
D ifferential
Equations

& Applications

Volume 9, Number 3 (2017), 285–310 doi:10.7153/dea-2017-09-22

OSCILLATIONS CAUSED BY SEVERAL

NON–MONOTONE DEVIATING ARGUMENTS

GEORGE E. CHATZARAKIS

(Communicated by Leonid Berezansky)

Abstract. This paper presents new sufficient conditions, involving limsup and lim inf , for the
oscillation of all solutions of differential equations with several non-monotone deviating argu-
ments and nonnegative coefficients. Corresponding differential equations of both delay and ad-
vanced type are studied. We illustrate the results and the improvement over other known oscilla-
tion criteria by examples, numerically solved in MATLAB.

1. Introduction

Consider the differential equation with several variable deviating arguments of
either delay (DDE)

x′(t)+∑m
i=1 pi(t)x(τi(t)) = 0, ∀t � t0, (E)

or advanced type (ADE)

x′(t)−∑m
i=1 qi(t)x(σi(t)) = 0, t � t0, (E′)

where pi , qi , 1 � i � m , are functions of nonnegative real numbers, and τi , σi , 1 �
i � m , are functions of positive real numbers such that

τi(t) < t, t � t0 and lim
t→∞

τi(t) = ∞, 1 � i � m (1.1)

and
σi(t) > t, t � t0, 1 � i � m, (1.1′)

respectively.
In addition, we consider the initial condition for (E)

x(t) = ϕ(t), t � t0, (1.2)

where ϕ : (−∞, t0] → R is a bounded Borel measurable function.
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A solution of (E), (1.2) is an absolutely continuous on [t0,∞) function satisfying
(E) for almost all t � t0 and (1.2) for all t � t0 . By a solution of (E ′ ) we mean an
absolutely continuous on [t0,∞) function satisfying (E ′ ) for almost all t � t0 .

A solution of (E) or (E ′ ) is oscillatory, if it is neither eventually positive nor even-
tually negative. If there exists an eventually positive or an eventually negative solution,
the equation is nonoscillatory. An equation is oscillatory if all its solutions oscillate.

The problem of establishing sufficient conditions for the oscillation of all solu-
tions of equations (E) or (E ′ ) has been the subject of many investigations. The reader
is referred to [1−23] and the references cited therein. Most of these papers concern
the special case where the arguments are nondecreasing, while a small number of these
papers are dealing with the general case where the arguments are not necessarily mono-
tone. See, for example, [1−4, 12] and the references cited therein.

In the present paper we establish new oscillation criteria for the oscillation of all
solutions of (E) and (E ′ ) when the arguments are not necessarily monotone. Our results
essentially improve several known criteria existing in the literature.

1.1. DDEs

By Remark 2.7.3 in [18], it is clear that if τi(t) , 1 � i � m are nondecreasing and

limsup
t→∞

∫ t

τ(t)
∑m

i=1 pi(s)ds > 1, (1.3)

where τ(t) = max1�i�m{τi(t)}, then all solutions of (E) oscillate. This result is sim-
ilar to Theorem 2.1.3 [18] which is a special case of Ladas, Lakshmikantham and Pa-
padakis’s result [15].

In 1978 Ladde [17] and in 1982 Ladas and Stavroulakis [16] proved that if

liminf
t→∞

∫ t

τ(t)
∑m

i=1 pi(s)ds >
1
e
, (1.4)

then all solutions of (E) oscillate.
In 1984, Hunt and Yorke [8] proved that if t − τi(t) � τ0 , 1 � i � m, and

liminf
t→∞ ∑m

i=1 pi(t)(t− τi(t)) >
1
e
, (1.5)

then all solutions of (E) oscillate.
Assume that τi(t) , 1 � i � m are not necessarily monotone. Set

hi(t) = sup
t0�s�t

τi(s), t � t0 and h(t) = max
1�i�m

hi(t), t � t0 (1.6)

and
a1(t,s) := exp

{∫ t
s ∑m

i=1 pi(ζ )dζ
}

ar+1(t,s) := exp
{∫ t

s ∑m
i=1 pi(ζ )ar(ζ ,τi(ζ ))dζ

}
.

(1.7)

Clearly, hi(t) , h(t) are nondecreasing and τi(t) � hi(t) � h(t) < t for all t � t0.
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In 2016, Braverman, Chatzarakis and Stavroulakis [1] proved that if for some r ∈
N

limsup
t→∞

∫ t

h(t)
∑m

i=1 pi(ζ )ar(h(t),τi(ζ ))dζ > 1, (1.8)

or

limsup
t→∞

∫ t

h(t)
∑m

i=1 pi(ζ )ar(h(t),τi(ζ ))dζ > 1− 1−α −√
1−2α −α2

2
, (1.9)

or

liminf
t→∞

∫ t

h(t)
∑m

i=1 pi(ζ )ar(h(t),τi(ζ ))dζ >
1
e
, (1.10)

where α = liminft→∞
∫ t

τ(t) ∑m
i=1 pi(s)ds , then all solutions of (E) oscillate.

Recently, Chatzarakis and Péics [4] proved that if

limsup
t→∞

∫ t

h(t)
∑m

i=1 pi(ζ )ar(h(ζ ),τi(ζ ))dζ >
1+ lnλ0

λ0
− 1−α −√

1−2α −α2

2
,

(1.11)
where λ0 is the smaller root of the transcendental equation eαλ = λ , then all solutions
of (E) oscillate.

1.2. ADEs

For Eq. (E ′ ), the dual condition of (1.3) is

limsup
t→∞

∫ σ(t)

t
∑m

i=1 qi(s)ds > 1, (1.12)

where σi(t) , 1 � i � m are nondecreasing and σ(t) = min1�i�m{σi(t)} . (see [18],
paragraph 2.7.)

In 1978 Ladde [17] and in 1982 Ladas and Stavroulakis [16] proved that if

liminf
t→∞

∫ σ(t)

t
∑m

i=1 qi(s)ds >
1
e
, (1.13)

then all solutions of (E ′ ) oscillate.
In 1990, Zhou [23] proved that if σi(t)− t � σ0 , 1 � i � m, and

liminf
t→∞ ∑m

i=1 qi(t)(σi(t)− t) >
1
e
, (1.14)

then all solutions of (E ′ ) oscillate. (See also [5, Corollary 2.6.12])
Assume that σi(t) , 1 � i � m are not necessarily monotone. Set

ρi(t) = inf
s�t

σi(s), t � t0 and ρ(t) = min
1�i�m

ρi(t), t � t0 (1.15)

and
b1(t,s) := exp{∫ s

t ∑m
i=1 qi(ζ )dζ}

br+1(t,s) := exp{∫ s
t ∑m

i=1 qi(ζ )br(t,σi(ζ ))dζ} .
(1.16)
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Clearly, ρi(t) , ρ(t) are nondecreasing and σi(t) � ρi(t) � ρ(t) > t for all t � t0.
In 2016, Braverman, Chatzarakis and Stavroulakis [1] proved that if for some r ∈

N

limsup
t→∞

∫ ρ(t)

t
∑m

i=1 qi(ζ )br(ρ(t),σi(ζ ))dζ > 1, (1.17)

or

limsup
t→∞

∫ ρ(t)

t
∑m

i=1 qi(ζ )br(ρ(t),σi(ζ ))dζ > 1− 1−β −
√

1−2β −β 2

2
, (1.18)

or

liminf
t→∞

∫ ρ(t)

t
∑m

i=1 qi(ζ )br(ρ(t),σi(ζ ))dζ >
1
e
, (1.19)

where β = liminft→∞
∫ σ(t)
t ∑m

i=1 qi(s)ds , then all solutions of (E ′ ) oscillate.

