
D ifferential
Equations

& Applications

Volume 9, Number 3 (2017), 327–352 doi:10.7153/dea-2017-09-24

VIRIAL IDENTITIES FOR NONLINEAR SCHRÖDINGER EQUATIONS

WITH A CRITICAL COEFFICIENT INVERSE–SQUARE POTENTIAL

TOSHIYUKI SUZUKI

(Communicated by Pavel I. Naumkin)

Abstract. Virial identities for nonlinear Schrödinger equations with some strongly singular po-
tential (a|x|−2 ) are established. Here if a = a(N) :=−(N−2)2/4 , then Pa(N) :=−Δ+a(N)|x|−2

is nonnegative selfadjoint in the sense of Friedrichs extension. But the energy class D((1 +
Pa(N))1/2) does not coincide with H1(RN ) . Thus justification of the virial identities has a lot of
difficulties. The identities can be applicable for showing blow-up in finite time and for proving
the existence of scattering states.

1. Introduction and main results

In this article we consider the followingCauchy problems for nonlinear Schrödinger
equations with inverse-square potentials⎧⎪⎨⎪⎩

i
∂u
∂ t

=
(
−Δ +

a
|x|2

)
u+g(u) in R×RN,

u(0,x) = u0(x) in R
N ,

(CP)a

where i =
√−1, N � 3 and

a � a(N) := − (N−2)2

4
. (1.1)

Here (1.1) is based on the nonnegative selfadjointness of Pa := −Δ+a|x|−2 in L2(RN)
in the sense of Friedrichs extension, which is followed by the usual Hardy inequality∥∥|x|−1u

∥∥
L2 � 2

N−2
‖∇u‖L2 ∀ f ∈ H1(RN), N � 3. (1.2)

By virtue of a > a(N) we see that D((1+Pa)1/2) coincides with H1(RN) . Thus
a lot of studies of (CP)a are available. Specifically for nonlinear problems, Okazawa–
Suzuki–Yokota [9] showed the global unique existence of (CP)a with power-type non-
linearities under unsatisfactory conditions of a via the contraction methods. The worse
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assumption of a is removed in Okazawa–Suzuki–Yokota[10] by applying the abstract
energy methods. For Hartree type nonlinearities (in general non-local nonlinearities
with non-convolution) see Suzuki [13]. Moreover, a finite time blow-up for (CP)a is
shown in Suzuki [14]. On the other hand, the scattering problems of Hartree equa-
tions (g(u) := u(|x|−γ ∗ |u|2) , 1 < γ < max{N,4} ) are considered in Suzuki [16] in the
weighted energy space Σ1(RN) := H1(RN)∩D(|x|) . Whereas Zhang–Zheng [17] stud-
ied the scattering problems (especially construction of the wave operators in H1(RN))
of power type (g(u) := |u|p−1u , 1+ 4/N < p < 1+ 4/(N− 2)) under the unsatisfac-
tory condition of a . Thus we cannot apply their methods to scattering problems for the
critical case a = a(N) .

On the other hand, we remark if a = a(N) , then we see that the energy class
D((1 + Pa(N))1/2) does not coincide with H1(RN) . Now we write down the energy

space D((1 + Pa(N))1/2) as X1(RN) . The well-posedness for (CP)a in X1(RN) is
shown in Suzuki [15] and he analyzed X1(RN) spaces.

To observe the blow-up in finite time and the scattering problem we usually need
the virial identity. For example, if g(u) = λ |u|p−1u (λ ∈ R), then we can calculate
formally

d2

dt2
‖xu(t)‖2

L2 = 8‖P1/2
a u(t)‖2

L2 +
4Nλ (p−1)

p+1
‖u(t)‖p+1

Lp+1.

If a > a(N) , then Suzuki [14] justified the virial identity for (CP)a . But if a = a(N) ,
then we have never justified owing to the solvability that has not shown in H1(RN) .
Thus we need to try the case a = a(N) . Here we know H1(RN) ⊂ X1(RN) ⊂ Hs(RN)
(0 < s < 1). Thus the approximated argument as in Suzuki [14] can be applicable even
in a = a(N) . Here when we prove the convergence a → a(N)+0, we need to prepare
for the Mellin transform argument as in Suzuki [15] (see Lemma 3.1 and (3.7) for useful
results in this article).

This paper is divided into four sections. In Section 2 we give some preliminary
results. Notations are prepared in Section 2.1. Sections 2.2 is devoted to the linear
operator −Δ + a|x|−2 . The virial identities for (CP)a with a = a(N) is justified in
Section 3. We give some typical example for the virial identities in Section 3.1. In
Section 4 we apply the virial identities to two problems: blow-up in finite time (Section
4.1) and existence of scattering states (Section 4.2).

2. Notations and preliminaries

2.1. Notations

To simplify the notation, we write

Pa := −Δ +a|x|−2, a � a(N) = −(N−2)2/4. (2.1)

Also we use the notation A(u) � B(u) ; an abbreviation of A(u) � CB(u) , where C is
independent of u .
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Lp(RN) is the usual Lebesgue space with norm

‖u‖Lp :=
(∫

RN
|u(x)|p dx

)1/p
, u ∈ Lp(RN) (1 � p < ∞),

‖u‖L∞ := esssup |u(x)|, u ∈ L∞(RN).

Let p∈ [1,∞] . Then p ′ ∈ [1,∞] denotes the Hölder conjugate p ′ := p/(p−1) . H1(RN)
is the usual L2 -type Sobolev space with the norm

‖u‖H1 := (‖u‖2
L2 +‖∇u‖2

L2)1/2, u ∈ H1(RN).

On the other hand, H−1(RN) is the dual of H1(RN) . Note that we have a usual triplet

H1(RN) ⊂ L2(RN) ⊂ H−1(RN),

where the inclusions are continuous and dense. In particular, we have the Sobolev
embeddings

H1(RN) ⊂ Lq(RN), Lq ′
(RN) ⊂ H−1(RN), 2 � q � 2N

N−2
, N � 3.

H1(RN) coincides with the energy space D((1+Pa)1/2) (a > a(N)). Here we de-
note the energy space D((1+Pa(N))1/2) as X1(RN) . X−1(RN) is the dual of X1(RN) .
As we see

H1(RN) ⊂ X1(RN) ⊂ Hs(RN) (s < 1).

In particular, applying fractional Sobolev inequality and [15, Theorem 3.2] we see that
for all u ∈ X1(RN) and 0 � s < 1

‖u‖L2N/(N−2s) � CN,s ‖(−Δ)s/2u‖L2 � CN,sCs ‖Ps/2
a(N)u‖L2 .

