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AREA INTEGRALS AND THE EXPONENTIAL SQUARE

THEOREM FOR ELLIPTIC OPERATORS WITH

COEFFICIENTS SUPPORTED IN WHITNEY TYPE CUBES

MARYSOL NAVARRO-BURRUEL AND JORGE RIVERA-NORIEGA

(Communicated by Cristina Trombetti)

Abstract. We provide a direct proof of a result comparing the area functions of solutions of two
second order linear elliptic operators, when the discrepancy between their main coefficients is
supported on Whitney type cubes of the unit ball of n dimensional Euclidean space. Our ar-
guments are specialized to this type of operators, and the vanishing Carleson condition that we
adopt is inspired by work of C. Sweezy. The comparison between area functions implies the
preservation of the so called exponential square theorem assuming the aforementioned discrep-
ancy of the coefficients.

1. Background definitions and results

Harmonic measure. Consider elliptic operators of the form

Lu = divA∇u, (1.1)

where A(X) = (ai j(X)) is a symmetric n×n matrix of bounded measurable functions
satisfying the ellipticity condition

λ1 ∑
i

ξ 2
i < ∑

j
∑
i

ai j(X)ξiξ j < λ2∑
i

ξ 2
i , λ1 < λ2, (1.2)

for every ξ = (ξ1, . . . ,ξn) ∈ R
n and every X ∈ R

n . The constants λ1 and λ2 are called
ellipticity constants of L . Solutions u of Lu = 0 are understood in the weak sense.

Let D = {X ∈ R
n : |X | < 1} be the unit ball in R

n . It is well known that for
each continuous function f : ∂D → R there exists a unique function u f defined on D ,
continuous in D , and such that

Lu f = 0 on D, u f = f on ∂D. (1.3)

Mathematics subject classification (2010): 42B25, 42B35, 31A20.
Keywords and phrases: Exponential square class, Lusin Area function.
M. Navarro-Burruel received support from a PRODEP-México Posdoctoral Grant working for Cuerpo Académico
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This implies the existence of the harmonic measure ωX(·) associated to L , for X ∈ D .
This is a Borel measure defined on ∂D that represents the solution u f of (1.3) in the
sense that

u f (X) =
∫

∂D
f (Q)dωX (Q), X ∈ D,

by means of Riesz representation theorem and the maximum principle.
We call ω ≡ ω�0 the harmonic measure associated to L . The notation is justified,

since by Harnack inequality ωX is mutually absolutely continuous with respect to ω�0

(see e.g. [4, Lemma 1.2.7]).
Define the surface ball centered at Q ∈ ∂D and radius 0 < r < π/4 as Δr(Q) =

Br(Q)∩∂D where the Euclidean ball is defined as Br(Q) = {X ∈ R
n : |Q−X | < r} .

Assuming Q ∈ ∂D , in spherical coordinates given by Q = (1,θ ) , and 0 < r < π/4,
θ ∈ Sn−1 = {x ∈ R

n : |x| = 1} , we associate with Δr(Q) the corkscrew point Ar(Q) =
(1−(7/8)r,θ ) . This way, for any surface ball Δ the notation A(Δ) makes sense without
referring to neither its center nor its radius. The point Ar(Q) is useful when considering
local estimates of harmonic measure close to Δr(Q) , where one in fact works with
ωAr(Q) . In this instance, sometimes is referred to as the pole for the harmonic measure.

Denoting by σ(F) the surface measure of a Borel set F ⊂ ∂D , we say that ω ∈
A∞(dσ) if given ε > 0 there exists an η such that, for every surface ball Δ ⊂ ∂D and
any subset F ⊂ Δ , whenever σ(F)/σ(Δ) < η one has ω(F)/ω(Δ) < ε. For shortness’
sake we call this the A∞ property of harmonic measure.

For more properties, estimates and results on harmonic measure, including com-
parison estimates with Green’s functions, we refer the reader to the first few sections
of [4]. As far as the A∞ property concerns, the amount of references related to the
A∞ property of harmonic measure, and its connection with solvability of so called Lp ,
1 < p < ∞ , and BMO Dirichlet problems is very large. Although the reference [4] pro-
vides a very complete scenario of the state of art around the early-to-mid 1990’s, some
more recent developments have provided a better understanding of the matter.