2. Main results

2.1. DDEs

We further study (E) and derive new sufficient oscillation conditions, involving
limsup and liminf , which essentially improve all known results in the literature.

THEOREM 1. Assume that h(t) is defined by (1.6) and for some j ∈ N

limsup
t→∞

∫ t

h(t)
P(s)exp

(∫ h(t)

τ(s)
Pj(u)du

)
ds > 1, (2.1)

where

Pj(t) = P(t)
[
1+

∫ t

τ(t)
P(s)exp

(∫ t

τ(s)
P(u)exp

(∫ u

τ(u)
Pj−1(ξ )dξ

)
du

)
ds

]
, (2.2)

with P0(t) = P(t) = ∑m
i=1 pi(t) . Then all solutions of (E) are oscillatory.

Proof. Assume, for the sake of contradiction, that there exists a nonoscillatory
solution x(t) of (E). Since −x(t) is also a solution of (E), we can confine our discussion
only to the case where the solution x(t) is eventually positive. Then there exists t1 > t0
such that x(t), x(τi(t)) > 0, 1 � i � m for all t � t1. Thus, from (E) we have

x′(t) = −∑m
i=1 pi(t)x(τi(t)) � 0, for all t � t1,

which means that x(t) is an eventually nonincreasing function of positive numbers. In
view of this, and taking into accout the fact that τi(t) < t , (E) implies

x′(t)+
(
∑m

i=1 pi(t)
)
x(t) � x′(t)+∑m

i=1 pi(t)x(τi(t)) = 0, for all t � t1,

or
x′(t)+P(t)x(t) � 0. (2.3)
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Dividing the last inequality by x(t) > 0 and integrating on [s,t] we obtain

∫ t

s

x′(u)
x(u)

du+
∫ t

s
P(ξ )dξ � 0,

or

x(s) � x(t)exp

(∫ t

s
P(ξ )dξ

)
, t1 � τ (s) < s � t. (2.4)

Now we divide (E) by x(t) > 0 and integrate on [s,t] , so

−
∫ t

s

x′(u)
x(u)

du =
∫ t

s
∑m

i=1 pi(u)
x(τi(u))

x(u)
du

�
∫ t

s

(
∑m

i=1 pi(u)
) x(τ(u))

x(u)
du

=
∫ t

s
P(u)

x(τ(u))
x(u)

du

or

ln
x(s)
x(t)

�
∫ t

s
P(u)

x(τ(u))
x(u)

du. (2.5)

Since τ(u) < u , setting u = t , s = τ (u) in (2.4) we take

x(τ(u)) � x(u)exp

(∫ u

τ(u)
P(ξ )dξ

)
. (2.6)

Combining (2.5) and (2.6) we obtain, for sufficiently large t

ln
x(s)
x(t)

�
∫ t

s
P(u)exp

(∫ u

τ(u)
P(ξ )dξ

)
du

or

x(s) � x(t)exp

(∫ t

s
P(u)exp

(∫ u

τ(u)
P(ξ )dξ

)
du

)
. (2.7)

Integrating (E) from τ(t) to t, we have

x(t)− x(τ(t))+
∫ t

τ(t)
∑m

i=1 pi(s)x(τi(s))ds = 0,

or

x(t)− x(τ(t))+
∫ t

τ(t)

(
∑m

i=1 pi(s)
)
x(τ(s))ds � 0,

i.e.,

x(t)− x(τ(t))+
∫ t

τ(t)
P(s)x(τ(s))ds � 0. (2.8)

In view of (2.7) the last inequality gives

x(t)− x(τ(t))+ x(t)
∫ t

τ(t)
P(s)exp

(∫ t

τ(s)
P(u)exp

(∫ u

τ(u)
P(ξ )dξ

)
du

)
ds � 0.
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Multiplying the last inequality by P(t) , we find

P(t)x(t)−P(t)x(τ(t))

+P(t)x(t)
∫ t

τ(t)
P(s)exp

(∫ t

τ(s)
P(u)exp

(∫ u

τ(u)
P(ξ )dξ

)
du

)
ds � 0. (2.9)

Furthermore,

x′(t) = −∑m
i=1 pi(t)x(τi(t)) � −x(τ(t))∑m

i=1 pi(t) = −P(t)x(τ(t)) . (2.10)

Combining the inequalities (2.9) and (2.10), we have

x′(t)+P(t)x(t)+P(t)x(t)
∫ t

τ(t)
P(s)exp

(∫ t

τ(s)
P(u)exp

(∫ u

τ(u)
P(ξ )dξ

)
du

)
ds � 0.

Hence,

x′(t)+P(t)
[
1+

∫ t

τ(t)
P(s)exp

(∫ t

τ(s)
P(u)exp

(∫ u

τ(u)
P(ξ )dξ

)
du

)
ds

]
x(t) � 0,

or
x′(t)+P1(t)x(t) � 0, (2.11)

where

P1(t) = P(t)
[
1+

∫ t

τ(t)
P(s)exp

(∫ t

τ(s)
P(u)exp

(∫ u

τ(u)
P(ξ )dξ

)
du

)
ds

]
.

Clearly (2.11) resembles (2.3) with P replaced by P1 , so an integration of (2.11) on
[s,t] leads to

x(s) � x(t)exp

(∫ t

s
P1(ξ )dξ

)
. (2.12)

Taking the steps starting from (2.3) to (2.6) we may see that x satisfies the inequality

x(τ(u)) � x(u)exp

(∫ u

τ(u)
P1(ξ )dξ

)
. (2.13)

Combining now (2.5) and (2.13), we obtain

ln
x(s)
x(t)

�
∫ t

s
P(u)exp

(∫ u

τ(u)
P1(ξ )dξ

)
du

or

x(s) � x(t)exp

(∫ t

s
P(u)exp

(∫ u

τ(u)
P1(ξ )dξ

)
du

)
,

from which we take

x(τ(s)) � x(t)exp

(∫ t

τ(s)
P(u)exp

(∫ u

τ(u)
P1(ξ )dξ

)
du

)
. (2.14)



Differ. Equ. Appl. 9, No. 3 (2017), 285–310. 291

By (2.8) and (2.14) we have

x(t)− x(τ(t))+ x(t)
∫ t

τ(t)
P(s)exp

(∫ t

τ(s)
P(u)exp

(∫ u

τ(u)
P1(ξ )dξ

)
du

)
ds � 0.