Note that we also obtain for all u ∈ X1(RN) and 0 � s < 1

‖u‖L2N/(N−2s) � C‖(1+Pa(N))
1/2u‖s

L2‖u‖1−s
L2 .

Define D(|x|) := {u ∈ L2(RN); |x|u ∈ L2(RN)} . Then we denote the weighted
energy spaces as

Σ1(RN) := H1(RN)∩D(|x|), Σ1
∗(R

N) := X1(RN)∩D(|x|).

Let I ⊂ R be an open interval and Y be a Banach space. Then C( I ;Y ) is a
family of the continuous Y -valued function on I . On the other hand, the vector-valued
Lebesgue space Lp(I;Y ) is equipped with norm

‖u‖Lp(I;Y ) :=
∥∥‖u(·)‖Y

∥∥
Lp(I) < ∞.
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Moreover the vector-valued Sobolev space W 1,p(I;Y ) is equipped with norm

‖u‖W1,p(I;Y ) := ‖u‖Lp(I;Y ) +‖u ′‖Lp(I;Y ) < ∞.

Here u ′ denotes the weak derivative of u respect to time variable t ∈ I . Then it is
well-known that W 1,p(I;Y ) ⊂C( I ;Y ) for p > 1.

Strichartz estimates for exp(−itPa(N)) are proved in Suzuki [15, Proposition 4.8].

LEMMA 2.1. Let N � 3 and (p j,q j) be Schrödinger admissible pairs ( j = 0,1,2) ,
i.e.,

2
p j

+
N
qj

=
N
2

, p j > 2, q j � 2.

Then the following inequalities hold for ϕ ∈ L2(RN) and Φ ∈ Lp ′
1(R;Lq ′

1(RN)) :

‖exp(−itPa(N))ϕ‖Lp0 (R;Lq0 ) � C‖ϕ‖L2 , (2.2)∥∥∥∫ t

0
exp(−i(t− s)Pa(N))Φ(s,x)ds

∥∥∥
Lp2 (R;Lq2 )

� C ′ ‖Φ‖
Lp ′1 (R;Lq ′1 )

. (2.3)

Here the end point (τ,ρ) = (2,2N/(N−2)) is open.

2.2. Spherical harmonics decomposition

Next we consider the spherical harmonics decomposition; see [12, Chapter IV] for
details. A function Q : RN → C is said to be � -th solid harmonic if Q is harmonic
(i.e., ΔQ = 0) and a homogeneous polynomial of degree � (i.e., Q(x) = |x|�Q(x/|x|)).
Let Q� be a family of � -th solid harmonic functions. Then Q� is a finite dimensional
vector space. Moreover, Q� has an orthogonal normal system {Y�,k}k :

Q� = Span{Y�,k}k,
∫

SN−1
Y�,k1(x

′)Y�,k2(x ′)dS(x ′) =

{
1 k1 = k2,

0 k1 �= k2.

Let Q ∈ Q� and f̃ ∈ L2(0,∞) . Then

f (x) := |x|−�−(N−1)/2 f̃ (|x|)Q(x) ∈ L2(RN).

In fact, we can calculate as follows:∫
RN

| f (x)|2 dx =
(∫

|x ′|=1
|Q(x ′)|2 dS

)(∫ ∞

0
| f̃ (r)|2 dr

)
< ∞. (2.4)

Thus we define the subspace of L2(RN) as

L2
=�(R

N) :=
{
∑
k

|x|−�−(N−1)/2 f̃k(|x|)Y�,k(x); f̃k ∈ L2(0,∞), Y�,k ∈ Q�

}
.
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In particular, L2
=0(R

N) = L2
rad(R

N) , the family of radially symmetric functions. Also
we define

L2
�d(R

N) :=
⊕
��d

L2
=�(R

N).

Now we have the following (see e.g. [12, Lemma IV.2.18]).

PROPOSITION 2.2. Let �, �1, �2 be nonnegative integers. Then one has

(i) L2
=�(R

N) is a closed subspace of L2(RN) ;
(ii) L2

=�1
(RN) ⊥ L2

=�2
(RN) if �1 �= �2 , i.e.,∫

RN
f1(x) f2(x)dx = 0 ∀ f1 ∈ L2

=�1
(RN), ∀ f2 ∈ L2

=�2
(RN);

(iii) L2(RN) =
⊕∞

�=0 L2
=�(R

N) , i.e., for every f ∈ L2(RN) there uniquely exists { f�}� ⊂
L2(RN) such that f� ∈ L2

=�(R
N) for � ∈ N∪{0} and

f =
∞

∑
�=0

f� (spherical harmonics decomposition).

As seen in Suzuki [15], we have

−Δ f = Aμ(�) f ∀ f ∈ L2
=�(R

N), (2.5)

Pa f = Aν(�) f ∀ f ∈ L2
=�(R

N), (2.6)

where λ = (N−2)/2 and

Aν f̃ := −∂ 2
r f̃ − N−1

r
∂r f̃ +

ν2−λ 2

r2 f̃ , (2.7)

μ(�) := μ� = λ + �. (2.8)

ν(�) := ν� = [(λ + �)2 +a]1/2. (2.9)

Next we introduce the Mellin transform.

DEFINITION 2.1. Let f be a complex-valuedmeasurable function such that xγ−1 f (x)∈
L1(0,∞;C) for some γ ∈ R . Then the Mellin transform of f is defined as

M [ f (r)](z) :=
∫ ∞

0
rz−1 f (r)dr.

In general, let f ∈ L2(RN) (N � 2). Then the Mellin transform of f is defined as

M [ f (x)](z) :=
∫ ∞

0
rz−1 f

( rx
|x|

)
dr.
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Note that M [rα f (r)](z) = M [ f (r)](z+ α) for α ∈ R . Next we see that

M [∂r f ](z) = (1− z)M [ f ](z−1). (2.10)

As in Suzuki [15, (2.20)] (see also [11]) we have for ν � 0 and σ � 0

M [Aσ/2
ν f ](z) = 2σ Γ

(
(z−λ + ν)/2

)
Γ
(
1− (z−σ −λ −ν)/2

)
Γ
(
(z−σ −λ + ν)/2

)
Γ
(
1− (z−λ −ν)/2

)M [ f ](z−σ), (2.11)

where λ = (N−2)/2.

Here we have the Plancherel type equality∫ ∞

0
f (s)g(s)sN−1ds =

1
2π

∫ ∞

−∞
M [ f ]

(N
2

+ iy
)
M [g]

(N
2

+ iy
)

dy (2.12)

(see Suzuki [15, Lemma 2.5]).

