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NON HOMOGENEOUS DIRICHLET PROBLEM

FOR THE KDVB EQUATION ON A SEGMENT

ISAHI SÁNCHEZ SUÁREZ, GERARDO LORETO GÓMEZ

AND MARCELA MORALES MORFÍN

(Communicated by Pavel I. Naumkin)

Abstract. We study the Non homogeneous Dirichlet problem with large initial data for the KdVB
equation on the interval x ∈ (0,1)⎧⎪⎪⎨⎪⎪⎩

ut +uxu−uxx +uxxx = 0, t > 0, x ∈ (0,1)
u(x,0) = u0(x), x ∈ (0,1)
u(0,t) = u(1,t) = 0, t > 0

ux(1,t) = h(t), t > 0.

(1)

We prove that if the initial data u0 ∈ L2 and boundary data h(t) ∈ H1
∞(0,∞) then there exist

a unique solution u ∈ C
(
[0,∞) ;L2

)∪C
(
(0,∞) ;H1

)
of the initial-boundary value problem (1).

We also obtain the large time asymptotic of solution uniformly with respect to x ∈ (0,1) as
t → ∞.

1. Introduction

We study the global existence and large time asymptotic behavior of solutions
to the initial-boundary value problem for the Korteweg–de Vries–Burgers (KdVB)
equation on the interval x ∈ (0,1)⎧⎪⎪⎨⎪⎪⎩

ut +uxu−uxx +uxxx = 0, t > 0, x ∈ (0,1) ,
u(x,0) = u0(x), x ∈ (0,1) ,
u(0,t) = u(1,t) = 0, t > 0,

ux(1,t) = h(t), t > 0.

(2)

This equation is considered as one of the simplest partial differential equations
(PDEs) that features dissipation, dispersion and nonlinearity. It is used to model
many phenomena and has many applications in various fields of Physics, Biology
and Electrical Engineering. A typical example in electrical engineering is a modified
model of transmission line that has the feature of dispersion and dissipation, other
examples are provided by the propagation of waves on an elastic tube filled with
a viscous fluid [15], the flow of liquids containing gas bubbles [25] and turbulence
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[11]. KdVB equation has been explicitly derived by Shukla and Tagare in case of
the ion-acoustic shock waves in multi-electron temperature collisional plasma using
perturbation reduction technique [24].

In the case of travelling wave solutions of a KdVB equation with a non-local
diffusion term were found in paper [1]. This model equation arises in the analysis of
a shallow water flow by performing formal asymptotic expansions associated to the
triple-deck regularization (which is an extension of classical boundary layer theory).
The resulting non-local operator is a fractional derivative of order between 1 and 2.

In the case of the Cauchy problem, some estimations for the time decay rates
of solutions to the KdVB type equations and the generalized KdVB equation were
found in papers [4], [5], [6], [9], [26] and the large time asymptotic of solutions
was obtained in [8], [10]. Recently, some researchers obtained many results about
the Unique Continuation Property and Decay for the KdVB equation with localized
damping (see, e.g. [21]).

In the case of the boundary value problem on half-line the large time asymptotics
of solutions were studied in papers [2], [3], [7], [12], [14], [22], [17].

One of the most important developments in this area was the generalization of the
Cauchy problem and problem on half-line to the case of the initial-boundary value
problem on a segment. The boundary value problems on a segment are more natural
for applications, however their mathematical investigations are more complicated. For
example, it is necessary to answer the question of the well-posedness of the problem, in
particular, how many boundary values should be given in the problem for its solvability
and the uniqueness of the solution. And after that it is also interesting to study the
influence of the boundary data on the qualitative properties of the solution.

As far as we know the non homogeneous initial-boundary value problem for
the KdVB equation (2) on the interval was not considered previously. In this paper
we study traditionally important problems of a theory of nonlinear partial differential
equations, such as well-posedness and in time global existence of solutions to the initial-
boundary value problem (2). Our main goal is to obtain the large time asymptotics of
solutions. We consider (2) in the case of the initial data belonging to L2 . Note that
we do not assume the smallness condition on the data. In the case of large initial
data it is more difficult than that small data to obtain exact representation of large
time asymptotics of solutions and there are a few results (see, e.g. [23]). Another
difficulty in the study of the boundary value problem for the KdVB equation (2) is
that the linear operator −∂ 2

x + ∂ 3
x is not self-adjoint and we can not apply the Fourier

method when we take the boundary value into account. To avoid this difficulty we
apply the Laplace transformation with respect to space variable to derive the Green
function of the resulting equation. We will show below that exactly three boundary
values are necessary and sufficient in the problem (2) for its solvability and uniqueness.
The Laplace transformation requires the boundary data u(0,t) , u(1,t) , ux (1,t) and so
ux (0, t) , uxx (0, t) and uxx (1,t) should be determined by the given data. To achieve this
we need to solve the analytic condition of the function û . For obtaining Lp -estimates
of the Green function we use the method of papers [12], [20], [18] and [19].

To state the results of the present paper precisely we give some notations.
Let us denote H1 =

{
ϕ ∈ L2 (0,1) ;‖ϕ‖H1 = ‖ϕ‖L2 +‖ϕx‖L2 < ∞

}
. Direct
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Laplace transformation Lx→p is

û(p) ≡ L u =
∫ 1

0
e−pxu(x)dx

and the inverse Laplace transformation L −1
p→x is defined by

u(x) ≡ L −1û(p) = (2π i)−1
∫ i∞

−i∞
epxû(p)dp.

By the same letter C we denote different positive constants if it does not make
confusion.

We state the main result of this paper.