Multiplying the last inequality by P(t) , as before, we find

x′(t)+P(t)
[
1+

∫ t

τ(t)
P(s)exp

(∫ t

τ(s)
P(u)exp

(∫ u

τ(u)
P1(ξ )dξ

)
du

)
ds

]
x(t) � 0.

Therefore, for sufficiently large t

x′(t)+P2(t)x(t) � 0, (2.15)

where

P2(t) = P(t)
[
1+

∫ t

τ(t)
P(s)exp

(∫ t

τ(s)
P(u)exp

(∫ u

τ(u)
P1(ξ )dξ

)
du

)
ds

]
.

Repeating the above procedure, it follows by induction that for sufficiently large t

x′(t)+Pj(t)x(t) � 0, ( j ∈ N) ,

where

Pj(t) = P(t)
[
1+

∫ t

τ(t)
P(s)exp

(∫ t

τ(s)
P(u)exp

(∫ u

τ(u)
Pj−1(ξ )dξ

)
du

)
ds

]
.

Moreover, since τ (s) � h(s) � h(t) from (2.13) we have

x(τ (s)) � x(h(t))exp

(∫ h(t)

τ(s)
Pj (u)du

)
. (2.16)

Integrating (E) from h(t) to t and using the above inequality, we obtain

0 = x(t)− x(h(t))+
∫ t

h(t)
∑m

i=1 pi(s)x(τi(s))ds

� x(t)− x(h(t))+
∫ t

h(t)

(
∑m

i=1 pi(s)
)
x(τ(s))ds

= x(t)− x(h(t))+
∫ t

h(t)
P(s)x(τ(s))ds

� x(t)− x(h(t))+ x(h(t))
∫ t

h(t)
P(s)exp

(∫ h(t)

τ(s)
Pj(u)du

)
ds

or

x(t)− x(h(t))+ x(h(t))
∫ t

h(t)
P(s)exp

(∫ h(t)

τ(s)
Pj(u)du

)
ds � 0. (2.17)
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The strict inequality is valid if we omit x(t) > 0 in the left-hand side:

0 > −x(h(t))+ x(h(t))
∫ t

h(t)
P(s)exp

(∫ h(t)

τ(s)
Pj(u)du

)
ds,

or

x(h(t))
[∫ t

h(t)
P(s)exp

(∫ h(t)

τ(s)
Pj(u)du

)
ds−1

]
< 0,

i.e.,

limsup
t→∞

∫ t

h(t)
P(s)exp

(∫ h(t)

τ(s)
Pj(u)du

)
ds � 1.

This contradicts (2.1).
The proof of the theorem is complete.
We now cite three lemmas which will be used in the proof of our next results.

The proofs of their are similar to the proofs of Lemmas 2.1.1, 2.1.3 and 2.1.2 in [5],
respectively.

LEMMA 1 Assume that h(t) is defined by (1.6) . Then

liminf
t→∞

∫ t

τ(t)
∑m

i=1 pi(s)ds = liminf
t→∞

∫ t

h(t)
∑m

i=1 pi(s)ds. (2.18)

Next lemma provides a lower estimate for the ratio x(t)/x(h(t)) in terms of the
smaller root of the equation ξ 2− (1−α)ξ + α2/2 = 0, where α is given by

0 < α = liminf
t→∞

∫ t

τ(t)
∑m

i=1 pi(s)ds � 1
e
. (2.19)

LEMMA 2 Assume that x is an eventually positive solution of (E), h(t) is defined by
(1.6) and α by (2.19) . Then

liminf
t→∞

x(t)
x(h(t))

� 1−α −√
1−2α −α2

2
. (2.20)

The last lemma provides a lower estimate for the ratio x(h(t))/x(t) in terms of the
smaller root of the transcendental equation λ = eαλ .

LEMMA 3 Assume that h(t) is defined by (1.6) , x is a positive solution of (E) and α
is defined by (2.19) . Then

liminf
t→∞

x(h(t))
x(t)

� λ0, (2.21)

where λ0 is the smaller root of the transcendental equation λ = eαλ .

Based on the above lemmas, we establish the following three theorems.
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THEOREM 2. Assume that α is defined by (2.19) , h(t) by (1.6) and for some
j ∈ N

limsup
t→∞

∫ t

h(t)
P(s)exp

(∫ h(t)

τ(s)
Pj(u)du

)
ds > 1− 1−α −√

1−2α −α2

2
, (2.22)

where Pj is defined by (2.2) . Then all solutions of (E) are oscillatory.

Proof. Let x be an eventually positive solution of (E ). Then, as in the proof of
Theorem 1, (2.17) is satisfied, i.e.,

x(t)− x(h(t))+ x(h(t))
∫ t

h(t)
P(s)exp

(∫ h(t)

τ(s)
Pj(u)du

)
ds � 0.

That is, ∫ t

h(t)
P(s)exp

(∫ h(t)

τ(s)
Pj(u)du

)
ds � 1− x(t)

x(h(t))
,

which gives

limsup
t→∞

∫ t

h(t)
P(s)exp

(∫ h(t)

τ(s)
Pj(u)du

)
ds � 1− liminf

t→∞

x(t)
x(h(t))

. (2.23)

By combining Lemmas 1 and 2, it becomes obvious that inequality (2.20) is fulfilled.
So, (2.23) leads to

limsup
t→∞

∫ t

h(t)
P(s)exp

(∫ h(t)

τ(s)
Pj(u)du

)
ds � 1− 1−α −√

1−2α −α2

2
,

which contradicts (2.22).
The proof of the theorem is complete.

REMARK 1. It is clear that the left-hand sides of both conditions (2.1) and (2.22)
are identical, also the right hand side of condition (2.22) reduces to (2.1) in case that
α = 0. So it seems that Theorem 2 is the same as Theorem 1 when α = 0. However,
one may notice that condition (2.19) is required in Theorem 2 but not in Theorem 1.