3. Proof of the virial identities

First we consider the key inequalities.

LEMMA 3.1. Let a � a(N) . Assume that ϕ is real-valued and radially symmet-
ric. Then ∣∣∣Im∫

RN
xϕu ·∇udx

∣∣∣ � ‖(1+Pa)1/2u‖L2 ‖xϕu‖L2 (3.1)

Proof. Let u = ∑�,k u�,k(r)Y�,k be a spherical harmonics decomposition. Then we
see that ∫

RN
ϕux ·∇udx = ∑

�,k

∫ ∞

0
ϕu�,k(r)r(∂ru�,k)(r)rN−1 dr. (3.2)

By using (2.12) and (2.10) we obtain that∫ ∞

0
rϕu�,k(r)(∂ru�,k)(r)rN−1 dr

=
1
2π

∫ ∞

−∞
M [∂ru�,k]

(N
2

+ iy
)
M [rϕu�,k]

(N
2

+ iy
)

dy

=
N
2

1
2π

∫ ∞

−∞
M [u�,k]

(N
2
−1+ iy

)
M [ϕu�,k]

(N
2

+1+ iy
)

dy

+
i

2π

∫ ∞

−∞
yM [u�,k]

(N
2
−1+ iy

)
M [ϕu�,k]

(N
2

+1+ iy
)

dy

=:
N
2

I1 + I2. (3.3)

Here I1 is calculated

I1 =
∫ ∞

0
r−1u�,krϕu�,k rN−1 dr =

∫ ∞

0
ϕ(r)|u�,k(r)|2 rN−1 dr ∈ R.
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Thus we have

Im
∫ ∞

0
rϕu�,k(r)(∂ru�,k)(r)rN−1 dr = Im I2

=
1
2π

Re
∫ ∞

−∞
yM [u�,k]

(N
2
−1+ iy

)
M [ϕu�,k]

(N
2

+1+ iy
)

dy. (3.4)

On the other hand, we see from (2.11) that

M [A1/2
ν f ]

(N
2

+ iy
)

= (ν − iy)
Γ
(
(ν − iy)/2

)
Γ
(
(ν +1+ iy)/2

)
Γ
(
(ν + iy)/2

)
Γ
(
(ν +1− iy)/2

)M [ f ]
(N

2
−1+ iy

)
.

Using Γ(z) = Γ(z) we obtain∫ ∞

0
|A1/2

ν f |2 rN−1 dr =
1
2π

∫ ∞

−∞
(ν2 + y2)

∣∣∣M [ f ]
(N

2
−1+ iy

)∣∣∣2 dy. (3.5)

Applying (3.5) and (2.12) we calculate

1
2π

Re
∫ ∞

−∞
yM [u�,k]

(N
2
−1+ iy

)
M [ϕu�,k]

(N
2

+1+ iy
)

dy

� 1
2π

[∫ ∞

−∞

∣∣∣yM [u�,k]
(N

2
−1+ iy

)∣∣∣2 dy
]1/2[∫ ∞

−∞

∣∣∣M [ϕu�,k]
(N

2
+1+ iy

)∣∣∣2 dy
]1/2

=
[∫ ∞

0
|A1/2

ν(�) f |2 rN−1 dr
]1/2[∫ ∞

0
|rϕu�,k|2 rN−1 dr

]1/2
.

Therefore we have ∣∣∣Im ∫ ∞

0
rϕu�,k(r)(∂ru�,k)(r)rN−1 dr

∣∣∣
�

[∫ ∞

0
|A1/2

ν(�) f |2 rN−1 dr
]1/2[∫ ∞

0
|rϕu�,k|2 rN−1 dr

]1/2

= ‖P1/2
a (u�,kY�,k)‖L2 ‖xϕu�,kY�,k‖L2 . (3.6)

Summing (3.6) over k and � we conclude (3.1) from (3.2). �

REMARK 3.1. Let ϕ(x) ≡ 1. In a way similar to Lemma 3.1 we can conclude
that for all u, v ∈ Σ1∗(RN)∣∣∣∫

RN
xu ·∇vdx

∣∣∣ � ‖xu‖L2 ‖P1/2
a(N)v‖L2 +

N
2
‖u‖L2 ‖v‖L2 . (3.7)

Now we show the virial identities for (CP)a with a = a(N) . To end this we
consider approximated problems for (CP)a :⎧⎪⎨⎪⎩

i
∂uε,a

∂ t
=

(
−Δ +

a
|x|2

)
uε,a +gε(uε,a) in R×RN,

uε,a(0,x) = u0(x) in RN .

(CP)ε,a
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Here gε is approximation of g . g and gε satisfy weak closedness (see [10, (G5)]):

vm(t) → v(t) (m → ∞) weakly in L∞(−T,T ;XS),
g(vm(t)) → f (t) (m → ∞) weakly∗ in L∞(−T,T ;X∗

S )

⇒ 0 = lim
m→∞

Im
∫

RN
g(vm(t))vm(t)dx = Im

∫
RN

f (t)v(t)dx,

where XS := H1(RN) (a > a(N)) or X1(RN) (a = a(N)). Assume further that vm(t)→
v(t) in C([−T,T ];L2(RN)) . Then f (t) = g(v(t)) .

We give three types of nonlinearities g and their approximations as we can con-
sider in this article.

EXAMPLE 3.1. Let g : C → C be power type nonlinearities so that

(N1) g(0) = 0 and there exist p ∈ [1,(N +2)/(N−2)) and K � 0 such that

|g(z1)−g(z2)| � K(1+ |z1|p−1 + |z2|p−1)|z1 − z2| ∀z1, z2 ∈ C;

(N2) g(x) ∈ R (x > 0) and g(eiθ z) = eiθ g(z) (z ∈ C , θ ∈ R).

In such a case we define gε(u) := ρε ∗ [g(ρε ∗ u)] , where ρε is the Friedrichs mollifier.
Moreover, the energy functionals of g and gε are

G(u) :=
∫

RN
F(|u(x)|)dx, Gε(u) :=

∫
RN

F(|ρε ∗ u(x)|)dx,

where F is the primitive integral of g :

F(x) :=
∫ x

0
g(s)ds ∀ x > 0.

EXAMPLE 3.2. Let

g(u) := λ |x|−r|u|p−1u (λ ∈ R, 0 < r < 2, 1 � p < (N +2−2r)/(N−2)).