THEOREM 1. Suppose that the initial data u0 ∈ L2(0,1), boundary data h(t) ∈
H1(0,∞), such as for some constant A the following asymptotics are valid

h(t) = At−β +O(t−β−γ).

Then for β > 1
2 there exists a unique solution of (2)

u ∈ C
(
[0,∞) ;L2)∪C

(
(0,∞) ;H1) .

Moreover there exists the function Ψ(x) ∈ L∞(0,1) such that the solution u(x,t) has
the following asymptotics

u(x,t) = h(t)Ψ(x)+O
(
t−β−γ

)
for t → ∞ uniformly with respect to x ∈ (0,1) . The function Ψ(x) is defined below in
formula (43).

We organize our paper as follows. In Section 2 we solve the linear initial-boundary
value problem corresponding to (2) with conditions homogeneous. In Section 3 we
prove the Global existence of solutions to (2) for the case of small initial data. Section
4 is devoted to the proof of main theorem of solutions to (2) for the case of any initial
data by using the time decay estimates of solutions obtained in Section 3.

2. Linear problem

We consider the following linear initial-boundary value problem⎧⎨⎩
vt − vxx + vxxx = f (x,t) , t > 0, x ∈ (0,1) ,

v(x,0) = v0(x), x ∈ (0,1) ,
v(0,t) = v(1,t) = 0,vx(1,t) = h(t), t > 0.

(3)

We define for x ∈ (0,1)

ψ(ξ ,x) =
3

∑
j=1

e−ϕ jxϕ ′
j (ξ ) . (4)
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Here φl(ξ ) are the roots of the characteristic equation −p2 + p3 + ξ = 0, such
that Reφl(ξ ) > 0, l = 1,2 and Reφ3(ξ ) < 0, for all ξ ∈ D0.
Where D0 =

{
ξ ∈C : Reξ � 0,ξ /∈ [0, 4

27

]}
. Note that the functions φl(ξ ) are

analytic in the domain
{

ξ ∈C : ξ /∈ [−∞, 4
27 ]
]}

.
Denote by

G ϕ = θ (x)
∫ 1

0
G(x,y,t)ϕ(y)dy, (5)

H h =
∫ t

0
dτh(τ)H(t − τ).

Here and below θ (x) = 1 for x ∈ (0,1) and θ (x) = 0 for x /∈ (0,1) ,

G(x,y, t) =

{
F1(x,y,t) = − 1

2π i

∫ i∞
−i∞ eξ t ψ(ξ ,1−x)ψ(ξ ,y)

ψ(ξ ,1) dξ , for y < x,

F2(x,y,t) = − 1
2π i

∫ i∞
−i∞ eξ t ψ(ξ ,1−x)ψ(ξ ,y)−ψ(ξ ,y−x)ψ(ξ ,1)

ψ(ξ ,1) dξ , for x < y
(6)

and
H(x,t) = Gy(x,y,t)

∣∣y=1 . (7)

PROPOSITION 1. Let the initial data v0 ∈ L1 (0,1) and f ∈ C
(
[0,∞) ;L1

)
and

h ∈ L1 (0,∞) Then there exist a unique solution v(x,t) of the initial-boundary value
problem (3), which has integral representation

v(x,t) = G v0 +
∫ t

0
G (t− τ) f (τ)dτ +H h, (8)

where operators G and H defined by (5)

Proof. To derive an integral representation for the solutions of the problem (3)
we suppose that there exists a solution v(x,t) , which is continued by zero outside of
x ∈ (0,1)

v(x,t) = 0 for all x /∈ [0,1] ,
∂ j

x v(0,t) = lim
x→0+

∂ j
x v(x,t), j = 0,1,2,

∂ j
x v(1,t) = lim

x→1−
∂ j

x v(x,t), j = 0,1,2.

We define the operator

P

{
φ̂ (p,t)

}
=

1
2π i

∫ i∞

−i∞

e(q−p)−1
q− p

φ̂ (q, t)dq.

It is readily observed that P{φ(p)} constitutes a function analytic in the complex plane
p ∈ C .

Since L {v} is analytic for all p ∈ C we have

v̂(p,t) = P{v̂(p,t)} . (9)
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Applying the method developed in [16] we obtain{
P

{
v̂t +K(p)v̂(p,t)+B1(p,t)− e−pB2(p,t)− f̂ (p, t)

}
= 0, t > 0, x > 0,

v̂(p,0) = v̂0(p),
(10)

where K(p) = p3− p2 and

B1(p,t) = p2
2

∑
j=1

∂ j−1
x v(0,t)

p j − p3
3

∑
j=1

∂ j−1
x v(0,t)

p j , (11)

B2(p,t) = p2
2

∑
j=1

∂ j−1
x v(1,t)

p j − p3
3

∑
j=1

∂ j−1
x v(1,t)

p j .

We rewrite (10) in the form

v̂t +K(p)v̂(p,t)+B1(p,t)− e−pB2(p,t)− f̂ (p,t) = Φ(p, t), (12)

where some function Φ(p,t) is analytic for all p ∈ C ,

|Φ(p,t)| � C
1+ |e−p|

|p| , |p| > 1 (13)

and
P{Φ(p,t)} = 0. (14)

Now we prove that under these conditions Φ(p,t) ≡ 0.
We introduce functions of the Cauchy type

Ω1(z,t) =
1

2π i

∫ i∞

−i∞

1
q− z

Φ(q,t)dq,

Ω2(z,t) =
e−z

2π i

∫ i∞

−i∞

eq

q− z
Φ(q,t)dq.

