0 and 0 < B+C < 1. Thus
η = 0. This shows limt→∞ x(t) = 0.

Case 9. If −1 < b < 0 and 0 < C(t) < 1 for t > T1 , then we have

μ = lim
n→∞

[x(un)−bx(un− τ)−C(un)x(γ(un))] � Bη ,

and

μ = lim
n→∞

[x(vn)−bx(vn− τ)−C(vn)x(γ(vn))] � η −Cη ,

which imply that η [1− (B+C)] � 0. It follows that η � 0 and 0 < B+C < 1. Thus
η = 0. This shows limt→∞ x(t) = 0.

Therefore, we conclude that limt→∞ x(t) = 0, and so the proof is completed. �
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4. An Example

EXAMPLE 1. Consider the following mixed type neutral differential equation with
impulsive perturbations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
x(t)− 1

4
x

(
t− 1

3

)
−C(t)x

(
2t
e

)]′
+
(

3
t +2

)(
2x(t−1)

1+(x(t−1))2

)

+
1

2
(
ln
( 1

7 t
)−1

)3x
( t

7e

)
+
(

2
t +2

)(
2x(t−2)

1+(x(t−2))2

)

+
1

3
(
ln
(

1
5 t
)−1

)3x
( t

5e

)
+
(

1
t +2

)(
2x(t−3)

1+(x(t−3))2

)

+
1

4
(
ln
(

1
3 t
)−1

)3x
( t

3e

)
=

1
t3

, t � t0 = e, t �= tk,

x(t+k )− x(tk) = (−1)k 2
k
, tk = k+2, k ∈ Z+,

(4.1)

where

C(t) =
(k+2)	t


2k2 +2k+4
, t ∈ (k,k+1], k = 2,3,4, . . . .

Here b = 1/4, τ = 1/3, γ(t) = 2t/e , f (x) = 2x/(1+ x2) , g(x) = 3x , h(t) = 1/t3 ,
q1(t) = 3/(t + 2) , q2(t) = 2/(t + 2) , q3(t) = 1/(t + 2) , P1(t) = 1/

(
2
(
ln
(

1
7 t
)−1

))
,

P2(t) = 1/
(
3
(
ln
(

1
5 t
)−1

))
, P3(t) = 1/

(
4
(
ln
(

1
3 t
)−1

))
, σ1 = 1, σ2 = 2, σ3 = 3,

β1 = 1/(7e) , β2 = 1/(5e) , β3 = 1/(3e) , when we choose M = 2, N = 3, r = 5/2 ∈
[0,3] , u = 1/(6e) ∈ (0,1/(3e)] . We can find that

(i) | f (x)| =
∣∣∣∣ 2x
1+ x2

∣∣∣∣� 2|x|, x ∈ R, x

(
2x

1+ x2

)
> 0 for x �= 0 and

|g(x)| = |3x| � 3|x|, x ∈ R, x(3x) > 0 for x �= 0;

(ii) G(t) =
∫ ∞

t

1
s3 ds =

1
2t2

is convergent for t � e ;

(iii) tk − (1/3) and (2/e)tk are not impulsive points for all k ∈ Z+ and lim
k→∞

α+
k =

lim
k→∞

1
k

= 0;

(iv) |b| = 1
4

= B < 1, lim
t→∞

|C(t)| = 1
2

= μ < 1 with B+C =
3
4

< 1;

(v)
3

∑
i=1

qi(t + σi) =
3

t +3
+

2
t +4

+
1

t +5
� 0 for t � e and

∫ ∞

e
qi(s+ σi)ds =

∫ ∞

e

[
3

s+3
+

2
s+4

+
1

s+5

]
ds = ∞;
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(vi)
3

∑
i=1

Pi(t/βi)
t

=
13

12t lnt
� 0 for t � e and

∫ ∞

e

3

∑
i=1

Pi(s/βi)
s

ds =
∫ ∞

e

[
13

12s lns

]
ds = ∞;

(vii) For large enough t , there exist constants λ1 > 0 and λ2 > 0 such that

∑
σi<r

∫ t−σi

t−r
q−i (s+ σi)ds+ ∑

σi>r

∫ t−r

t−σi

q+
i (s+ σi)ds =

∫ t−5/2

t−3

1
s+5

ds

= ln(s+5)|t−5/2
t−3 → 0;

and

∑
βi<u

∫ ut

βit

(
Pi(s/βi)

s

)+

ds+ ∑
βi>u

∫ βit

ut

(
Pi(s/βi)

s

)−
ds =

∫ t/(6e)

t/(7e)

1
2s lns

ds

=
1
2

ln ln(s)|t/(6e)
t/(7e) → 0;

by L’Höpital’s rule. Hence, by (i)–(vii) all assumptions of Theorem 1 are satisfied.
Therefore, we conclude that every non-oscillatory solution of (4.1) tends to zero as
t → ∞ .

REMARK 1. In this paper, by combining the impulsive neutral differential equa-
tions with bounded and unbounded delays (1.1) and (1.2), respectively, an asymptotic
behavior of non-oscillatory solutions of equation (1.3) is proved. Notice that in [11]
and [13] the authors proved the asymptotic behavior of oscillatory solutions by assum-
ing that there exists a critical point ξ such that y′(ξ ) = 0 (on page 11 of [11] and
9911 of [13], respectively), and y(ξ ) is the extremum value for oscillatory function
y′ ∈ PC(R+,R) which does not satisfy the Definition 2.
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