Indeed, more recently the work [6] pioneered in the realization that the compara-
bility of L2 norms of the area integral and non-tangential maximal function is actually
equivalent with the A∞ property of harmonic measure. See also the survey article [7]. It
turned out that the A∞ property of harmonic measure was actually proved to be equiv-
alent to the solvability of the so called BMO Dirichlet problem [2]. This result has
recently been improved with a very interesting tecnical achievement in [5], and there is
even sharp results on the exponent 1 < p < ∞ for the Lp solvability [10].

The exponential square class and exponential square theorem. In spherical coor-
dinates one may view the unit ball in R

n as D = {(θ ,r) : θ ∈ Sn−1, 0 < r < 1} , and
we can define the non-tangential approach region as the truncated cone

Γα(θ ) =
{
(ρ ,σ) : 1/4 < ρ < 1, |θ −σ | < α(1−ρ)}, θ ∈ Sn−1} ,

for any choice of α > 0 such that Γα(θ ) ⊂ D . This way, the area function given by

Sαu(θ ) =
(∫∫

Γα (θ)
|∇u(r,τ)|2(1− r)2−ndrdτ

)1/2
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is a well defined object for solutions to Lu = 0 on D for any L as defined above.
A function f ∈ L1(∂D) is in the exponential square class of ∂D , and write f ∈

expL2(∂D) , if there exist two constants c1,c2 > 0 such that the following holds: If Δ
denotes any surface cube in ∂D and

fΔ =
1

σ(Δ)

∫
Δ

f (Q)dσ(Q)

then the estimate
1

σ(Δ)

∫
Δ
exp

(
c1| f (Q)− fΔ|2

)
dσ(Q) < c2

holds uniformly for Δ .
Following [11], given u the harmonic extension of a function f ∈ L1(∂D) we

say that the exponential square theorem holds on D for u with aperture α > 0 if
Sαu ∈ L∞(∂D) implies f ∈ expL2(∂D) .

Having introduced this terminology, we recall that this concept was introduced in
[1], where it is proved that the exponential square theorem holds with certain aperture
α > 0, on the semispace R

n
+ for harmonic functions. More recently, in [11, Section I]

it is proved that the exponential square theorem holds with certain aperture α > 0 on
D for harmonic functions.

Preliminary description of the main theorem. Let L0 and L1 denote two elliptic
operators as described through (1.1) and (1.2), and let ωi denote the harmonic measure
on D associated to Li , i = 0,1, resp. Define

E (X) = A1(X)−A0(X) and a(X) = sup
{|Ei, j(Y )| : Y ∈ Bδ (X)/2(X), 1 � i, j � n

}
where δ (Y ) = dist(Y,∂D) for Y ∈ D . The Carleson region is defined as Tr(Q) =
{(θ ,ρ) : θ ∈ Δr(Q), 1− r < ρ < 1} , using spherical coordinates. Also, for Y ∈ D de-
note by G0(Y ) = G0(0,Y ) the Green’s function (with pole at 0) for L0 on D .

The main motivation of this work is [11], where it is considered the problem of
determining sufficient conditions for the exponential square theorem to be preserved
under suitable perturbation of the coefficients of two operators as (1.1). It was proved
that it was enough to consider a discrepancy satisfying a very particular vanishing Car-
leson measure, similar to one contained in [3]. More precisely, the following result is
proved.

THEOREM A. [11, Theorem 4] Let L0 and L1 denote two elliptic operators as
described through (1.1) and (1.2), whose harmonic measures are denoted by ω0 and
ω1 respectively. Suppose that for every Q∈ ∂D, 0 < r < r0 there exists a function ε(r)
satisfying

1
ω0(Δr(Q))

∫
Tr(Q)

a(Y )2

δ (Y )2 G0(Y )dY � ε(r) (1.4)

and ε(2 jr) � 2γ jrγ where 0 < γ < 1 is suitable small, depending only on ellipticity
constants and dimension n (in particular ε(r) → 0 as r → 0 ). Assume that the expo-
nential square theorem holds for solutions to L0u = 0 on D with aperture α . Then
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there exist β > α > 0 such that the exponential square theorem holds for solutions to
L1u = 0 on D with aperture β .

On the other hand, in a more recent work [9], it has been established that the
membership of ω0 to A∞(dσ) is ineherited to ω1 , provided that the coefficients of A0

and A1 are supported on contractions by a factor 1/2 of certain Whitney-type cubes of
D , and the discrepancy between them is uniformly small.

In this note we explore a version of Theorem A in a situation similar to that in
[9], and the main result of this paper is a direct proof of such a result, without invoking
Theorem A in any form. In order to state precisely this result we must introduce more
notation. This is done in the next section, where a precise statement of our main result
is provided.