THEOREM 3. Assume that α is defined by (2.19) , h(t) by (1.6) and for some
j ∈ N

limsup
t→∞

∫ t

h(t)
P(s)exp

(∫ t

τ(s)
Pj(u)du

)
ds >

2

1−α −√
1−2α −α2

, (2.24)

where Pj is defined by (2.2) . Then all solutions of (E) are oscillatory.
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Proof. Assume, for the sake of contradiction, that there exists a nonoscillatory
solution x of (E) and that x is eventually positive. Then, as in the proof of Theorem 1,
for sufficiently large t we have

x(τ (s)) � x(t)exp

(∫ t

τ(s)
Pj(ξ )dξ

)
. (2.25)

Integrating (E) from h(t) to t , we have

x(t)− x(h(t))+
∫ t

h(t)
∑m

i=1 pi(s)x(τi(s))ds = 0,

or

x(t)− x(h(t))+
∫ t

h(t)

(
∑m

i=1 pi(s)
)
x(τ(s))ds � 0.

Thus

x(t)− x(h(t))+
∫ t

h(t)
P(s)x(τ(s))ds � 0.

In view of (2.25), the last inequality gives

x(t)− x(h(t))+
∫ t

h(t)
P(s)x(t)exp

(∫ t

τ(s)
Pj(u)du

)
ds � 0,

or

x(t)− x(h(t))+ x(h(t))
∫ t

h(t)
P(s)

x(t)
x(h(t))

exp

(∫ t

τ(s)
Pj(u)du

)
ds � 0.

Since x(t) > 0, it is clear that

x(h(t))
[

x(t)
x(h(t))

∫ t

h(t)
P(s)exp

(∫ t

τ(s)
Pj(u)du

)
ds−1

]
< 0.

That is, for all sufficiently large t it holds

∫ t

h(t)
P(s)exp

(∫ t

τ(s)
Pj(u)du

)
ds <

x(h(t))
x(t)

and therefore

limsup
t→∞

∫ t

h(t)
P(s)exp

(∫ t

τ(s)
Pj(u)du

)
ds � limsup

t→∞

x(h(t))
x(t)

. (2.26)

By combining Lemmas 1 and 2, it becomes obvious that inequality (2.20) is fulfilled.
So, (2.26) leads to

limsup
t→∞

∫ t

h(t)
P(s)exp

(∫ t

τ(s)
Pj(u)du

)
ds � 1−α −√

1−2α −α2

2
,

which contradicts (2.24).
The proof of the theorem is complete.
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THEOREM 4. Assume that α is defined by (2.19) , h(t) by (1.6) and for some
j ∈ N

limsup
t→∞

∫ t

h(t)
P(s)exp

(∫ h(s)

τ(s)
Pj(u)du

)
ds >

1+ lnλ0

λ0
− 1−α −√

1−2α −α2

2
,

(2.27)
where P j is defined by (2.2) and λ0 is the smaller root of the transcendental equation
λ = eαλ . Then all solutions of (E) are oscillatory.

Proof. Assume, for the sake of contradiction, that there exists a nonoscillatory
solution x of (E) and that x is eventually positive. Then, as in the previous theorems,
(2.25) holds.

Observe that (2.21) implies that for each ε > 0 there exists a tε such that

λ0− ε <
x(h(t))
x(t)

for all t � tε . (2.28)

Noting that by nondecreasing nature of the function x(h(t))
x(s) in s , it holds

1 =
x(h(t))
x(h(t))

� x(h(t))
x(s)

� x(h(t))
x(t)

, tε � h(t) � s � t,

in particular for ε ∈ (0,λ0−1) , by continuity we see that there exists a t∗ ∈ (h(t),t]
such that

1 < λ0− ε =
x(h(t))
x(t∗)

. (2.29)

By (2.25), it is obvious that

x(τ (s)) � x(h(s))exp

(∫ h(s)

τ(s)
Pj(ξ )dξ

)
. (2.30)

Integrating (E) from t∗ to t we have

x(t)− x(t∗)+
∫ t

t∗
∑m

i=1 pi(s)x(τi(s))ds = 0,

or

x(t)− x(t∗)+
∫ t

t∗

(
∑m

i=1 pi(s)
)
x(τ(s))ds � 0,

i.e.,

x(t)− x(t∗)+
∫ t

t∗
P(s)x(τ(s))ds � 0.

By using (2.30) along with h(s) � h(t) in combination with the nonincreasingness of
x , we have

x(t)− x(t∗)+ x(h(t))
∫ t

t∗
P(s)exp

(∫ h(s)

τ(s)
Pj(u)du

)
ds � 0,
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or ∫ t

t∗
P(s)exp

(∫ h(s)

τ(s)
Pj(u)du

)
ds � x(t∗)

x(h(t))
− x(t)

x(h(t))
.

In view of (2.29) and Lemma 2, for the ε considered, there exists t ′ε � tε such that

∫ t

t∗
P(s)exp

(∫ h(s)

τ(s)
Pj(u)du

)
ds <

1
λ0− ε

− 1−α −√
1−2α −α2

2
+ ε , (2.31)

for t � t ′ε .
Dividing (E) by x(t) and integrating from h(t) to t∗ we find

∫ t∗

h(t)
∑m

i=1 pi(s)
x(τi (s))

x(s)
ds = −

∫ t∗

h(t)

x′(s)
x(s)

ds,

or ∫ t∗

h(t)

(
∑m

i=1 pi(s)
) x(τ (s))

x(s)
ds � −

∫ t∗

h(t)

x′(s)
x(s)

ds,

i.e., ∫ t∗

h(t)
P(s)

x(τ (s))
x(s)

ds � −
∫ t∗

h(t)

x′(s)
x(s)

ds,

and using (2.30), we find
∫ t∗

h(t)
P(s)

x(h(s))
x(s)

exp

(∫ h(s)

τ(s)
Pj(u)du

)
ds � −

∫ t∗

h(t)

x′(s)
x(s)

ds. (2.32)

By (2.28), for s � h(t) � t ′ε , we have x(h(s))
x(s) > λ0− ε , so from (2.32) we get

(λ0 − ε)
∫ t∗

h(t)
P(s)exp

(∫ h(s)

τ(s)
Pj(u)du

)
ds < −

∫ t∗

h(t)

x′(s)
x(s)

ds .

Hence, for all sufficiently large t we have

∫ t∗

h(t)
P(s)exp

(∫ h(s)

τ(s)
Pj(u)du

)
ds

< − 1
λ0− ε

∫ t∗

h(t)

x′(s)
x(s)

ds =
1

λ0− ε
ln

x(h(t))
x(t∗)

=
ln(λ0− ε)

λ0− ε
,

i.e., ∫ t∗

h(t)
P(s)exp

(∫ h(s)

τ(s)
Pj(u)du

)
ds <

ln(λ0− ε)
λ0− ε

. (2.33)

Adding (2.31) and (2.33), and then taking the limit as t → ∞ , we have

limsup
t→∞

∫ t

h(t)
P(s)exp

(∫ h(s)

τ(s)
Pj(u)du

)
ds

� 1+ ln(λ0 − ε)
λ0− ε

− 1−α −√
1−2α −α2

2
+ ε .
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Since ε may be taken arbitrarily small, this inequality contradicts (2.27).
The proof of the theorem is complete.