In such a case we define

gε(u) := λ ρε ∗ [(|x|2 + ε)−r/2|ρε ∗ u|p−1(ρε ∗ u)].

Moreover, the energy functionals of g and gε are

G(u) := λ
∫

RN

|u(x)|p+1

|x|r dx, Gε(u) := λ
∫

RN

|ρε ∗ u(x)|p+1

(|x|2 + ε)r/2
dx.

EXAMPLE 3.3. Let g(u) := uK[k](|u|2) , where

K[k]( f ) :=
∫

RN
k(x,y) f (y)dy.
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Here k satisfies three conditions:

(K1) k is a symmetric real-valued function, that is, k(x,y) = k(y,x) ∈ R a.a. x, y∈ RN ;

(K2) k ∈ L∞
x (L∞

y )+Lβ
x (Lα

y ) for some α, β ∈ [1,∞] such that α � β and α−1 +β−1 <
4/N ;

(K3) k̃(x,y) := x ·∇xk(x,y)+y ·∇yk(x,y) belongs to L∞
x (L∞

y )+Lβ̃
x (Lα̃

y ) for some α̃, β̃ ∈
[1,∞] such that α̃ � β̃ and α̃−1 + β̃−1 < 4/N .

Note that Lβ
x (Lα

y ) is the family of k(x,y) such that k(x, ·) ∈ Lα (RN) a.a. x ∈ RN with∥∥‖k(x, ·)‖Lα
∥∥

Lβ < ∞ . In such a case we define gε(u) := uK[kε ](|u|2) , where

kε(x,y) :=
∫∫

RN×RN
ρε(x− ξ )ρε(y−η)k(ξ ,η)dξ dη .

Moreover, the energy functionals of g and gε are

G(u) :=
1
4

∫∫
RN×RN

k(x,y) |u(x)|2 |u(y)|2 dxdy,

Gε(u) :=
1
4

∫∫
RN×RN

kε(x,y) |u(x)|2 |u(y)|2 dxdy.

REMARK 3.2. Condition (K2) implies that we can divide k into kR +(k− kR) ,
where

kR(x,y) :=

⎧⎪⎨⎪⎩
k(x,y) |k(x,y)| � R,

R k(x,y) > R,

−R k(x,y) < −R.

Here kR ∈ L∞
x (L∞

y ) with ‖kR‖L∞
x (L∞

y ) � R and ‖k− kR‖Lβ
x (Lα

y )
→ 0 (R → ∞). Moreover,

define

γ :=
[
1− 1

2

( 1
α

+
1
β

)]−1 ∈
[
1,

N
N−2

)
. (3.8)

Then we have (see [13, Lemma 2.4]) if k ∈ Lβ
x (Lα

y ) ,

‖K[k] f‖Lγ′ � ‖k‖
Lβ

x (Lα
y )
‖ f‖Lγ ∀ f ∈ Lγ (RN). (3.9)

By virtue of (3.9), (K1) and (K2) imply

|G(u)−G(v)|, |Gε(u)−Gε(v)| � CM4 ‖k− kR‖Lβ
x (Lα

y )
+RM3 ‖u− v‖L2 (3.10)

for every u, v ∈ X1(RN) with ‖u‖X1 � M , ‖v‖X1 � M (see [14, (2.13)]) and

Gε(ϕ) → G(ϕ) (ε → 0), ϕ ∈ X1(RN)

(see [14, Remark 2.2]).
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Here we give a plan to prove the virial identities for (CP)a with a = a(N) .

Stage 1. We construct the virial identities for (CP) ε,a with a > a(N) . This step has
already finished: see Suzuki [14].

Stage 2. To show uε,a → uε (a→ a(N)+0) we need uniform boundedness in X1(RN) .
Here uε is a solution to (CP) ε,a with a = a(N) . uε is also satisfies a certain virial
identity.

Stage 3. Next we let ε →+0. Applying the Strichartz estimates (2.2) and (2.3) we can
show uε → u . Since u satisfies (CP)a with a = a(N) , we can prove the desired virial
identity.

Before deriving the virial identity for (CP)a with a = a(N) we calculate the first
derivative of ‖xu(t)‖2

L2 .

LEMMA 3.2. Let u ∈ C([−T1,T2];X1(RN)) be a solutions to (CP)a with a =
a(N) and u0 ∈ Σ1∗(RN) . Then u belongs to C([−T1,T2];Σ1∗(RN)) and satisfies

d
dt
‖xu(t)‖2

L2 = 4Im
∫

RN
∇u(t) · xu(t)dx. (3.11)

Proof. Using assumption of g we can calculate

d
dt

∥∥∥ xu(t)√
1+ δ |x|2

∥∥∥2

L2
= 4Im

∫
RN

∇u(t) ·
[ xu(t)
(1+ δ |x|2)2

]
dx.

Lemma 3.1 with ϕ(x) = (1+ δ |x|2)−2 implies that∣∣∣ d
dt

∥∥∥ xu(t)√
1+ δ |x|2

∥∥∥2

L2

∣∣∣ � 4‖(1+Pa(N))
1/2u(t)‖L2

∥∥∥ xu(t)
(1+ δ |x|2)2

∥∥∥
L2

.

Thus we see that∥∥∥ xu(t)√
1+ δ |x|2

∥∥∥
L2

�
∥∥∥ xu0√

1+ δ |x|2
∥∥∥

L2
+2

∣∣∣∫ t

0
‖u(s)‖X1 ds

∣∣∣.
Letting δ → 0 we conclude that

‖xu(t)‖L2 � ‖xu0‖L2 +2
∣∣∣∫ t

0
‖u(s)‖X1 ds

∣∣∣.
In a way similar to the above we also obtain

∣∣‖xu(T2)‖L2 −‖xu(T1)‖L2

∣∣ � 2
∣∣∣∫ T1

T2

‖u(s)‖X1 ds
∣∣∣;

hence u is continuous in Σ1∗(RN) and satisfies (3.11). �
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Henceforth we prove the virial identities for (CP)a with a = a(N) only the case
of nonlinearities as in Example 3.3. Other cases are similar ways.

Summary of Stage 1. Let u0 ∈ H1(RN) ⊂ X1(RN) and a > a(N) . Then global weak
solution uε,a ∈C(R;H1(RN))∩C1(R;H−1(RN)) to (CP) ε,a with uε,a(0) = u0 exists
uniquely. Also uε,a satisfies the conservation laws

‖uε,a(t)‖L2 = ‖u0‖L2 , Eε,a(uε(t)) = Eε,a(u0) ∀ t ∈ R,

where

Eε,a(ϕ) :=
1
2
‖P1/2

a ϕ‖2
L2 +Gε(ϕ), ϕ ∈ H1(RN).