Since Φ(p, t) satisfies Hölder condition the functions Ω1(z,ξ ), Ω2(z,ξ ) are
analytic in Re z �= 0. Denote by Ω+

1,2(p,t) = limz→p,Re z<0 Ω1,2(z,t) and Ω−
1,2(p, t) =

limz→p,Re z>0 Ω1,2(z, t) for Re p = 0. Since function Φ(p,t) is analytic for all p ∈ C

from estimate (13) we have

Ω−
2 (p,ξ ) = Ω+

1 (p,ξ ) = 0.

In another hand by Sokhotsky-Plemelj formula we get

Ω−
2 (p,ξ ) =

e−p

2π i
−
∫ i∞

−i∞

1
q− p

Φ(p,t)dq− 1
2

Φ(p,t)

Ω+
1 (p,ξ ) =

1
2π i

−
∫ i∞

−i∞

1
q− p

Φ(p,t)dq+
1
2

Φ(p,t).
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and therefore for Re p = 0

Ω−
2 (p,ξ )−Ω+

1 (p,ξ ) = P{Φ(p,t)}−Φ(p,t) = 0.

Thus for Re p = 0
Φ(p,t) = P{Φ(p,t)} = 0

and therefore due to analyticity Φ(p,t) ≡ 0 for all p ∈ C .
Applying the Laplace transformation with respect to time variable to problem (12)

we find Lt→ξ {v̂(p, t)} = ̂̂v(p,ξ ) as

̂̂v(p,ξ ) =
1

K(p)+ ξ

(
v̂0(p)+ ̂̂f (p,ξ )− B̂1(p,ξ )+ e−pB̂2(p,ξ )

)
(15)

for p ∈ C.
Here functions B̂1(p,ξ ) and B̂2(p,ξ ) are the Laplace transforms of B1(p,t) and

B2(p, t) with respect to time.
In order to get the integral formula for solution, we need to know the functions

B̂1(p,ξ ) and B̂2(p,ξ ) . We will find its using the analytic condition (9) of function ̂̂v
for p ∈ C and Re ξ > 0. Via (15) we rewrite (9) in the form

1
K(p)+ ξ

(
v̂0(p)+ ̂̂f (p,ξ )− B̂1(p,ξ )+ e−pB̂2(p,ξ )

)
(16)

=
1

2π i

∫ i∞

−i∞

e(q−p)−1
q− p

1
K(q)+ ξ

(
v̂0(q)+ ̂̂f (q,ξ )− B̂1(q,ξ )+ e−qB̂2(q,ξ )

)
dq.

By Cauchy Theorem we have for all p ∈ C

1
2π i

∫ i∞

−i∞

e(q−p)−1
q− p

1
K(q)+ ξ

(
v̂0(q)+ ̂̂f (q,ξ )− B̂1(q,ξ )+ e−qB̂2(q,ξ )

)
dq

=
1

K(p)+ ξ

(
v̂0(p)+ ̂̂f (p,ξ )− B̂1(p,ξ )+ e−pB̂2(p,ξ )

)
+

e(ϕ3(ξ )−p)

ϕ3− p
ϕ ′

3(ξ )
(
−v̂0(ϕ3)− ̂̂f (ϕ3,ξ )+ B̂1(ϕ3,ξ )− e−ϕ3B̂2(ϕ3,ξ )

)
+

2

∑
j=1

1
ϕ j − p

ϕ ′
j(ξ )

(
−v̂0(ϕ j)− ̂̂f (ϕ j,ξ )+ B̂1(ϕ j,ξ )− e−ϕ j B̂2(ϕ j,ξ )

)
.

By the analytic condition of function ̂̂v for p ∈ C we get⎧⎪⎨⎪⎩ B̂2(ϕ3,ξ ) = eϕ3

(
−v̂0(ϕ3)− ̂̂f (ϕ3,ξ )+ B̂1(ϕ3,ξ )

)
B̂1(ϕ j,ξ ) = v̂0(ϕ j)+ ̂̂f (ϕ j,ξ )+ e−ϕ j B̂2(ϕ j,ξ ), j = 1,2.

(17)

So we need to put in the initial-boundary value problem one boundary data in the
point x = 0 and two boundary data in the point x = 1. Let for example

v(0,t) = v(1,t) = 0,vx(1,t) = h(t). (18)
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Applying this conditions and using (11) we get the following system{
e−ϕ j∂xxv̂(1,ξ )+ (1−ϕ j)∂xv̂(0,ξ )− ∂xxv̂(0,ξ )

= v̂0(ϕ j)+ ̂̂f (ϕ j,ξ )+ e−ϕ j(1−φ j)ĥ(ξ ), j = 1,2,3
(19)

Denote the determinant of this system by 	(ϕ1,ϕ2,ϕ3), then it has a form

	(ϕ1,ϕ2,ϕ3) = e−ϕ1(ϕ2 −ϕ3)+ e−ϕ2(ϕ3 −ϕ1)+ e−ϕ3(ϕ1−ϕ2). (20)

in the domain ξ ∈ D0. Since ∑3
j=1 ϕ j = 1 and

ϕ ′
1(ξ ) = − 1

(ϕ1−ϕ2)(ϕ1 −ϕ3)
; ϕ ′

2(ξ ) = − 1
(ϕ2−ϕ1)(ϕ2 −ϕ3)

;

ϕ ′
3(ξ ) = − 1

(ϕ3−ϕ1)(ϕ3 −ϕ2)
(21)

we can rewrite 	(ϕ1,ϕ2,ϕ3) as

	(ϕ1,ϕ2,ϕ3) = V (ξ )
3

∑
j=1

e
−ϕ j(ξ )
j ϕ ′(ξ ). (22)

where V (ξ ) = (ϕ1 − ϕ2)(ϕ2 − ϕ3)(ϕ3 − ϕ1). Since V (ξ ) �= 0 and Re ϕl(ξ ) > 0,
l = 1,2, Re ϕ3(ξ ) < 0 in domain ξ ∈ D0 we easily get for |ξ | 
 1, ξ ∈ D0

and by numeric computations we can check that 	(ϕ1,ϕ2,ϕ3) �= 0 for all |ξ | � C,
ξ ∈ D0 =