2. Statement of the main result

A Whitney type decomposition of the unit ball. Consider now R ⊂ R
n the rectan-

gle given by
R = [0,π/2)n−1× (0,1/2),

and define ρ : R → D as ρ(x,t) = (x,1− t) , where the n-tuple (x,1− t) must be
interpreted using spherical coordinates. Namely, the (n−1) coordinates of x indicate
the direction angles of a point in ∂D still denoted by x , and 1/2 < (1− t) < 1 indicates
the radii covered through the mapping ρ .

Identifying points on a portion of the (n− 1)-dimensional unit sphere Sn−1 in
R

n centered at the origin, with points in [0,π/2)n−1 (using spherical coordinates as
explained above), we may think of ρ as a mapping from R to a sector of D . In this
way one may associate the union of the 2n rectangles on R

n−1 congruent to R , to the
annulus D\B1/2(�0) through the mapping ρ .

Let Λk a family of cubes in R
n−1 , given by the product of intervals of the form[

j
2k

π
2 , j+1

2k
π
2

)
for j ∈ {0,1, . . . ,2k −1} . The family of cubes

Λ ≡
⋃
k�0

Λk

will be referred to as the dyadic cubes of R0 ≡ [0,π/2)n−1 . If I ∈ Λ , there exists a
minimal k0 such that I ∈ Λk0 , and so we define �(I) = 1

2k0
π
2 , the length of the interval

I . The rectangle associated to I is defined by

RI = I×
[

1
2k0+2 ,

1
2k0+1

)
, (2.1)

Notice that
R =

⋃
I⊂Λ

RI .

We call the family {RI : I ∈ Λ} a decomposition of Whitney type for R .
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Armed with the previous notions, we can define a decomposition of Whitney type
for D based on the decomposition of Whitney-type for R , through the mapping ρ .
The generation zero Whitney cube is defined to be R0 = B1/2(�0) . Then D \B1/2(�0)
is separated as the union of 2n copies of the Whitney type decompositions of the form
{ρ(RI) : I ∈ Λ} . Finally, W (D) = ρ(R)∪R0 is the decomposition of Whitney type
for D .

From now on we use the same notations for objects either in R or in their images
under ρ in B . Also, if R is any rectangle we can refer to the I ∈ Λ such that R = RI

as the radial projection of R on ∂D , and often write I = Π(R) . This projection also
makes sense for any A ⊂ D\B1/2(�0) .

Description of the main theorem. Let L0 and L1 denote two elliptic operators as
described through (1.1) and (1.2), and such that their corresponding matrices A0 and
A1 coincide everywhere except in (1/2)RI for every RI : I ∈ Λ , a decomposition of
Whitney type, as described in the previous paragraph. Here (1/2)RI denotes the con-
centric contraction of RI by a factor 1/2. Let ωi denote the harmonic measure on
D associated to the operator Li , i = 0,1. Define the discrepancy between A0 and A1

within R by

A (R) = ‖E ‖L∞(R), R ∈ W (D) where as before E (X) = A1(X)−A0(X).

In the following theorem we keep all of the notations and definitions introduced
before.

THEOREM 1. Suppose that the harmonic measure for L0 is in A∞(dσ) and that
the exponential square theorem holds on D for solutions to L0u = 0 , and for certain
aperture α > 0 . Assume that A (R) � ε j whenever R = RI with I ∈ Λ j , where ε j =
2− jη , j = 0,1, . . . , for certain 0 < η < 1/2 depending on n and the ellipticity constants
in (1.2). Then there exist β > α > 0 such that the exponential square theorem holds
for solutions to L1u = 0 on D with aperture β .

Note that this theorem is not vacuous. Taking L0 as the Laplace operator, by the
main result in [11, Section I] the theorem is applicable to small perturbations of it,
where the discrepancy is supported on Whitney-type cubes.

3. Arguments to prove Theorem 1

From now on, we adopt the notation C1 � C2 whenever C1 � kC2 for certain
constant k > 0 that may depend at most on n or λ , the domain D , or a parameter that
does not interfere in the essence of the argumentation. Similarly, C1 ≈C2 means that
C1 � C2 and C2 � C1 hold simultaneously.