Here the virial identities for (CP) ε,a (a > a(N)) is verified in Suzuki [14, Section 3]

d2

dt2
‖xuε,a(t)‖2

L2 = 8‖P1/2
a uε,a(t)‖2

L2

−2
∫∫

RN×RN
k̃ε(x,y)|uε,a(t,x)|2 |uε,a(t,y)|2 dxdy ∀ t ∈ R,

where k̃ε ∈ L∞
x (L∞

y ) and

k̃ε(x,y) :=
∫∫

RN×RN
ρε(x− ξ )ρε(y−η)k̃(ξ ,η)dξdη

+
∫∫

RN×RN
[ρ̃ε(x− ξ )ρε(y−η)+ ρε(x− ξ )ρ̃ε(y−η)]k(ξ ,η)dξdη ,

ρ̃ε(x) := N ρε(x)+ x ·∇ρε(x).

Proof of Stage 2. First we show there exists uε such that uε,a → uε (a → a(N)+ 0)
weakly in some sense. Applying the conservation laws we see that

‖P1/2
a uε,a(t)‖2

L2 = ‖P1/2
a u0‖2

L2 +2Gε(u0)−2Gε(uε,a(t))

Since Gε is continuous in L2(RN) , there exists a non-decreasing function dε : (0,∞)→
(0,∞) such that |Gε(ϕ)|� dε(‖ϕ‖L2) ; in this case (Example 3.3) we have dε(‖ϕ‖L2) :=
(1/4)‖kε‖L∞

x (L∞
y )‖ϕ‖4

L2 . Thus we conclude that

‖P1/2
a uε,a(t)‖2

L2 � ‖P1/2
a u0‖2

L2 +4dε(‖u0‖L2) ∀ t ∈ R.

On the other hand,

‖P1/2
a(N)ϕ‖L2 � ‖P1/2

a ϕ‖L2 ∀ ϕ ∈ H1(RN).

Combining these we obtain

‖P1/2
a(N)uε,a(t)‖2

L2 � ‖P1/2
a u0‖2

L2 +4dε(‖u0‖L2) ∀ t ∈ R. (3.12)
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On the other hand, we can see that

‖Pav‖H−1 �
(
1+

4|a|
(N−2)2

)1/2 ‖(1+Pa)1/2v‖L2 .

Putting v := uε,a(t) we obtain

‖Pauε,a(t)‖H−1 �
(
1+

4|a|
(N −2)2

)1/2‖(1+Pa)1/2uε,a(t)‖L2

�
(
1+

4|a|
(N −2)2

)1/2 [‖(1+Pa)1/2u0‖2
L2 +4dε(‖u0‖L2)

]1/2
.

Also we can calculate

‖gε(uε,a(t))‖L2 � d̃ε(‖uε,a(t)‖L2)‖uε,a(t)‖L2 = d̃ε(‖u0‖L2)‖u0‖L2 ,

where d̃ε(‖ϕ‖L2) := ‖kε‖L∞
x (L∞

y )‖ϕ‖3
L2 . Thus we obtain for all t ∈ R

‖u ′
ε,a(t)‖H−1 � [‖(1+Pa)1/2u0‖L2 +4dε(‖u0‖L2)]1/2 + d̃ε(‖u0‖L2)‖u0‖L2 . (3.13)

Since X1(RN) ⊂ H−1(RN) is continuous, applying the Ascoli-Arzela type lemma (see
[2, Proposition 1.1.2]) we conclude that for any T > 0 there exist {a j} j ⊂ (a(N),0)
and uε(t) such that a j → a(N) ( j → ∞) and

uε,a j(t) → uε(t) ( j → ∞) ∀ t ∈ (−T,T ) weakly in X1(RN).

Next we show that uε satisfies (CP)a with a = a(N) and g = gε . Since gε(uε,a j (t))
is uniformly bounded in L∞(−T,T ;L2(RN)) , we see that gε(uε,a j(t))→ fε (t) weakly∗

in L∞(−T,T ;L2(RN)) ; also in L∞(−T,T ;X−1(RN)) . By virtue of the weak closedness
of gε (see (G5) in [13, Lemma 3.1]) we have

Im
∫

RN
fε(t)uε(t)dx = 0.

Thus we obtain

‖uε(t)‖2
L2 = ‖u0‖2

L2 = ‖uε,a(t)‖2
L2 ∀ t ∈ (−T,T ),

Weak convergence and the convergence of the corresponding norms imply that

uε,a j (t) → uε(t) ( j → ∞) ∀ t ∈ (−T,T ) strongly in L2(RN).

Hence we conclude from the weak closedness of gε (in a way similar to the verification
of (G5) of [13, Lemma 3.1]) that uε satisfies iu ′

ε = Pa(N)uε +gε(uε) and

uε,a j (t) → uε(t) ( j → ∞) in C([−T,T ];L2(RN)).

Next we prove

uε,a j(t) → uε(t) ( j → ∞) strongly in X1(RN). (3.14)
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The conservation of laws imply that

‖(1+Pa)1/2uε,a(t)‖2
L2

= 2Eε,a(uε,a(t))−2Gε(uε,a(t))
= 2Eε,a(u0)−2Gε(uε,a(t))
→ 2Eε(u0)−2Gε(uε(t)) (a → a(N)+0)

= 2Eε(uε(t))−2Gε(uε(t)) = ‖(1+Pa(N))
1/2uε(t)‖2

L2 .

Moreover, we see that

limsup
a→a(N)+0

‖(1+Pa(N))
1/2uε,a(t)‖2

L2 � limsup
a→a(N)+0

‖(1+Pa)1/2uε,a(t)‖2
L2

= ‖(1+Pa(N))
1/2uε(t)‖2

L2 .

Thus the weak convergence implies (3.14).

Since the strong convergence in X1(RN) and ‖uε,a j(t)‖X1 is uniformly bounded
in t ∈ [−T,T ] , we see from the dominated convergence theorem implies that if u0 ∈
Σ1(RN) , then

‖xuε(t)‖2
L2 = ‖xu0‖2

L2 +4t Im
∫

RN
xu0 ·∇u0 dx+

∫ t

0
(t− s)Vε(uε(s))ds,

where
Vε(v) := 8‖P1/2

a(N)v‖2
L2 −2

∫∫
RN×RN

k̃ε(x,y) |v(x)|2 |v(y)|2 dxdy.