{
ξ ∈ C : Re ξ � 0,ξ /∈ [0, 4

27

]}
. Therefore there exists a unique solution of

the system (19) which can be written as follows

(23)⎛⎝ ∂xxv̂(1,ξ )
∂xv̂(0,ξ )
∂xxv̂(0,ξ )

⎞⎠ =
∫ 1

0
dy
[
v0(y)+ f̂ (y,ξ )

]⎛⎝ e−ϕ1 1−ϕ1 −1
e−ϕ2 1−ϕ2 −1
e−ϕ3 1−ϕ3 −1

⎞⎠−1⎛⎝ e−ϕ1y

e−ϕ2y

e−ϕ3y

⎞⎠
+ĥ(ξ )

⎛⎝ e−ϕ1 1−ϕ1 −1
e−ϕ2 1−ϕ2 −1
e−ϕ3 1−ϕ3 −1

⎞⎠−1⎛⎝ e−ϕ1(1−φ1)
e−ϕ2(1−φ2)
e−ϕ3(1−φ3)

⎞⎠ .

By (11) and (15) we have

̂̂v(p,ξ ) =
1

K(p)+ ξ

[
v̂0(p)+ ̂̂f (p,ξ )+ (p−1) v̂x(0,ξ )

+v̂xx(0,ξ )− e−pv̂xx(1,ξ )+ e−p(1− p)h(t)
]
.

Taking inverse Laplace transform with respect to space and time variables we get

v(x,t) = G v0 +
∫ t

0
G (t− τ) f (τ)dτ +H h,
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where

G φ =
∫ 1

0
G(x,y,t)φ(y)dy,H h =

∫ t

0
h(τ)H(x,t− τ)dτ

G(x,y, t) =
(

1
2π i

)2 ∫ +i∞

−i∞
eξ t dξ

∫ +i∞

−i∞
dpepx 1

K(p)+ ξ
×[e−py +(p−1) v̂0

x(0,ξ )+ v̂0
xx(0,ξ )− e−pv̂0

xx(1,ξ )
]

and

(24)

H(x, t) =
(

1
2π i

)2 ∫ +i∞

−i∞
eξ t
∫ +i∞

−i∞
dpepx 1

K(p)+ ξ
×[e−p(1− p)+ (p−1) v̂1

x(0,ξ )+ v̂1
xx(0,ξ )− e−pv̂1

xx(1,ξ )
]
.

Here ⎛⎝ ∂xxv̂0(1,ξ )
∂xv̂0(0,ξ )
∂xxv̂0(0,ξ )

⎞⎠=

⎛⎝ e−ϕ1 1−ϕ1 −1
e−ϕ2 1−ϕ2 −1
e−ϕ3 1−ϕ3 −1

⎞⎠−1⎛⎝ e−ϕ1y

e−ϕ2y

e−ϕ3y

⎞⎠
and ⎛⎝ ∂xxv̂1(1,ξ )

∂xv̂1(0,ξ )
∂xxv̂1(0,ξ )

⎞⎠=

⎛⎝ e−ϕ1 1−ϕ1 −1
e−ϕ2 1−ϕ2 −1
e−ϕ3 1−ϕ3 −1

⎞⎠−1⎛⎝ e−ϕ1(1−φ1)
e−ϕ2(1−φ2)
e−ϕ3(1−φ3)

⎞⎠ .

Firstly we consider G(x,y,t).
We apply Cauchy theorem (see [16] ) to get

G(x,y,t) =
{

F1(x,y,t), for y > x
F2(x,y,t), for x > y

,

where

F1(x,y, t) = − 1
2π i

∫ +i∞

−i∞
eξ t ψ(ξ ,1− x)ψ(ξ ,y)

ψ(ξ ,1)
dξ , (25)

F2(x,y, t) =
1

2π i

∫ +i∞

−i∞
eξ t ψ(ξ ,y− x)ψ(ξ ,1)−ψ(ξ ,1− x)ψ(ξ ,y)

ψ(ξ ,1)
dξ .

Now we consider H(x,t). By direct calculation via definition (24) we have

H(x,t) = (G(x,y,t)+Gy(x,y,t))
∣∣y=1

and as consequence via (25) we have

H(x, t) =
1

2π i

∫ +i∞

−i∞
eξ t ψy(ξ ,1− x)ψ(ξ ,1)−ψ(ξ ,1− x)ψy(ξ ,1)

ψ(ξ ,1)
dξ .

Proposition is proved.



Differ. Equ. Appl. 9, 2 (2017), 265–283. 273

LEMMA 1. We have the asymptotics for large time

Fj(x,y,t) = −e−ξ0tΛ(x)ψ(−ξ0,y)+O
(
e−(ξ0+δ )t

)
(26)

and estimates ∣∣∂ n
x Fj (x,y,t)

∣∣� Ce−ξ0t {t}−α |x− y|2α−1−n (27)

for x,y ∈ (0,1) , x �= y, t > 0 , where α ∈ [0, n+1
2

]
, n = 0,1 , j = 1,2 , ξ0 > 0 ,

ψ(−ξ0,1) = 0 .