Let ui be the solution to Liui = 0, i = 0,1, both satisfying u0 = u1 = f almost
everywhere on ∂D , where f ∈ L1(∂D) . The existence u0 is secured by the assumption
that ω0 ∈ A∞(dσ) . As far as the existence of u1 , we can use the main result in [9],
which says that elliptic-harmonic measure associated to L1 is also in the A∞ class.
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For X ∈ D define F(X) = u0(X)− u1(X) . By a standard argument (see e.g. [3,
p.77]) we actually have

F(X) =
∫

D
∇G0(X ,Y )E (Y )∇u1(Y )dY, X ∈ D,

where G0(X ,Y ) denotes the Green’s function for L0 on D .
Throughout the proof we will not use spherical coordinates, and so we set δ (X) =

dist(X ,∂D) . Accordingly, we adjust the definition of the area function as

Sαu(Q) =
(∫

Γα (Q)
|∇u(X)|2δ 2−n(X)dX

)1/2

Q ∈ ∂D.

In order to prove the theorem, we establish that there exists 0 < α < β such that
‖Sβu1‖∞ < ∞ implies f ∈ expL2(D) . For this, we will choose β > 0 in such a way
that ‖Sαu0‖∞ < ∞ , which by assumption yields the desired result. In other words, we
can focus on proving the comparison between the area functions of u0 and u1 .

Fix Q0 ∈ ∂D and assume that Q0 = ρ((π/4,π/4, . . . ,π/4,0)) with no loss of
generality (this essentially means that Q0 ∈ ∂D is located in the center of one of the
fundamental spherical caps). Call R the sector on D which is image of [0,π/2)n−1×
(0,1/2) through ρ . Let R = {Rm} denote the sequence of all the rectangles from the
decomposition of Whitney type of D , contained in R which intersect Γα (Q) .

Now, since∫
Rj

|∇u0(X)|2δ (X)2−ndX �
∫

Rj

|∇F(X)|2δ (X)2−ndX +
∫
Rj

|∇u1(X)|2δ (X)2−ndX ,

(3.1)

the idea in order to obtain the comparison between area function of u0 and u1 is to add
over {Rj} in (3.1). This way, we can focus on the estimate of

∫
Rj
|∇F(X)|2δ (X)2−ndX .

Now we proceed with the statement of two lemmata which provide the main build-
ing blocks of the proof of Theorem 1. The proof of Lemma 1 below proceeds exactly
as in [3, p. 87-88].

LEMMA 1. With the notations introduced above∫
Rj

|∇F(X)|2δ (X)2−ndX

�

⎧⎨⎩
[∫

R∗
j

|F(X)|2δ (X)−ndX

]1/2[∫
R∗

j

|∇F(X)|2δ (X)2−ndX

]1/2

(3.2)

+ ε j

[∫
R∗

j

|F(X)|2δ (X)−ndX

]1/2[∫
R∗

j

|∇u1(X)|2δ (X)2−ndX

]1/2

+ ε j

[∫
R∗

j

|∇F(X)|2δ (X)2−ndX

]1/2[∫
R∗

j

|∇u1(X)|2δ (X)2−ndX

]1/2
⎫⎬⎭ .

Here R∗
j denotes a dilation of R j by a small factor slightly greater than 1.
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Notice that the R∗
j have bounded overlap. At this point we pick the value of the

aperture β , satisfying the following properties:

(i) R∗
j ⊂ Γβ (Q0) for every j .

(ii) RI ⊂ Γβ (P) for every P ∈ I and every I ∈ Λ .

The property (i) will allow us to add over j and obtain an estimate comparing inte-
grals over cones with aperture α and β . And property (ii) will become useful in a
construction later on (see right after (4.10) below).

For the proof of the following result we adapt some ideas from [9].

LEMMA 2. With all of the previous notations and definitions, the following esti-
mate holds: [∫

R∗
j

|F(X)|2δ (X)−ndX

]1/2

� j
2 jη ‖Sβu1‖∞. (3.3)

Assuming these lemmata, along with the choice of β > 0 and ε j , we may conclude
from (3.2) that∫

Rj

|∇F(X)|2δ (X)2−ndX

� j
2 jη ‖Sβ u1‖∞

[∫
R∗

j

|∇F(X)|2δ (X)2−ndX

]1/2

+
j2

22 jη ‖Sβu1‖∞

[∫
R∗

j

|∇u1(X)|2δ (X)2−ndX

]1/2

(3.4)

+
j

2 jη

[∫
R∗

j

|∇F(X)|2δ (X)2−ndX

]1/2[∫
R∗

j

|∇u1(X)|2δ (X)2−ndX

]1/2

.