Thus we obtain
d2

dt2
‖xuε(t)‖2

L2 = Vε(uε(t)). (3.15)

REMARK 3.3. Let u0 ∈ X1(RN) in general. We can apply the continuous depen-
dence of initial values. First set {u0m}m ⊂ Σ1(RN) such that u0m → u0 strongly in
Σ1∗(RN) . Next let uε,m be a unique solution to (CP) ε,a with uε,m(0) = u0m . Then uε,m

satisfies

‖xuε,m(t)‖2
L2

= ‖xu0m‖2
L2 +4t Im

∫
RN

xu0m ·∇u0mdx+
∫ t

0
(t − s)Vε(uε,m(s))ds.

Since the continuous dependence and the dominated convergence theorem imply that∫ t

0
(t − s)Vε(uε,m(s))ds →

∫ t

0
(t− s)Vε(uε(s))ds

uniformly in t ∈ [−T,T ] . (3.7) yields that

Im
∫

RN
xu0m ·∇u0m dx → Im

∫
RN

xu0 ·∇u0 dx.

Hence we conclude the virial identity (3.15) even when u0 ∈ X1(RN) .
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Proof of Stage 3. First we show the uniform convergence of uε (ε → +0); see also
[14, Lemma 3.2].

PROPOSITION 3.3. Let u ∈ C([−T1,T2];X1(RN)) be a local weak solution to
(CP)a in (−T1,T2) . Then uε → u (ε → +0) strongly in C([−T1,T2];X1(RN)) .

Proof. Step 1. First we show the uniform boundedness of uε :

‖uε(t)‖X1 � M0 ∀ ε > 0, ∀ t ∈ [−T,T ]. (3.16)

Let M > ‖u0‖X1 . Define

τε := sup
T>0

{‖uε(t)‖X1 � M, t ∈ [−T,T ]}.

If τε = ∞ , then we have proved the uniform boundedness. Thus we assume τε < ∞ .
Since uε ∈C(R;X1(RN)) , τε satisfies

‖uε(τε )‖X1 = M or ‖uε(−τε )‖X1 = M. (3.17)

By using the conservation laws we have

‖uε(t)‖2
X1 −‖u0‖2

X1 = 2 [Gε(u0)−Gε(uε(t))] (3.18)

� 2CM4 ‖k− kR‖Lβ
x (Lα

y )
+2RM3‖u0−uε(t)‖L2 .

On the other hand, we see from the verification of (G2) in [13, Lemma 3.1] (or [13,
Lemma 2.5]) that

‖u ′
ε(t)‖X−1 � ‖Pauε(t)‖X−1 +‖uε(t)K[kε ](|uε(t)|2)‖X−1

� ‖uε(t)‖X1 +R0‖uε(t)‖3
L2 +C‖k− kR0‖Lβ

x (Lα
y )
‖uε(t)‖3

X1

� M +R0‖u0‖3
L2 +C‖k− kR0‖Lβ

x (Lα
y )

M3 =: C(M) ∀ t ∈ [−τε ,τε ].

Applying [2, Lemma 3.3.6] we obtain

‖uε(t)−uε(s)‖L2 �
√

2C(M) |t − s|1/2, t, s ∈ [−τε ,τε ]. (3.19)

Combining (3.19) with setting s = 0 into (3.18), we see that

‖uε(t)‖2
X1 −‖u0‖2

X1 � 2CM4 ‖k− kR‖Lβ
x (Lα

y )
+2

√
2RM3C(M)|t|1/2.

Letting t = ±τε and applying (3.17) we have

τ1/2
ε �

3M2−8CM4 ‖k− kR‖Lβ
x (Lα

y )

8
√

2RM3C(M)
> 0;
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note that ‖k− kR‖Lβ
x (Lα

y )
→ 0 (R → ∞) implies the positivity. Thus we obtain (3.16) by

putting

TM :=
[3−8CM2‖k− kR‖Lβ

x (Lα
y )

8
√

2RMC(M)

]2
> 0.

Step 2. Next we show that uε → u (ε → 0) strongly in L∞(−T1,T2;L2(RN)) and in
Lr(γ)(−T1,T2;L2γ (RN)) , where γ is defined in (3.8) and r(γ) := 4γ/[N(γ − 1)] . Note
that u and uε satisfy the following integral equations:

u(t) = exp(−itPa(N))u0− i
∫ t

0
exp(−i(t− s)Pa(N)){u(s)K[k](|u(s)|2)}ds,

uε(t) = exp(−itPa(N))u0− i
∫ t

0
exp(−i(t− s)Pa(N)){uε(s)K[kε ](|uε(s)|2)}ds.

We divide u(t)−uε(t) into J1(t;ε)+ J2(t;ε)+ J3(t;ε) , where

J1(t;ε) := −i
∫ t

0
exp(−i(t− s)Pa(N)){u(s)

(
K[k](|u(s)|2)−K[kε ](|u(s)|2))}ds,

J2(t;ε) := −i
∫ t

0
exp(−i(t− s)Pa(N)){(u(s)−uε(s))K[kε ](|u(s)|2)}ds,

J3(t;ε) := −i
∫ t

0
exp(−i(t− s)Pa(N)){uε(s)K[kε ](|u(s)|2−|uε(s)|2)}ds.

For simply we denote ‖ f‖Lτ
t (Lρ ) := ‖ f‖Lτ (−T,T ;Lρ ) . Applying the Strichartz estimates

(2.3) we have the estimate for J1

‖J1‖Lτ
t (Lρ ) � C∞,τ ‖uK[kR− (kR)ε ](|u|2)‖L1

t (L2)

+ Cr(γ),τ ‖uK[(k− kR)− (kε − (kR)ε )](|u|2)‖
L

r(γ)′
t (L(2γ)′ )

.

Applying (3.9) and the dominated convergence theorem, we see that

‖J1‖Lτ
t (Lρ ) → 0 (ε → +0). (3.20)

For J2 applying the Strichartz estimates we have

‖J2‖Lτ
t (Lρ )

� C∞,τ ‖(u−uε)K[(kR)ε ](|u|2)‖L1
t (L2)

+Cr(γ),τ ‖(u−uε)K[kε − (kR)ε ](|u|2)‖
L

r(γ)′
t (L(2γ)′ )

� 2C∞,τRT ‖u‖2
L∞

t (L2)‖u−uε‖L∞
t (L2)

+Cr(γ),τ(2T )1−2/r(γ) ‖k− kR‖Lβ
x (Lα

y )
‖u‖2

L∞
t (L2γ )‖u−uε‖L

r(γ)
t (L2γ )

.
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In a way similar to J2 , we can evaluate J3 as follows:

‖J3‖Lτ
t (Lρ )

� C∞,τ ‖uε K[(kR)ε ](|u|2−|uε |2)‖L1
t (L2)

+Cr(γ),τ ‖uε K[kε − (kR)ε ](|u|2−|uε |2)‖
L

r(γ)′
t (L(2γ)′ )

� 2C∞,τRT ‖uε‖L∞
t (L2)(‖u‖L∞

t (L2) +‖uε‖L∞
t (L2))‖u−uε‖L∞

t (L2)

+Cr(γ),τ(2T )1−2/r(γ) ‖k− kR‖Lβ
x (Lα

y )
‖uε‖L∞

t (L2γ )

× (‖u‖L∞
t (L2γ ) +‖uε‖L∞

t (L2γ )) ‖u−uε‖L
r(γ)
t (L2γ )

.