Proof. We consider a curve in the complex left-half plane Re ξ < 0 such that
Re ϕ1 (ξ ) = 0, it is defined by the equation (iy)2 − (iy)3 = ξ with y = Im ϕ1 (ξ ) .
Therefore there exists a contour

C0 =
{

ξ ∈ C,Re ξ < 0 : Re ξ = O
(
|ξ + ξ0 + δ | 2

3

)}
such that

Re ϕl(ξ ) > 0, l = 1,2,Re ϕ3(ξ ) < 0 for all ξ ∈ C0.

We also consider a contour

C1 = (−ξ0− δ − i0,−i0)∪ (i0,−ξ0− δ + i0)

We now define a contour C = C0 ∪C1. We represent p2 = ξ
1−p for |p| < 1 and

p3 = −ξ
1− 1

p
for |p| > 1, hence we get the asymptotics

ϕ1(ξ ) =
{√

ξ +O(|ξ |),ξ → 0, Im ξ > 0, 1+O(|ξ |),ξ → 0, Im ξ < 0,

ei π
3 3
√

ξ +O(1) , |ξ | → ∞,
(28)

ϕ2(ξ ) =
{

1+O(|ξ |),ξ → 0, Im ξ > 0,
√

ξ +O(|ξ |),ξ → 0, Im ξ < 0,

e−i π
3 3
√

ξ +O(1) , |ξ | → ∞,
(29)

and

ϕ3(ξ ) =
{−

√
ξ +O(|ξ |), |ξ | → 0,

− 3
√

ξ +O(1) , |ξ | → ∞,
(30)

for all ξ ∈C : ξ /∈ (−∞, 4
27

]
(by

√
ξ and 3

√
ξ we denote the main value of the analytic

function, i.e.
√

1 = 3
√

1 = 1) .

Using (4), the asymptotics formulas (28)-(30) and since ϕ ′
l = O

(
|ξ |− 1

2

)
, l = 1,

2, 3 for |ξ | < 1, ξ ∈ D0 we have

ψ(ξ ,1− x)ψ(ξ ,y)
ψ(ξ ,1)

= O
(
|ξ |− 1

2

)
(31)
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and

ψ(ξ ,y− x) = O
(
|ξ |− 1

2

)
. (32)

Due to the fact that Re ϕl(ξ ) > 0, l = 1, 2, Re ϕ3(ξ ) < 0 for |ξ | > 1, ξ ∈ D0 ,
we obtain for |ξ |> 1

ψ(ξ ,1− x)ψ(ξ ,y)
ψ(ξ ,1)

= eϕ3(x−y)ϕ ′
3

(
1+

2

∑
i=1

O
(
e(−ϕ j+ϕ3)y

)
+

2

∑
i=1

O
(
e(−ϕ j+ϕ3)(1−x)

))
.

(33)
Therefore taking the asymptotics (28)-(30) into account we find that

F̂1(x,y,ξ ) = O
(

ξ− 2
3 e−C 3

√
|ξ |(x−y)

)
. (34)

for ξ ∈ D0 , |ξ | > 1, y < x. Also from (33) we get

F̂2(x,y,ξ ) =
2

∑
j=1

(
ϕ ′

je
−ϕ j(y−x)

+O
(
ϕ ′

3e
−Re ϕ jy+Re ϕ3x

)
+O

(
ϕ ′

3e
−Re ϕ j(1−x)+Re ϕ3(1−y)

))
= O

(
ξ− 2

3 e−C 3
√

|ξ |(y−x)
)

(35)

for ξ ∈ D0 , |ξ | > 1, x < y.
In view of them we have (31)-(35) for ξ ∈ C . Note that the asymptotics formulas

(28)-(30) are valid on the contour C . Therefore changing the contour of integration to
C we obtain for x > y

F1(x,y,t) = − 1
2π i

∫
ξ∈C1

eξ t 1
ψ(ξ ,1)

ψ(ξ ,1− x)ψ(ξ ,y)dξ

− 1
2π i

∫
ξ∈C0

eξ t 1
ψ(ξ ,1)

ψ(ξ ,1− x)ψ(ξ ,y)dξ . (36)

Via ψ(x + i0,q) = ψ(x− i0,q) by Cauchy Theorem taking residue in the point
ξ = ξ0 > 0,(ψ(ξ0,1) = 0) , we obtain

− 1
2π i

∫
ξ∈C1

eξ t 1
ψ(ξ ,1)

ψ(ξ ,1− x)ψ(ξ ,y)dξ

= − 1
2π i

∫ −i0

−ξ0−δ−i0
eξ t ψ(ξ ,1− x)ψ(ξ ,y)

ψ(ξ ,1)
dξ

− 1
2π i

∫ −ξ0−δ+i0

+i0
eξ t ψ(ξ ,1− x)ψ(ξ ,y)

ψ(ξ ,1)
dξ

= −e−ξ0t
ψ(−ξ0,1− x)ψ(−ξ0,y)

ψ ′(−ξ0,1)
. (37)
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Taking into account (34) we get the following estimate for second term of (36)∣∣∣∣∫ξ∈C1

eξ t ψ(ξ ,1− x)ψ(ξ ,y)
ψ(ξ ,1)

dξ
∣∣∣∣

� Ce−(ξ0+δ )t
∫

ξ∈C0

e−Ct|ξ | 23 +t(ξ0+δ )−C|x−y||ξ | 13 |ξ |− 2
3 dξ

� Ce−(ξ0+δ )t t−α |x− y|2α−1 (38)

since C |ξ | 2
3 − ξ0 − δ � 0 for ξ ∈ C1, where α ∈ [0, 1

2

]
. Therefore by (37)-(38)

we have from (36)

F1(x,y,t) = −e−ξ0tΛ(x)ψ (−ξ0,y)+O
(
e−(ξ0+δ )t

)
.

where Λ(x) = ψ(−ξ0,1−x)
ψ ′(−ξ0,1) for x,y > 0,t � 1, and moreover

|F1(x,y,t)| � Ce−ξ0t
(
1+{t}−α |x− y|2α−1

)
for all x, y ∈ (0,1) , x �= y, t > 0, where α ∈ [0, 1

2

]
. Thus the result of the lemma is

true for the case n = 0.