Plugging the estimate∫
R∗

j

|∇F(X)|2δ (X)2−ndX �
∫

R∗
j

|∇u0(X)|2δ (X)2−ndX +
∫

R∗
j

|∇u1(X)|2δ (X)2−ndX

in the right hand side of (3.4) we obtain∫
Rj

|∇F(X)|2δ (X)2−ndX

� j
2 jη ‖Sβu1‖∞

⎡⎣(∫
R∗

j

|∇u0(X)|2δ (X)2−ndX

)1/2

+

(∫
R∗

j

|∇u1(X)|2δ (X)2−ndX

)1/2
⎤⎦

+
j

2 jη

(∫
R∗

j

|∇u0(X)|2δ (X)2−ndX

)1/2(∫
R∗

j

|∇u1(X)|2δ (X)2−ndX

)1/2

+
j

2 jη

(∫
R∗

j

|∇u1(X)|2δ (X)2−ndX

)
≡ I + II + III (3.5)
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where we have used the elementary inequality (a+b)1/2 � 21/2(a1/2 +b1/2) , valid for
a,b > 0.

To handle the terms I and II we use the fact that the assumption ‖Sβ u1‖L∞ < ∞ ,
along with the A∞ property of the elliptic-harmonic measure of L0 (thus of L1 ), imply
that f ∈ BMO(∂D) (see [8]). By the main theorem of [2], for i = 0,1∫

R∗
j

|∇ui(X)|2δ (X)2−ndX � 1
(diamRj)n−1

∫
R∗

j

|∇ui(X)|2δ (X)dX � ‖ f‖2
∗, (3.6)

where ‖ f‖∗ denotes the BMO norm of f , and where C > 0 is a constant not depending
on Rj or f . Then

I, II � j
2 jη ‖Sβ u1‖∞‖ f‖∗

because

(∫
R∗

j

|∇u1(X)|2δ (X)2−ndX

)1/2

� Sβ u1(Q0) .

By the same token, III � j2− jη‖Sβu1‖2
∞ , and we can plug all of these estimates

back in (3.1) to obtain∫
Rj

|∇u0(X)|2δ (X)2−ndX � j
2 jη

(‖Sβu1‖∞ +‖Sβu1‖2
∞
)
+
∫

R∗
j

|∇u1(X)|2δ (X)2−ndX .

When summing over every j that intersect Γα(Q) , we pick up the estimate

[Sαu0(Q)]2 � ‖Sβ u1‖L∞ +‖Sβu1‖2
L∞ .

This way, under the assumption that ‖Sβ u1‖L∞ < ∞ we conclude that ‖Sαu0‖L∞ <
∞ . Since the exponential square theorem holds on D for soloutions to L0u = 0 for
certain aperture α > 0 we conclude that f ∈ expL2(D) . This means that the exponen-
tial square theorem holds for u1 with the aperture β > 0 chosen above. The proof of
Theorem 1 is finished except for the proof of the Lemma 2.

4. Proof of Lemma 2

Recall that

F(X) =
∫

D
∇Y G0(X ,Y )E (Y )∇u(Y )dY

=
(∫

R
+
∫

D\R

)
∇Y G0(X ,Y )E (Y )∇u(Y )dY ≡ F1(X)+F2(X),

where R = Rj as in the statement of the lemma. Denote simply by ε = ε j the discrep-
ancy of A0 and A1 within R , i.e. ε = 2− jη .

Recall also that Λ =
⋃

Λk denotes a dyadic decomposition of the cap of Sn−1

which is the part of the closure of the basic annular sector R , that lies in ∂D . Actually
the Λk , k = 1,2, . . . denote the generations of this dyadic decomposition. Associated
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to I ∈ Λ we have RI the rectangle within D associated with I ; for Y ∈ D we denote
by δ (Y ) the distance from Y to ∂D . Finally recall that Q0 ∈ ∂B has been fixed, and
that R = {Rj} denotes the sequence of rectangles that intersect Γα(Q0) . With these
notations, set δ (A) = inf{δ (Y ) : Y ∈ A} for A ⊂ D .

For the analysis of F2 we define auxiliar regions BR , G and H as follows. The
inner band around ∂D is

BR ≡
⋃

{RI : I ∈ Λk, k > j−1} = {X ∈ D : 0 < δ (X) � 4δ (R)} .

Define also the truncated conical region G ≡ ⋃{
R� ∈ R : R◦

� ∩B◦
R = /0

}
. Finally set

H = R \ (BR ∪G ). We now write

F2(X) =
(∫

BR

+
∫

G
+
∫

H
+
∫

D\R

)
∇G0(X ,Y )E (Y )∇u1(Y )dY

≡ b(X)+g(X)+h(X)+ ψ(X). (4.1)

We will handle separately the term F1 and each of the terms in (4.1) arising from F2 .