Set (τ,ρ) = (∞,2) and (r(γ),2γ) . Now we put

M := max{‖u0‖L2 ,‖u‖Lr(γ)(−T,T ;L2γ ), sup
ε∈(0,1)

‖uε‖Lr(γ)(−T,T ;L2γ )} < ∞.

Take T0 ∈ (0,T ) such that 6(C∞,∞+C∞,r(γ))RM2T0 � 1/2 and 3(Cr(γ),∞ +Cr(γ),r(γ))‖k−
kR‖Lβ

x (Lα
y )

M2(2T0)1−2/r(γ) � 1/2. Then we obtain

‖u−uε‖Lr(γ)(−T0,T0;L2γ ) +‖u−uε‖L∞(−T0,T0;L2)

� 2‖J1‖L∞(−T0,T0;L2) +2‖J1‖Lr(γ)(−T0,T0;L2γ ). (3.21)

It follows from (3.20) that

uε → u (ε → +0) strongly in L∞(−T0,T0;L
2(RN))

and in Lr(γ)(−T0,T0;L
2γ (RN)). (3.22)

Extending the interval step by step, we conclude that uε → u (ε → +0) strongly in
L∞(−T1,T2;L2(RN)) and in Lr(γ)(−T1,T2;L2γ (RN)) .

Step 3. Assume that uε �→ u (ε → +0) in C([−T1,T2];X1(RN)) . Then there exist
ε0 > 0 and bounded sequences {εm}m ⊂ (0,1) and {tm}m ⊂ [−T1,T2] such that

‖uεm(tm)−u(tm)‖X1 � ε0, m ∈ N.

We may also assume that εm → 0 and tm → t0[−T1,T2] (m → ∞) . Since u belongs
to C([−T1,T2];X1(RN)) , we have ‖u(tm)− u(t0)‖X1 < ε0/2 for sufficiently large m .
Therefore we obtain

‖uεm(tm)−u(t0)‖X1 >
ε0

2
.

On the other hand, it follows from Step 2 that ‖uεm(tm)− u(tm)‖L2 → 0 (m → ∞).
Since u ∈ C( I ;L2(RN)) , we have ‖u(tm)− u(t0)‖L2 → 0 (m → ∞). Thus we obtain
‖uεm(tm)−u(t0)‖L2 → 0 (m→ ∞). This means that uεm(tm)→ u(t0) (m→ ∞) strongly
in L2(RN) but uεm(tm) �→ u(t0) (m→∞) strongly in X1(RN) . To derive a contradiction
it remains to show that

uεm(tm) → u(t0) (m → ∞) strongly in X1(RN). (3.23)
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Next we show

‖P1/2
a(N)uεm(tm)‖2

L2 → ‖P1/2
a(N)u(t0)‖2

L2 (m → ∞). (3.24)

To end this, first we see from the conservation laws that

Eεm(uεm(tm)) = Eεm(u0) → E(u0) = E(u(t0)) (m → ∞). (3.25)

Next we prove
Gεm(uεm(tm)) → G(u(t0)) (m → ∞). (3.26)

Applying (3.10) we calculate

|Gεm(uεm(tm))−G(u(t0))|
� |Gεm(uεm(tm))−Gεm(u(t0))|+ |Gεm(u(t0))−G(u(t0))|
� CM4 ‖k− kR‖Lβ

x (Lα
y )

+RM3 ‖uεm(tm)−u(t0)‖L2

+ |Gεm(u(t0))−G(u(t0))|
→CM4 ‖k− kR‖Lβ

x (Lα
y )

(m → ∞).

Since R > 0 is arbitrary, (K2) implies (3.26). Now we can write as for ϕ ∈ X1(RN)

Eε(ϕ) =
1
2
‖P1/2

a(N)ϕ‖2
L2 +Gε(ϕ), E(ϕ) =

1
2
‖P1/2

a(N)ϕ‖2
L2 +G(ϕ). (3.27)

Combining (3.25) and (3.26) into (3.27) we obtain (3.24).
On the other hand, by the boundedness of ‖uεm(tm)‖X1 there exist v∈X1(RN) and

a weak convergent subsequence {uεm( j) (tm( j))} j such that uεm( j) (tm( j)) → v ( j → ∞)

weakly in X1(RN) . Since uεm( j) (tm( j))→ u(t0) ( j → ∞) strongly in L2(RN) , we obtain

uεm( j) (tm( j)) → u(t0) ( j → ∞) weakly in X1(RN) . Therefore from the weak conver-

gence in X1(RN) of {uεm( j) (tm( j))} j to u(t0) and the convergence of the corresponding
norms we conclude (3.23), a contradiction. �

Now we are the final position to prove the virial identities for (CP)a (a = a(N)).
Since the strong convergence in X1(RN) and ‖uε(t)‖X1 is uniformly bounded in t ∈
[−T1,T2] and ε , we see from the dominated convergence theorem implies that if u0 ∈
Σ1∗(RN) , then

‖xu(t)‖2
L2 = ‖xu0‖2

L2 +4t Im
∫

RN
xu0 ·∇u0 dx+

∫ t

0
(t − s)V(uε(s))ds,

where

V (v) := 8‖P1/2
a(N)v‖2

L2 −2
∫∫

RN×RN
k̃(x,y)|v(x)|2 |v(y)|2 dxdy

(see [14, Remark 2.1]). Thus we obtain

d2

dt2
‖xu(t)‖2

L2 = V (u(t)).
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REMARK 3.4. We consider the nonlinearity as in Example 3.1. We obtain

d2

dt2
‖xuε,a(t)‖2

L2 = 8‖P1/2
a uε,a(t)‖2

L2 −8N
∫

RN
F(|ρε ∗ uε,a(t)|)dx

+4N
∫

RN
|ρε ∗ uε,a(t)|g(|ρε ∗ uε,a(t)|)dx

−8Re
∫

RN
ρ̃ε ∗ uε,a(t)g(ρε ∗ uε,a(t))dx

and

d2

dt2
‖xuε(t)‖2

L2 = 8‖P1/2
a uε(t)‖2

L2 −8N
∫

RN
F(|ρε ∗ uε(t)|)dx

+4N
∫

RN
|ρε ∗ uε(t)|g(|ρε ∗ uε,a(t)|)dx

−8Re
∫

RN
ρ̃ε ∗ uε(t)g(ρε ∗ uε(t))dx.