THEOREM 5. Assume that h(t) is defined by (1.6) and for some j ∈ N

liminf
t→∞

∫ t

h(t)
P(s)exp

(∫ h(s)

τ(s)
Pj(u)du

)
ds >

1
e
, (2.34)

where Pj is defined by (2.2) . Then all solutions of (E) are oscillatory.

Proof. Assume, for the sake of contradiction, that there exists a nonoscillatory
solution x(t) of (E). Since −x(t) is also a solution of (E), we can confine our discussion
only to the case where the solution x(t) is eventually positive. Then there exists t1 > t0
such that x(t), x(τi(t)) > 0, 1 � i � m for all t � t1. Thus, from (E) we have

x′(t) = −∑m
i=1 pi(t)x(τi(t)) � 0, for all t � t1,

which means that x(t) is an eventually nonincreasing function of positive numbers.
Furthermore, as in previous theorem, (2.30) is satisfied.

Dividing (E) by x(t) and integrating from h(t) to t , for some t2 � t1, we have

ln

(
x(h(t))
x(t)

)
=

∫ t

h(t)
∑m

i=1 pi(s)
x(τi(s))

x(s)
ds

�
∫ t

h(t)

(
∑m

i=1 pi(s)
) x(τ(s))

x(s)
ds

=
∫ t

h(t)
Pj(s)

x(τ(s))
x(s)

ds. (2.35)

Combining the inequalities (2.35) and (2.30) we obtain

ln

(
x(h(t))
x(t)

)
�

∫ t

h(t)
P(s)

x(h(s))
x(s)

exp

(∫ h(s)

τ(s)
Pj (u)du

)
ds.

Taking into account that x is nonincreasing and h(s) < s , the last inequality becomes

ln

(
x(h(t))
x(t)

)
�

∫ t

h(t)
P(s)exp

(∫ h(s)

τ(s)
Pj (u)du

)
ds. (2.36)

From (2.34), it follows that there exists a constant c > 0 such that for some t3 � t2
∫ t

h(t)
P(s)exp

(∫ h(s)

τ(s)
Pj (u)du

)
ds � c >

1
e
, t � t3. (2.37)

Combining inequalities (2.36) and (2.37), we obtain

ln

(
x(h(t))
x(t)

)
� c, t � t3.
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Thus
x(h(t))
x(t)

� ec � ec > 1,

which implies for some t � t4 � t3

x(h(t)) � (ec)x(t).

Repeating the above procedure, it follows by induction that for any positive integer k ,

x(h(t))
x(t)

� (ec)k, for sufficiently large t.

Since ec > 1, there is k ∈ N satisfying k > 2(ln(2)− ln(c))/(1+ ln(c)) such that for t
sufficiently large

x(h(t))
x(t)

� (ec)k >
4
c2 . (2.38)

Next we split the integral in (2.37) into two integrals, each integral being no less
than c/2: ∫ tm

h(t) P(s)exp
(∫ h(s)

τ(s) Pj (u)du
)

ds � c
2 ,

∫ t
tm P(s)exp

(∫ h(s)
τ(s) Pj (u)du

)
ds � c

2 .

(2.39)

Integrating (E) from tm to t , gives

x(t)− x(tm)+
∫ t

tm
∑m

i=1 pi(s)x(τi(s)) = 0,

or

x(t)− x(tm)+
∫ t

tm

(
∑m

i=1 pi(s)
)
x(τ(s)) � 0.

Thus

x(t)− x(tm)+
∫ t

tm
P(s)x(τ(s)) � 0,

which, in view of (2.30), gives

x(t)− x(tm)+ x(h(t))
∫ t

tm
P(s)exp

(∫ h(s)

τ(s)
Pj (u)du

)
ds � 0.

The strict inequality is valid if we omit x(t) > 0 in the left-hand side:

−x(tm)+ x(h(t))
∫ t

tm
P(s)exp

(∫ h(s)

τ(s)
Pj (u)du

)
ds < 0.

Together with the second inequality in (2.39), implies that

x(tm) >
c
2
x(h(t)). (2.40)
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Similarly, integration of (E) from h(t) to tm with a later application of (2.30) leads
to

x(tm)− x(h(t))+ x(h(tm))
∫ tm

h(t)
P(s)exp

(∫ h(s)

τ(s)
Pj (u)du

)
ds � 0.

The strict inequality is valid if we omit x(tm) > 0 in the left-hand side:

−x(h(t))+ x(h(tm))
∫ tm

h(t)
P(s)exp

(∫ h(s)

τ(s)
Pj (u)du

)
ds < 0.

Together with the first inequality in (2.39) implies that

x(h(t)) >
c
2
x(h(tm)). (2.41)

Combining the inequalities (2.40) and (2.41), we obtain

x(h(tm)) <
2
c
x(h(t)) <

4
c2 x(tm),

which contradicts (2.38).
The proof of the theorem is complete.

2.2. Advanced differential equations

Similar oscillation conditions for the (dual) advanced differential equation (E ′ )
can be derived easily. The proofs are omitted, since they are quite similar to the delay
equation.

THEOREM 6. Assume that ρ(t) is defined by (1.15) and for some j ∈ N

limsup
t→∞

∫ ρ(t)

t
Q(s)exp

(∫ σ(s)

ρ(t)
Qj(u)du

)
ds > 1, (2.42)

where

Qj(t) = Q(t)
[
1+

∫ σ(t)

t
Q(s)exp

(∫ σ(s)

t
Q(u)exp

(∫ σ(u)

u
Qj−1(ξ )dξ

)
du

)
ds

]
,

(2.43)
with Q0(t) = Q(t) = ∑m

i=1 qi(t) . Then all solutions of (E ′ ) are oscillatory.

THEOREM 7. Assume that

0 < β := liminf
t→∞

∫ σ(t)

t
∑m

i=1 qi(s)ds � 1
e

(2.44)

and for some j ∈ N

limsup
t→∞

∫ ρ(t)

t
Q(s)exp

(∫ σ(s)

ρ(t)
Qj(u)du

)
ds > 1− 1−β −

√
1−2β −β 2

2
, (2.45)

where Qj is defined by (2.43) and ρ(t) by (1.15) . Then all solutions of (E ′ ) are
oscillatory.
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THEOREM 8. Assume that ρ(t) is defined by (1.15) , β by (2.44) and for some
j ∈ N

limsup
t→∞

∫ ρ(t)

t
Q(s)exp

(∫ σ(s)

t
Q j(u)du

)
ds >

2

1−β −
√

1−2β −β 2
, (2.46)

where Qj is defined by (2.43) . Then all solutions of (E ′ ) are oscillatory.