Consider the case n = 1. In view of the asymptotics formulas (28)-(30) we get

∂xψ(ξ ,1− x)ψ(ξ ,y)
ψ(ξ ,1)

=

(
∑3

j=1 e−ϕ j(ξ )(1−x)
(

ϕ ′
jϕ j

))(
∑3

j=1 e−ϕ j(ξ )yϕ ′
j

)
∑3

j=1 e−ϕ j(ξ )ϕ ′
j

= O(1) (39)

and

∂xψ(ξ ,y− x) = O(1) (40)

for |ξ | < 1, ξ ∈ C and in the same argument as in the proof of the estimate (31) we
get

∂xψ(ξ ,1− x)ψ(ξ ,y)
ψ(ξ ,1)

= e−ϕ3(y−x)ϕ3ϕ ′
3

(
1+O

(
e−C 3

√
|ξ |y
)

+O
(
e−C 3

√
|ξ |(1−x)

))
(41)

and

∂xψ(ξ ,y− x) = e−ϕ3(y−x)ϕ3ϕ ′
3

(
1+O

(
e−C 3

√
|ξ |y
)

+O
(
e−C 3

√
|ξ |(1−x)

))
(42)

for all |ξ | > 1, ξ ∈ C0. Hence by the similar way to (37)-(38) we get
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|∂xF1(x,y,t)| � e−ξ0t

∣∣∣∣ψ(−ξ0,y)∂xψ(−ξ0,1− x)
ψ ′(−ξ0,1)

∣∣∣∣+Ce−ξ0t

+Ce−(ξ0+δ )t
∫

ξ∈C0

e−Ct|ξ | 23 −C|x−y||ξ | 13 |ξ |− 1
3 dξ

� e−ξ0t
(
C+C{t}−α |x− y|2α−2

)
for all x, y ∈ (0,1) , x �= y, t > 0, where α ∈ [0,1] . The function F2(x,y,t) is
considered in the same way for y > x . Lemma 1 is proved.

LEMMA 2. The following estimates are valid

‖G ϕ‖
H1

� Ce−ξ0t t−
1
2 ‖φ‖L2 , ‖H h‖H1 � C 〈t〉−β ‖h‖H1 ,

and

G ϕ = e−ξ0tBΛ(x)+ e−ξ0(t+δ ) ‖φ‖L2 ,

H h = h(t)Ψ(x,−ξ0)+O(t−β−γ)‖h‖H1

where

B =
∫ 1

0
ϕ(y)ψ(−ξ0,y)dy, (43)

Ψ = res(Ĥ(x,ξ ),−ξ0)
(

1+(−ξ0 + i)
1

2π i

∫ ∞

0
e−ξ ξ−1+β dξ

)
,

Ĥ(x,ξ ) = LtH.

Proof. Since

G(x,y,t) =
{

F1(x,y,t), for y < x,
F2(x,y,t), for x < y

.

using the Young inequality and Lemma 1 we have

‖G ϕ‖
H1

� C (‖G‖L1 +‖Gx‖L1)‖φ‖L2 � Ce−ξ0t {t}−γ ‖φ‖H1 .

Also we have after integrating by part

H h =
1

2π i

∫ i∞

−i∞

1
ξ + i

ψy(ξ ,1− x)ψ(ξ ,1)−ψ(ξ ,1− x)ψy(ξ ,1)
ψ(ξ ,1)

dξ (44)(
h(t)− eξ th(0)−

∫ t

0
eξ (t−τ) (1+ i∂τ)h(τ)

)
dτ

Using estimates (41) and (42) we get

∂ n
x

ψy(ξ ,1− x)ψ(ξ ,1)−ψ(ξ ,1− x)ψy(ξ ,1)
ψ(ξ ,1)

= e−
√

ξ (1−x) 〈ξ 〉 n
3 〈ξ 〉− 1

3 .
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Therefore for t < 1
‖H h‖H1 � C‖h‖H1 .

Also via Lemma 1 we get

G ϕ = −e−ξ0tΛ(x)
∫ 1

0
ψ(−ξ0,y)φ(y)dy+O

(
e−(ξ0+δ )t

)
‖φ‖L2 .

To get asymptotics of H we use (44). We have

H h = h(t)Ψ(x,0)+
∫ t

0
Ψ(x,t− τ)(1+ ∂τ)h(τ)dτ +R, (45)

where

Ψ(x, t) =
1

2π i

∫ i∞

−i∞
eξ t 1

ξ + i

ψy(ξ ,1− x)ψ(ξ ,1)−ψ(ξ ,1− x)ψy(ξ ,1)
ψ(ξ ,1)

dξ ,

R = e−ξ0t |h(0)| .

By Cauchy theorem since integrand function is analytic in Re ξ > 0 we get

Ψ(x,0) = 0.

By the same way as (41) and (42) we get

Ψ(x, t) = e−ξ0tΦ(x,−ξ0)+ e−ξ0(t+δ ) 〈t〉−α ,α > 1,δ > 0,

where

Φ(x,−ξ0) =
1

−ξ0 + i
ψy(−ξ0,1− x)ψ(−ξ0,1)−ψ(−ξ0,1− x)ψy(−ξ0,1)

ψ ′(−ξ0,1)
.