4.1. Estimates for F1

Note that if Z ∈ R∗
j by Cauchy’s inequality

|F1(Z)| �
∫

R
|∇Y G0 (Z,Y )| |E (Y )| |∇u1(Y )|dY

�
(∫

R
|∇Y G0 (Z,Y )|2 |E (Y )|2 dY

)1/2(∫
R
|∇u1(Y )|2 dY

)1/2

(4.2)

and by the definition of E and Caccioppoli’s inequality∫
R
|∇Y G0 (Z,Y )|2 |E (Y )|2 dY � ε2

∫∫
(1/2)R

|∇Y G0 (Z,Y ))|2 dY

� ε2

diam(R)2

∫
(9/16)R

|G0 (Z,Y )|2 dY, (4.3)

where (9/16)R is the concentric dilatation of R by a factor 9/16. By boundary Har-
nack and estimates for the Green’s function (see [4, Lemmata 1.3.4 and 1.3.3 resp.])
we have

G0(Z,Y ) � G0(AR,Y ) � ωAR
0 ((ΔR)

diam(R)n−2 (4.4)

where AR = A(ΔR) is the pole associated with ΔR , which in turn denotes the radial
projection of R onto Sn−1 (see pages 312 and 315 for this terminology). This and (4.3)
imply that∫

R
|∇Y G0 (Z,Y )|2 |E (Y )|2 dY � ε2

diam(R)2

∫
(9/16)R

|G0 (Z,Y )|2 dY � ε2

diam(R)n−2
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because ωAR
0 ((ΔR) � 1. All in all for Z ∈ R∗

j

|F1 (Z)| � ε
(∫

R
|∇u1(Y )|2 δ (Y )2−ndY

)1/2

which after integrating and back in (4.2) yields(∫
R∗

j

|F1(X)|2 δ (X)−ndX

)1/2

� j
2 jη ‖Sβ u1‖∞. (4.5)

4.2. Estimates for b

For Z ∈ R∗
j

|b(Z)| �
∫

BR

|∇Y G0 (Z,Y )| |E (Y )| |∇u1(Y )|dY

� ∑
k

∫
Qk

|∇Y G0 (Z,Y )| |E (Y )| |∇u1(Y )|dY

� ∑
k

(∫
Qk

|∇Y G0 (Z,Y )|2 |E (Y )|2 dY

)1/2(∫
Qk

|∇u1(Y )|2 dY,

)1/2

(4.6)

where Qk are the rectangles contained in BR . Now we can apply the same idea in (4.3)
and (4.4) to get

|b(Z)| � ∑
k

ε
(∫

Qk

|∇u1(Y )|2 δ (Y )2−ndY

)1/2

ωAR
0 (Δ(Qk)) (4.7)

because the discrepancy within each and every Qk is controlled by ε .
Now, to estimate (4.7) we use a device from [3, p. 84-85]. Define

Ok =
{

P ∈ ∂D : Sβ (u1) (P) > 2k
}

,

Õk =
{

P ∈ ∂D : M
ωAR

0

(
χOk

)
(P) > 1/2

}
(4.8)

Jk =
{

J ∈ Λ : ωAR
0 (J∩Ok) > 1/2 ωAR

0 (J) and ωAR
0 (J∩Ok+1) � 1/2 ωAR

0 (J))
}

,

where M
ωAR

0
denote the Hardy-Littlewood maximal function, with respect to ωAR

0 . By

(4.7) we obtain

|b(Z)| � ε ∑
k

∑
J∈Jk

(∫
QJ

|∇u1(Y )|2 δ (Y )2−ndY

)1/2

ωAR
0 (J). (4.9)

Using the weak (1,1) inequality for M
ωAR

0
we obtain

ωAR
0

(
Õk \Ok+1

)
� CωAR

0 (Ok) . (4.10)
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Also, if J ∈ Jk then J ⊂ Õk \Ok+1 (see details in [3, p. 84-85]).
Now recall the property (ii) of our choice of β (page 317), which in this case

means that for every Q ∈ J we have QJ ⊂ Γβ (Q) . Hence, from (4.7) we get

|b(Z)| � ε ∑
k

∑
J∈Jk

(∫
Γβ (Q)

|∇u1(Y )|2 δ (Y )2−ndY

)1/2

ωAR
0 (J)

� ε ∑
k

∑
J∈Jk

Sβ (u1)(Q)ωAR
0 (J) (for any Q ∈ J)