THEOREM 9. Assume that ρ(t) is defined by (1.15) , β by (2.44) and for some
j ∈ N

limsup
t→∞

∫ ρ(t)

t
Q(s)exp

(∫ σ(s)

ρ(s)
Qj(u)du

)
ds >

1+ lnλ0

λ0
− 1−β −

√
1−2β −β 2

2
,

(2.47)
where Qj is defined by (2.43) and λ0 is the smaller root of the transcendental equation

λ = eβ λ . Then all solutions of (E ′ ) are oscillatory.

THEOREM 10. Assume that ρ(t) is defined by (1.15) and for some j ∈ N

liminf
t→∞

∫ ρ(t)

t
Q(s)exp

(∫ σ(s)

ρ(s)
Qj(u)du

)
ds >

1
e
, (2.48)

where Qj is defined by (2.43) . Then all solutions of (E ′ ) are oscillatory.

2.3. Differential inequalities

A slight modification in the proofs of Theorems 1−10 leads to the following re-
sults about differential inequalities.

THEOREM 11. Assume that all the conditions of Theorem 1 [6] or 2 [7] or 3 [8]
or 4 [9] or 5 [10] hold. Then

(i) the delay [advanced] differential inequality

x′(t)+∑m
i=1 pi(t)x(τi(t)) � 0

[
x′(t)−∑m

i=1 qi(t)x(σi(t)) � 0
]
, ∀t � t0,

has no eventually positive solutions;
(ii) the delay [advanced] differential inequality

x′(t)+∑m
i=1 pi(t)x(τi(t)) � 0

[
x′(t)−∑m

i=1 qi(t)x(σi(t)) � 0
]
, ∀t � t0,

has no eventually negative solutions.
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3. Examples

In this section, examples illustrate cases when the results of the present paper
imply oscillation while previously known results fail. The calculations were made by
the use of MATLAB software.

EXAMPLE 1. Consider the delay differential equation

x′(t)+
4
25

x(τ1(t))+
2
25

x(τ2(t)) = 0, t � 0, (3.1)

with (see Fig. 1, (a))

τ1(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1.5t−2.5k−1, if t ∈ [5k,5k+1]
−0.5t +7.5k+1, if t ∈ [5k+1,5k+2]
t−2, if t ∈ [5k+2,5k+3]
−1.5t +12.5k+5.5, if t ∈ [5k+3,5k+4]
4.5t−17.5k−18.5, if t ∈ [5k+4,5k+5]

and τ2(t) = τ1(t)−0.5

where k ∈ N0 and N0 is the set of nonnegative integers.

Figure 1: The graphs of τ1(t) and h1(t)

By (1.6), we see (Fig. 1, (b)) that

h1(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1.5t−2.5k−1, if t ∈ [5k,5k+1]
5k+0.5, if t ∈ [5k+1,5k+2.5]
t−2, if t ∈ [5k+2.5,5k+3]
5k+1, if t ∈ [5k+3,5k+13/3]
4.5t−17.5k−18.5, if t ∈ [5k+13/3,5k+5]

and h2(t) = h1(t)−0.5

and consequently

h(t) = max
1�i�2

{hi(t)} = h1(t) and τ(t) = max
1�i�2

{τi(t)} = τ1(t).
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Observe that the function Fj : [0,∞) → R+ defined as

Fj(t) =
∫ t

h(t)
P(s)exp

(∫ h(t)

τ(s)
Pj(u)du

)
ds

attains its maximum at t = 5k + 13/3 , k ∈ N0 , for every j � 1. Specifically, by
using an algorithm on MATLAB software and taking into account the fact that P(t) =
∑2

i=1 pi(t) = 6
25 , we obtain

F1(t = 5k+13/3) =
∫ 5k+13/3

5k+1
P(s)exp

(∫ 5k+1

τ(s)
P1(u)du

)
ds

=
∫ 5k+13/3

5k+1
P(s)exp

{∫ 5k+1

τ(s)
P(u)

[
1

+
∫ u

τ(u)
P(v)exp

(∫ u

τ(v)
P(ξ )exp

(∫ ξ

τ(ξ )
P0(z)dz

)
dξ

)
dv

]
du

}
ds

� 1.0209.

Thus

limsup
t→∞

F1(t) = limsup
t→∞

∫ t

h(t)
P(s)exp

(∫ h(t)

τ(s)
P1(u)du

)
ds � 1.0209 > 1,

that is, condition (2.1) of Theorem 1 is satisfied for j = 1, and therefore all solutions
of (3.1) oscillate.

Observe, however, that

limsup
t→∞

∫ t

h(t)
∑2

i=1 pi(s)ds = limsup
k→∞

∫ 5k+13/3

5k+1
∑2

i=1 pi(s)ds = 0.8 < 1,

α = liminf
t→∞

∫ t

τ(t)
∑2

i=1 pi(s)ds = liminf
k→∞

∫ 5k+1

5k+0.5
∑2

i=1 pi(s)ds = 0.12 <
1
e
,

and

liminf
t→∞ ∑2

i=1 pi(t)(t− τi(t))

= liminf
t→∞

[
4
25

(t − τ1(t))+
2
25

(t− (τ1(t)−0.5))
]

= liminf
t→∞

[
6
25

(t − τ1(t))+
1
25

]
= liminf

t→∞

[
6
25

(t − τ1(t))
]

+
1
25

=
6
25

· liminf
t→∞

(t − τ1(t))+
1
25

=
6
25

·0.5+
1
25

= 0.16 <
1
e
.

Also, observe that the function Gr : [0,∞) → R+ defined as

Gr(t) =
∫ t

h(t)
∑m

i=1 pi(ζ )ar(h(t),τi(ζ ))dζ
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attains its maximum at t = 5k+13/3 and its minimum at t = 5k+1, k ∈ N0 , for every
r ∈ N . Specifically,

G1(t = 5k+13/3) =
∫ 5k+13/3

5k+1
[p1(ζ )a1(5k+1,τ1(ζ ))+ p2(ζ )a1(5k+1,τ2(ζ ))] dζ

=
∫ 5k+2

5k+1
[p1(ζ )a1(5k+1,τ1(ζ ))+ p2(ζ )a1(5k+1,τ2(ζ ))] dζ

+
∫ 5k+3

5k+2
[p1(ζ )a1(5k+1,τ1(ζ ))+ p2(ζ )a1(5k+1,τ2(ζ ))] dζ

+
∫ 5k+4

5k+3
[p1(ζ )a1(5k+1,τ1(ζ ))+ p2(ζ )a1(5k+1,τ2(ζ ))] dζ

+
∫ 5k+13/3

5k+4
[p1(ζ )a1(5k+1,τ1(ζ ))+ p2(ζ )a1(5k+1,τ2(ζ ))] dζ

� 0.9840529

and

G1(t = 5k+1) =
∫ 5k+1

5k+0.5
[p1(ζ )a1(5k+0.5,τ1(ζ ))+ p2(ζ )a1(5k+0.5,τ2(ζ ))] dζ

� 0.137066.