Therefore∫ t

0
Ψ(x, t − τ)(1+ ∂τ)h(τ)dτ = Φ(x,−ξ0)

∫ t

0
e−ξ0(t−τ)(1− i∂τ)h(τ)dτ +R,

where

R =
∫ t

0
e−ξ0(t−τ)(1− i∂τ)h(τ)O(e−ξ0(t+δ ) 〈τ〉−α)dτ = O(t−β−γ)‖h‖H1

We have ∫ t

0
e−ξ0(t−τ)∂τh(τ)dτ = h(t)−h(0)e−ξ0t − iξ0

∫ t

0
e−ξ0(t−τ)h(τ)dτ

and as consequence

H h = h(t)Φ(x,−ξ0)+ (−ξ0 + i)Φ(x,−ξ0)
∫ t

0
e−ξ0(t−τ)h(τ)dτ +O(t−β−γ)‖h‖H1 .
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Also we have∫ t

0
e−ξ0(t−τ)h(τ)dτ =

1
2π i

∫ i∞

−i∞
eξ t ĥ(ξ )

1
ξ + ξ0

dξ =
1

2π i

∫ i∞

−i∞
eξ ĥ(ξ t−1)

ξ + ξ0t
dξ .

Using h(t) = At−β +O(t−β−γ) we get ĥ(ξ ) = ξ−1+β +O(ξ−1+β+γ). Therefore∫ t

0
e−ξ0(t−τ)h(τ)dτ = At1−β 1

2π i

∫
eξ ξ−β+1 +O(ξ 1−β−γ)t−γ

ξ + ξ0t
dξ

= At−β 1
2π i

∫ ∞

0
e−ξ ξ−1+βdξ +O(t−β−γ).

Finally we get

H h = h(t)B(x,−ξ0)+At−β (−ξ0 + i)B(x,−ξ0)
1

2π i

∫ ∞

0
e−ξ ξ−1+βdξ +O(t−β−γ).

By the same way we can prove

‖∂xH h‖L∞ � C 〈t〉−β ‖h‖H1 .

Lemma is proved.
Using results of Lemma 1 by standard contraction mapping principle we obtain

the following local existence result.

THEOREM 2. Let the initial data u0(x) ∈ L2 ,h(t) ∈ H1 Then there exists T > 0
and a unique solution u(x,t) ∈ C([0,T ] ;L∞)∪C

(
(0,T ] ;H1

)
of the nonlinear initial

boundary value problem (2) where T > 0 depends on ‖u0‖L2 .

3. Global existence in the case of small initial data

THEOREM 3. Suppose that the initial data u0 ∈L2 and ‖u0 (x)‖� ε where ε > 0
is sufficiently small. Boundary data h(t) ∈ H1(0,∞), such as for some constant A the
following asymptotics are valid

h(t) = At−β +O(t−β−γ). (46)

Then for β > 1
2 there exists a unique solution of (2)

u ∈ C
(
[0,∞) ;L2)∪C

(
(0,∞) ;H1) .

Moreover the solution has the following asymptotics

u(x,t) = h(t)Ψ(x,−ξ0)+O
(
t−β−γ

)
(47)

for t → ∞ uniformly with respect to x ∈ (0,1) , where γ > 0 , the function Ψ(x,−ξ0)
is defined by (43)
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Proof. We prove the global existence of the solution of the problem (2) using the
contraction mapping principle.

Let
X =

{
ϕ (t,x) ∈ H1} , (48)

Y =
{

h(t) ∈ H1(0,∞)),〈t〉β ‖h‖H1 < ε
}

, (49)

a complete metric space Z, for β > 1
2

Z =
{

ϕ (t,x) ∈ C((0,∞;H1(0,1)),‖ϕ‖X = sup
t>0

〈t〉β ‖ϕ (t)‖H1 � ε1

}
. (50)

By Proposition 1 we define a mapping A for u(x,t) given by

A (u) = G u0−
∫ t

0
G (t − τ)N(u)dτ +H h. (51)

We suppose that u ∈ Z with ‖u‖Z � ε1 and using (51) we probe that

‖A (u)‖Z � ε1.

Where ε1 < ε. Applying the definition (51) we write

‖A (u)‖Z � ‖G u0‖Z +
∥∥∥∥∫ t

0
G (t− τ)N(u)dτ

∥∥∥∥
Z

+‖H h‖Z

= I1 + I2 + I3.

We consider each integral separately, using definition of the operator G and (50)
we obtain

I1 � sup
t>0

〈t〉β
∥∥∥∥∫ x

0
u0 (y)F1(x,y,t)dy

∥∥∥∥
L2

+ sup
t>0

〈t〉β
∥∥∥∥∫ 1

x
u0 (y)F2(x,y,t)dy

∥∥∥∥
L2

.

We can extend the domain of definition of x ∈ (−∞,∞) whereas u0 (x) = 0 for
x /∈ (0,1) and F1(x,y,t) � F1(x− y,t), so we can write the following using the Young
inequality

I1 � sup
t>0

〈t〉β
∫ ∞

−∞
‖F1(x− y,t)‖L1 ‖u0(y)‖L2 dy

+sup
t>0

〈t〉β
∫ ∞

−∞
‖F2(x− y,t)‖L1 ‖u0 (y)‖L2 dy.