� ε ∑
k

∑
J∈Jk

∫
J
2k+1dωAR

0 (J)

� ε ∑
k

∫
Õk\Ok+1

2kdωAR
0 (Q) � ε ∑

k

2kωAR
0 (Õk \Ok+1)

� ε ∑
k

2kωAR
0 (Ok) � ε

∫
∂B

Sβ (u1)(P)ωAR(P) � j
2 jη ‖Sβ u1‖∞. (4.11)

Thus we obtain(∫
R∗

j

|b(X)|2 δ (X)−ndX

)1/2

� j
2 jη ‖Sβ u1‖∞. (4.12)

4.3. Estimates for g

We start separating G according to the different j−1 generations to which each
of its rectangles belong. That is, since R� ∈ G whenever R◦∩B◦

R = /0 , and it is assumed
that R = Rj is in the j th generation, then

G =
j−2⋃
k=1

Gk, Gk =
{

X ∈ G : 2k 1
2 j < δ (X) � 2k+1 1

2 j

}
.

In this way

g(X) =
∫

G
∇G0(X ,Y )E (Y )∇u1(Y )dY

=
j−2

∑
k=1

∫
Gk

∇G0(X ,Y )E (Y )∇u1(Y )dY ≡
j−2

∑
k=1

gk(X).

We will prove first that[∫
R∗
|gk(X)|2 δ (X)−ndX

]1/2

� 1
2 jη ‖Sβu1‖∞, (4.13)

for k = 1, . . . , j−2. For this purpose observe that if Z ∈ R∗

gk(Z) =
∫

Gk

∇G0(Z,Y )E (Y )∇u1(Y )dY =
∫

G̃k

∇G0(Z,Y )E (Y )∇u1(Y )dY,
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because E is supported on the (1/2)R� , and where G̃k denotes a small concentric
contraction of Gk . Therefore

|gk(Z)| �
∫

G̃k

|∇Y G0 (Z,Y )| |E (Y )| |∇u1(Y )|dY

�
(∫

G̃k

|∇Y G0 (Z,Y )|2 |E (Y )|2 dY

)1/2(∫
G̃k

|∇u1(Y )|2 dY

)1/2

(4.14)

Now notice that for Y ∈ G̃k one has |E (Y )| ≈ ε j−k−1 for 1 � k � j− 2, by the
assumption on the size of the discrepancy. By Caccioppoli’s inequality∫

G̃k

|∇Y G0 (Z,Y )|2 |E (Y )|2 dY � (ε j−k−1)2

(diam(Gk))
2

∫
Gk

|G0 (Z,Y )|2 dY. (4.15)

Applying Hölder continuity on the boundary to G0(·,Y ) (see [4, Corollary 1.1.24]) we
obtain

G0(Z,Y ) �
( |Z−Q0|

2− j+k+1

)γ
G0(Ak,Y ) � 1

2(k+1)γ G0(Ak,Y ) (4.16)

for certain 0 < γ < 1 depending only on n and the ellipticity constants in (1.2). Here
Ak is the pole associated to the projection of Gk over Sn−1 . Then from estimates for
the Green’s function, as in (4.4), we get

G0(Ak,Y ) � ωAk
0 ((Π(Gk))

(diam(Gk))
n−2 � 1

(diam(Gk))
n−2 .

This along with (4.14) and (4.15) imply that for Z ∈ R∗
j

|gk(Z)| � ε j−k−1

2(k+1)γ

(∫
G̃k

|∇u1(Y )|2 δ (Y )2−ndY

)1/2

By the choice on the decay of ε j we have for k = 1, . . . , j−2

ε j−k−1

2(k+1)γ =
(

2k+1

2 j

)η
1

2(k+1)γ =
1

2 jη 2(k+1)(η−γ) <
1

2 jη , (4.17)

when choosing 0 < η < γ < 1. This already implies (4.13).
Finally, after summing all of the j−2 terms and applying triangular inequality[∫

R∗
|g(X)|2 δ (X)−ndX

]1/2

� j
2 jη ‖Sβ u1‖∞. (4.18)

4.4. Estimates for h

Start by defining the k th slice of H as H̃ k =
{
Y ∈ H : 2k 1

2 j < δ (Y ) � 2k+1 1
2 j

}
.

Observe that H̃ k is a union of rectangles whose distance is roughly 2k− j . We introduce
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two more notions regarding cubes in a Whitney type decomposition. Two rectangles RI1
and RI2 , with I1, I2 ∈ Λk are called siblings if there exists J ∈ Λk−1 such that I1, I2 ⊂ J .
Also define the descendants of a rectangle RI as the family of rectangles RJ such that
J ⊂ I .