Thus
limsupt→∞ G1(t) � 0.9840529 < 1
liminft→∞ G1(t) � 0.137066 < 1/e

and

0.9840529 < 1− 1−α −√
1−2α −α2

2
� 0.99174.

Also

Φ1(t = 5k+13/3) =
∫ 5k+13/3

5k+1
∑2

i=1 pi(ζ )a1(h(ζ ),τi(ζ ))dζ

=
∫ 5k+13/3

5k+1
[p1(ζ )a1(h(ζ ),τ1(ζ ))+ p2(ζ )a1(h(ζ ),τ2(ζ ))] dζ

=
∫ 5k+2

5k+1
[p1(ζ )a1(h(ζ ),τ1(ζ ))+ p2(ζ )a1(h(ζ ),τ2(ζ ))] dζ

+
∫ 5k+3

5k+2
[p1(ζ )a1(h(ζ ),τ1(ζ ))+ p2(ζ )a1(h(ζ ),τ2(ζ ))] dζ

+
∫ 5k+4

5k+3
[p1(ζ )a1(h(ζ ),τ1(ζ ))+ p2(ζ )a1(h(ζ ),τ2(ζ ))] dζ

+
∫ 5k+13/3

5k+4
[p1(ζ )a1(h(ζ ),τ1(ζ ))+ p2(ζ )a1(h(ζ ),τ2(ζ ))] dζ

� 0.90841.
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Thus

limsup
t→∞

Φ1(t) � 0.90841 <
1+ lnλ0

λ0
− 1−α −√

1−2α −α2

2
� 0.98309,

where λ0 = 1.14765 is the smaller root of e0.12λ = λ .
That is, none of the conditions (1.3) , (1.4) , (1.5) , (1.8) (1.9) , (1.10) and (1.11)

is satisfied.
Notation. It is worth noting that the improvement of condition (2.1) to the corre-

sponding condition (1.3) is significant, approximately 27.6%, if we compare the values
on the left-side of these conditions. Also, observe that conditions (1.8), (1.9), (1.10)
and (1.11) do not lead to oscillation for first iteration. On the contrary, condition (2.1)
is satisfied from the first iteration. This means that our condition is better and much
faster than (1.8), (1.9), (1.10) and (1.11).

EXAMPLE 2. Consider the delay differential equation

x′(t)+
47
250

x(τ1(t))+
4

250
x(τ2(t)) = 0, t � 0, (3.2)

with (see Fig. 2, (a))

τ1(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

6k−2, if t ∈ [6k,6k+1]
t−3, if t ∈ [6k+1,6k+2]
2t−6k−5, if t ∈ [6k+2,6k+3]
−2t +18k+7, if t ∈ [6k+3,6k+4]
5t−24k−21, if t ∈ [6k+4,6k+5]
6k+4, if t ∈ [6k+5,6k+6]

and τ2(t) = τ1(t)−1

where k ∈ N0 and N0 is the set of nonnegative integers.
By (1.6), we see (Fig. 2, (b)) that

h1(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

6k−2, if t ∈ [6k,6k+1]
t−3, if t ∈ [6k+1,6k+2]
2t−6k−5, if t ∈ [6k+2,6k+3]
6k+1, if t ∈ [6k+3,6k+4.4]
5t−24k−21, if t ∈ [6k+4.4,6k+5]
6k+4, if t ∈ [6k+5,6k+6]

and h2(t) = h1(t)−1

and consequently

h(t) = max
1�i�2

{hi(t)} = h1(t) and τ(t) = max
1�i�2

{τi(t)} = τ1(t).

It is easy to see that

α = liminf
t→∞

∫ t

τ(t)
∑2

i=1 pi(s)ds = liminf
k→∞

∫ 6k+5

6k+4

51
250

ds = 0.204 <
1
e
.
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Figure 2: The graphs of τ1(t) and h1(t)

Observe that the function Fj : R0 → R+ defined as

Fj(t) =
∫ t

h(t)
P(s)exp

(∫ h(s)

τ(s)
Pj(u)du

)
ds

attains its maximum at t = 6k + 4.4, k ∈ N0 , for every j ∈ N . Specifically, by us-
ing an algorithm on MATLAB software and taking into account the fact that P(t) =
∑2

i=1 pi(t) = 51
250 , we obtain

F1(t = 5k+13/3) =
∫ 6k+4.4

6k+1
P(s)exp

(∫ h(s)

τ(s)
P1(u)du

)
ds

=
∫ 6k+4.4

6k+1
P(s)exp

{∫ h(s)

τ(s)
P(u)

[
1

+
∫ u

τ(u)
P(v)exp

(∫ u

τ(v)
P(ξ )exp

(∫ ξ

τ(ξ )
P0(z)dz

)
dξ

)
dv

]
du

}
ds

� 0.9516.

Thus

limsup
t→∞

F1(t) = limsup
t→∞

∫ t

h(t)
P(s)exp

(∫ h(s)

τ(s)
Pj(u)du

)
ds � 0.9516.

Since the smaller root of e0.204λ = λ is λ0 = 1.30503, we have

0.9516 >
1+ lnλ0

λ0
− 1−a−√

1−2a−a2

2
� 0.9432.

That is, condition (2.25) of Theorem 4 is satisfied for j = 1, and therefore all solutions
of (3.2) oscillate.
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Observe, however, that

limsup
t→∞

∫ t

h(t)
∑2

i=1 pi(s)ds =
51
250

·3.4 = 0.6936 < 1

and

liminf
t→∞ ∑2

i=1 pi(t)(t− τi(t)) = liminf
t→∞

[
47
250

(t − τ1(t))+
4

250
(t− τ2(t))

]

= liminf
t→∞

[
47
250

(t − τ1(t))+
4

250
(t− (τ1(t)−1))

]

=
51
250

· liminf
t→∞

(t − τ1(t))+
4

250
=

51
250

·1+
4

250
= 0.22 <

1
e
.