Using the estimation by Lemma 1 and simplifying we obtain

I1 � C‖u0 (y)‖L2 sup
t>0

〈t〉β e−ξ0t {t}−α
∫ 1

0
|x− y|2α−1 dy

� C‖u0 (y)‖L2 (52)
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Similarly for I2 we obtain using the Young inequality and Lemma 1

I2 � C sup
t>0

〈t〉β
∫ t

0
e−ξ0(t−τ) {t− τ}−α dτ

∫ x

0
|x− y|2α−1‖N(v)‖L2 dy

+C sup
t>0

〈t〉β
∫ t

0
e−ξ0(t−τ) {t− τ}−α dτ

∫ 1

x
|x− y|2α−1‖N(v)‖L2 dy. (53)

since v ∈ Z then ‖v‖Z � ε therefore

‖N(v)‖L2 =
(∫ 1

0
|v|2 |vx|2 dx

) 1
2

� C‖v‖L∞ ‖vx‖L2

� t−2β ‖v‖2
Z . (54)

Substituting (54) into (53) and making change of variable τ = tz we get

I2 � C sup
t>0

〈t〉β ‖v‖2
Z

∫ t

0
e−ξ0(t−τ) {t− τ}−α 〈τ〉−2β dτ

� C sup
t>0

〈t〉β ‖v‖2
Z t−2β+1−α � C sup

t>0
‖v‖2

Z t−β+1−α , (55)

where β > 1
2 . Via Lemma 2

‖H h‖Z � C‖h(t)‖Y .

From (52) and (55) we get for t > 0

‖A (u)‖Z � C (‖u0‖L2 +‖h‖Y)+T 1−γ ‖v‖2
Z

� C (‖u0‖L2 +‖h‖Y)+T 1−γε2
1

� ε.

Analogously we can estimate the difference ‖A (v1)−A (v2)‖Z � ε for t > 0.
Therefore the mapping A is a contraction mapping in H1

ρ into itself and there exists a
unique solution v(x, t) ∈ C

(
(0,∞) ;H1

)
of the initial-value problem (2).

Now we prove that the solution

u(x,t) = G u0−
∫ t

0
G (t− τ)N(u)dτ +H h (56)

has asymptotics (47) for t → ∞ uniformly with respect to x ∈ (0,1) . Indeed, due to
Lemma 2

G ϕ = e−ξ0tBΛ(x)+ e−ξ0(t+δ ) ‖φ‖L1 ,

H h = h(t)Ψ(x,−ξ0)+O(t−β−γ)‖h‖H1 .

Therefore from (56) we write solution in the form
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u(x,t) = h(t)Ψ(x,−ξ0)+R(x,t),

where

|R(x, t)| � Ce−ξ0t ‖u0‖L2 +C

∣∣∣∣∫ t

0
dτ
∫ 1

0
G(x,y, t − τ)N(v)dy

∣∣∣∣
= J1 + J2

Since ‖N(v)‖L2 � Ct−2β in the same way as (45) we obtain for J2

J2 = O
(
t−2β−γ

)
.

Therefore, we can finally express the asymptotic u(x,t) as follows

u(x,t) = h(t)Ψ(x,−ξ0)+O
(
t−β−γ

)
for all t � 1, where γ > 0. Theorem 3 is proved.

The following section is devoted to proof of main theorem with large initial data
by using the time decay estimates of solutions obtained in Section 3.

4. Large initial data. Proof of Theorem

We consider the initial-boundary value problem (2) with any initial data ‖u0‖L2 �
C. Multiplying equation (2) by u and integrating with respect to x ∈ (0,1) we get

d
dt

‖u‖2
L2 +2

∫ 1

0

(
u2ux−uuxx +uuxxx

)
dx = 0. (57)

In view of the boundary data u(0,t) = u(1,t) = 0 we have

∫ 1

0
u2uxdx =

1
3
u3

∣∣∣∣1
0
= 0. (58)

For ∫ 1

0
uuxxdx = uux|10−

∫ 1

0
u2

xdx = −
∫ 1

0
u2

xdx,

substituting u(0, t) = u(1,t) = 0 we obtain∫ 1

0
uuxxdx = −

∫ 1

0
u2

xdx. (59)

Now ∫ 1

0
uuxxxdx = uuxx|10−

1
2

u2
x

∣∣1
0 = −1

2

[
u2

x (1,t)−u2
x (0,t)

]
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substituting ux(1, t) = h(t) for t > 0 we get∫ 1

0
uuxxxdx = −1

2

[
h2(t)−u2

x (0,t)
]
. (60)

Substituting relations (58)-(60) into (57) we get

d
dt

‖u‖2
L2 +2‖ux (τ)‖2

L2 −h2(t)+u2
x (0,t) = 0.

Integration with respect to t > 0 yields

‖u(t)‖L2 +2
∫ t

0
‖ux (τ)‖2

L2 dτ � ‖u0‖L2 +
∫ t

0
h2(τ)dτ

for all t ∈ (0,∞) . It follows that the norm ‖u(t)‖L2 � ‖u0‖L2 + ‖h‖L2 for all t �
0. Since the existence time T depends only on ‖u0‖L2 +‖h‖L2 by the standard
continuation process via local existence Theorem 2 we obtain that there exists a unique
global solution u ∈ C

(
(0,∞) ;H1

)
. Moreover for any ε > 0 there exists a time T > 0

such that ‖ux (T )‖2
L2 < ε. By the inequality

∣∣u2 (x,T )
∣∣= 2

∣∣∫ x
0 uuydy

∣∣� 2‖u‖L2 ‖ux‖L2

we obtain that the norm ‖u(T )‖L∞ is small . Hence by the estimate ‖u(T )‖L2 �
‖u(T )‖L∞ the norm ‖u(T )‖L2 , is also small. Then we consider the initial-boundary
value problem (2) for t � T and apply Theorem 3 we prove Theorem 1.
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e-mail: marcelamorales@tecuruapan.edu.mx

Differential Equations & Applications
www.ele-math.com
dea@ele-math.com