Given a rectangle RI , consider the property (*) RI ∩Gk �= /0 . Define Ĥ k as the
collection of rectangles RI ∈ H̃ k such that either RI satisfies property (*), or it is a
sibling of a rectangle satisfying (*). Notice that

H =
j−2⋃
k=1

H k where H k =
{

RJ ⊂ H : RJ is a descendant of an element in Ĥ k
}

.

The point of these constructions is that H k is a sort of Carleson box where we can
apply estimates for Green’s functions, boundaryHarnack inequality or boundaryHölder
continuity of positive solutions to Liu = 0, i = 0,1.

Our task is now to estimate each summand in the following expression:

h(X) =
∫

H
∇G0(X ,Y )E (Y )∇u1(Y )dY

=
j−2

∑
k=1

∫
H k

∇G0(X ,Y )E (Y )∇u1(Y )dY ≡
j−2

∑
k=1

hk(X).

For k = 1, . . . , j−2 and Z ∈ R∗

|hk(Z)| �
∫

H k
|∇Y G0 (Z,Y )| |E (Y )| |∇u1(Y )|dY

� ∑
�

∫
Q�

|∇Y G0 (Z,Y )| |E (Y )| |∇u1(Y )|dY

� ∑
�

(∫
Q�

|∇Y G0 (Z,Y )|2 |E (Y )|2 dY

)1/2(∫
Q�

|∇u1(Y )|2 dY,

)1/2

(4.19)

where Q� are the rectangles in H k . We can proceed now as in (4.14)–(4.16). And
again from estimates for the Green’s function we obtain

G0(A�,Y ) � ωAk
0 (Π(Q�))

(diam(Q�))
n−2

With the same method we used in §4.2, only this time with

Om =
{

P ∈ Π(H k) : S (u1)(P) > 2m
}

,

we can obtain

|hk(X)| � ε j−k−1

2(k+1)γ ‖Sβ u1‖∞ � 1
2 jη ‖Sβu1‖∞
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(see (4.11) and (4.17)). In this way, for k = 1, . . . , j−2∫
R∗
|hk(X)|2 δ (X)−ndX �

(
1

2 jη

)2

‖Sβu1‖2
∞.

Adding over k = 1, . . . , j−2[∫
R∗

j

|h(X)|2δ−n(X)dX

]1/2

�
j−2

∑
k=1

[∫
R∗

j

|hk(X)|2δ−n(X)dX

]1/2

� j
2 jη ‖Sβ u1‖∞. (4.20)

4.5. Estimates for ψ

In this case we follow the same ideas in (4.8)–(4.11), and for X ∈ R∗
j we obtain

first
|ψ(X)| � ε0

∫
∂D\R0

Su1(Q)dωX (Q),

where ε0 ≈ 1 is the discrepancy in the generation zero Whitney rectangle of D . Let
Δk = Δ2k2− j(Q0) , with Δ0 ≡R0 , and with k � N +1, where N is chosen minimal with
the property 1/4 < 2N2− j . It is known (see e.g. [4, Lemma 1.3.12]) that

sup
Q∈Δk\Δk−1

K(X ,Q) � 2−γk

ω(Δk)
,

where K(X ,Q) = dωX/dω(Q) is the Radon-Nikodym derivative, also called kernel
function. Using this we get

|ψ(X)| � ε0

∫
∂D\R0

Sβ u1(Q)dωX(Q) � ε0

∞

∑
k=N+1

∫
Δk\Δk−1

Sβu1(Q)dωX(Q)

� ε0

∞

∑
k=N+1

∫
Δk\Δk−1

Sβ u1(Q)K(X ,Q)dω(Q)

� ε0

∞

∑
k=N+1

∫
Δk\Δk−1

Sβ u1(Q)
2−γk

ω(Δk)
dω(Q) � ε0

∞

∑
k=N+1

2−γkMω(Sβ u1)(Q0)

� ε0‖Sβu1‖∞

∞

∑
k=N+1

2−γk � ‖Sβ u1‖∞
1

2(N+1)γ

� j
2 jγ ‖Sβ u1‖∞ � j

2 jη ‖Sβu1‖∞

since 0 < η < γ < 1 and by the choice of N . Hence[∫
R∗
|ψ(X)|2δ (X)−ndX

]1/2

� j
2 j ‖Sβu1‖∞. (4.21)

From (4.12), (4.18), (4.20) and (4.21) we obtain the desired inequality.
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