Also, observe that the function Gr : [0,∞) → R+ defined as

Gr(t) =
∫ t

h(t)
∑2

i=1 pi(ζ )ar(h(t),τi(ζ ))dζ

attains its maximum at t = 6k+4.4 and its minimum at t = 6k+5, k ∈ N0 , for every
r ∈ N . Specifically,

G1(t = 6k+4.4) =
∫ 6k+4.4

6k+1
[p1(ζ )a1(6k+1,τ1(ζ ))+ p2(ζ )a1(6k+1,τ2(ζ ))] dζ

=
∫ 6k+2

6k+1
[p1(ζ )a1(6k+1,τ1(ζ ))+ p2(ζ )a1(6k+1,τ2(ζ ))] dζ

+
∫ 6k+3

6k+2
[p1(ζ )a1(6k+1,τ1(ζ ))+ p2(ζ )a1(6k+1,τ2(ζ ))] dζ

+
∫ 6k+4

6k+3
[p1(ζ )a1(6k+1,τ1(ζ ))+ p2(ζ )a1(6k+1,τ2(ζ ))] dζ

+
∫ 6k+4.4

6k+4
[p1(ζ )a1(6k+1,τ1(ζ ))+ p2(ζ )a1(6k+1,τ2(ζ ))] dζ

� 0.96167432

and

G1(t = 6k+5) =
∫ 6k+5

6k+4
[p1(ζ )a1(6k+4,τ1(ζ ))+ p2(ζ )a1(6k+4,τ2(ζ ))] dζ

� 0.3609333.

Thus
limsup

t→∞
G1(t) � 0.96167432 < 1

and

liminf
t→∞

G1(t) � 0.3609333 <
1
e
.
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Also

Φ1(t = 6k+4.4) =
∫ 6k+4.4

6k+1
[p1(ζ )a1(h(ζ ),τ1(ζ ))+ p2(ζ )a1(h(ζ ),τ2(ζ ))] dζ

=
∫ 6k+2

6k+1
[p1(ζ )a1(h(ζ ),τ1(ζ ))+ p2(ζ )a1(h(ζ ),τ2(ζ ))] dζ

+
∫ 6k+3

6k+2
[p1(ζ )a1(h(ζ ),τ1(ζ ))+ p2(ζ )a1(h(ζ ),τ2(ζ ))] dζ

+
∫ 6k+4

6k+3
[p1(ζ )a1(h(ζ ),τ1(ζ ))+ p2(ζ )a1(h(ζ ),τ2(ζ ))] dζ

+
∫ 6k+4.4

6k+4
[p1(ζ )a1(h(ζ ),τ1(ζ ))+ p2(ζ )a1(h(ζ ),τ2(ζ ))] dζ

� 0.77416556.

Thus

limsup
t→∞

Φ1(t) � 0.77416556 <
1+ lnλ0

λ0
− 1−a−√

1−2a−a2

2
� 0.9432.

That is, none of conditions (1.3), (1.4), (1.5), (1.8), (1.10) and (1.11) is satisfied.
Notation. It is worth noting that the improvement of condition (2.25) to the corre-

sponding condition (1.3) is significant, approximately 37.2%, if we compare the values
on the left-side of these conditions. Also, observe that conditions (1.8), (1.10) and
(1.11) do not lead to oscillation for first iteration. On the contrary, condition (2.25) is
satisfied from the first iteration. This means that our condition is better and much faster
than (1.8), (1.10) and (1.11).

EXAMPLE 3. Consider the advanced differential equation

x′(t)− 1101
5000

x(σ1(t))− 60
5000

x(σ2(t)) = 0, t � 0, (3.3)

with (see Fig. 3, (a))

σ1(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

5k+3, if t ∈ [5k,5k+1]
4t−15k−1, if t ∈ [5k+1,5k+2]
−3t +20k+13, if t ∈ [5k+2,5k+3]
5t−20k−11, if t ∈ [5k+3,5k+4]
−t +10k+13, if t ∈ [5k+4,5k+5]

and σ2(t) = σ1(t)+0.5

where k ∈ N0 and N0 is the set of nonnegative integers.
By (1.15), we see (Fig. 3, (b)) that

ρ1(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

5k+3, if t ∈ [5k,5k+1]
4t−15k−1, if t ∈ [5k+1,5k+1.25]
5k+4, if t ∈ [5k+1.25,5k+3]
5t−20k−11, if t ∈ [5k+3,5k+3.8]
5k+8, if t ∈ [5k+3.8,5k+5]

and ρ2(t) = ρ1(t)+0.5
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and consequently

ρ(t) = min
1�i�2

{ρi(t)} = ρ1(t) and σ(t) = min
1�i�2

{σi(t)} = σ1(t).

Figure 3: The graphs of σ1(t) and ρ1(t)

Observe, that the function Fj : R0 → R+ defined as

Fj(t) =
∫ ρ(t)

t
Q(s)exp

(∫ σ(s)

ρ(s)
Qj(u)du

)
ds

attains its minimum at t = 5k+3, k ∈N0 , for every j ∈N . Specifically, by using an al-
gorithm on MATLAB software and taking into account the fact that Q(t) = ∑2

i=1 qi(t) =
1161
5000 , we obtain

F1(t = 5k+3) =
∫ 5k+4

5k+3
Q(s)exp

(∫ σ(s)

ρ(s)
Q1(u)du

)
ds

=
∫ 5k+4

5k+3
Q(s)exp

{∫ σ(s)

ρ(s)
Q(u)

[
1

+
∫ σ(u)

u
Q(v)exp

(∫ σ(v)

u
Q(ξ )exp

(∫ σ(ξ )

ξ
Q0(z)dz

)
dξ

)
dv

]
du

}
ds

=
∫ 5k+4

5k+3

1161
5000

exp

{∫ σ(s)

ρ(s)

1161
5000

[
1

+
∫ σ(u)

u

1161
5000

exp

(∫ σ(v)

u

1161
5000

exp

(∫ σ(ξ )

ξ

1161
5000

dz

)
dξ

)
dv

]
du

}
ds

� 0.3689.

Hence

liminf
t→∞

F1(t) � 0.3689 >
1
e
.
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That is, condition (2.48) of Theorem 10 is satisfied for j = 1, and therefore all solutions
of (3.3) oscillate. Observe, however, that

limsup
t→∞

∫ ρ(t)

t
∑2

i=1 qi(s)ds = limsup
k→∞

∫ 5k+8

5k+3.8

1161
5000

ds = 0.97524 < 1,

liminf
t→∞

∫ σ(t)

t
∑m

i=1 qi(s)ds = liminf
k→∞

∫ 5k+4

5k+3

1161
5000

ds = 0.2322 <
1
e
,

liminf
t→∞ ∑2

i=1 qi(t)(σi(t)− t) = liminf
t→∞

[
1101
5000

(σ1(t)− t)+
60

5000
(σ1(t)+0.5− t)

]

= liminf
t→∞

[
1161
5000

(σ1(t)− t)+
3

500

]

= liminf
t→∞

[
1161
5000

(σ1(t)− t)
]

+
3

500

=
1161
5000

·1+
3

500
= 0.2382 <

1
e
.

Therefore none of conditions (1.12), (1.13) and (1.14) is satisfied.
Notation. It is worth noting that the improvement of condition (2.48) to the cor-

responding condition (1.13) is significant, approximately 58.87%, if we compare the
values on the left-side of these conditions.

REMARK 2. Similarly, one can construct examples to illustrate the other main
results.
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