Thus we see from ρ̃ε ∗ f → 0 (ε → +0) strongly in Lq(RN) (1 � q < ∞) that

d2

dt2
‖xu(t)‖2

L2 = 8‖P1/2
a u(t)‖2

L2 −8N
∫

RN
F(|u(t)|)dx+4N

∫
RN

|u(t)|g(|u(t)|)dx.

REMARK 3.5. We consider the nonlinearity as in Example 3.2. We obtain

d2

dt2
‖xuε,a(t)‖2

L2 = 8‖P1/2
a uε,a(t)‖2

L2 −4Nλ
∫

RN

|ρε ∗ uε,a(t)|p+1

(|x|2 + ε)r/2
dx

+8λ
∫

RN

(N− r)|x|2 +Nε
(p+1)(|x|2 + ε)r/2+1

|ρε ∗ uε,a(t)|p+1 dx

−8λ Re
∫

RN
ρ̃ε ∗ uε,a(t)ρε ∗ uε,a(t)

|ρε ∗ uε,a(t)|p−1

(|x|2 + ε)r/2
dx

and

d2

dt2
‖xuε(t)‖2

L2 = 8‖P1/2
a uε(t)‖2

L2 +4Nλ
∫

RN

|ρε ∗ uε(t)|p+1

(|x|2 + ε)r/2
dx

−8λ
∫

RN

(N− r)|x|2 +Nε
(p+1)(|x|2 + ε)r/2+1

|ρε ∗ uε(t)|p+1 dx

−8λ Re
∫

RN
ρ̃ε ∗ uε(t)ρε ∗ uε(t)

|ρε ∗ uε(t)|p−1

(|x|2 + ε)r/2
dx.

Thus we see from ρ̃ε ∗ f → 0 (ε → +0) strongly in Lq(RN) (1 � q < ∞) that

d2

dt2
‖xu(t)‖2

L2 = 8‖P1/2
a u(t)‖2

L2 +
4λ (Np−N +2r)

p+1

∫
RN

|u(t)|p+1

|x|r dx.
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3.1. Typical examples of the virial identity for (CP)a with a = a(N)

(V1) g(u) := λ |u|p−1u (λ ∈ R , 1 � p < (N +2)/(N−2))

d2

dt2
‖xu(t)‖2

L2 = 8‖P1/2
a(N)u(t)‖2

L2 +
4λN(p−1)

p+1

∫
RN

|u(t)|p+1 dx

= 16E(u(t))+
4λ (Np−N−4)

p+1

∫
RN

|u(t)|p+1dx; (3.28)

(V2) g(u) := λ |x|−r|u|p−1u (λ ∈ R , 0 < r < 2, 1 � p < (N +2−2r)/(N−2))

d2

dt2
‖xu(t)‖2

L2 = 8‖P1/2
a(N)u(t)‖2

L2 +
4λ (Np−N +2r)

p+1

∫
RN

|u(t)|p+1

|x|r dx

= 16E(u(t))+
4λ (Np−N−4+2r)

p+1

∫
RN

|u(t)|p+1

|x|r dx; (3.29)

(V3) g(u) := λ (|x|−γ ∗ |u|2)u (λ ∈ R , 0 < γ < min{N,4} )

d2

dt2
‖xu(t)‖2

L2 = 8‖P1/2
a(N)u(t)‖2

L2 +2λ γ
∫∫

RN×RN

|u(t,x)|2 |u(t,y)|2
|x− y|γ dxdy

= 16E(u(t))+2λ (γ −2)
∫∫

RN×RN

|u(t,x)|2 |u(t,y)|2
|x− y|γ dxdy; (3.30)

(V4) g(u) := λu |x|−α [|x|−β ∗ (|x|−α |u|2)] (λ ∈ R , α > 0, β > 0, 0 < 2α + β <
min{N,4} )

d2

dt2
‖xu(t)‖2

L2

= 8‖P1/2
a(N)u(t)‖2

L2 +2λ (2α + β )
∫∫

RN×RN

|u(t,x)|2 |u(t,y)|2
|x|α |x− y|β |y|α dxdy

= 16E(u(t))+2λ (2α + β −2)
∫∫

RN×RN

|u(t,x)|2 |u(t,y)|2
|x|α |x− y|β |y|α dxdy. (3.31)

4. Applications

4.1. Blow-up in finite time

THEOREM 4.1. Let a = a(N) and u0 ∈ Σ1∗(RN) with E(u0) < 0 . Assume either
that

(B1) g satisfies (N1), (N2), and 2(N +2)F(x)−N x f (x) � 0 for x > 0;

(B2) g(u) = λ |x|−r|u|p−1u with λ < 0 , 0 < r < 2 , and 1+(4−2r)/N < p < 1+(4−
2r)/(N−2);
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(B3) g(u) = uK[k](|u|2) , where k satisfies (K1), (K2), (K3), and

k(x,y)+
1
2
k̃(x,y) � 0.

Then there exist T1, T2 > 0 such that the unique local weak solution u∈C( I ;X1(RN))∩
C1( I ;X−1(RN)) to (CP)a is exist if I ⊂ (−T1,T2) and u satisfies

lim
t→−T1+0

‖(1+Pa(N))
1/2u(t)‖L2 = ∞ = lim

t→T2−0
‖(1+Pa(N))

1/2u(t)‖L2 , (4.1)

that is, the local weak solution blows up in finite time and hence cannot extend globally
in time.

Proof. Assume that a local solution u ∈C([−T,T ];X1(RN)) to (CP)a can be ex-
tended globally in time. Then we see that

ϕ(t) := ‖xu(t)‖2
L2 � 0 ∀ t ∈ R.

The virial identity for (CP)a and the assumption imply that ϕ ′′(t) � 16E(u0) < 0. Thus
we obtain

ϕ(t) � ‖xu0‖2
L2 + ϕ ′(0)t +8E(u0)t2 =: ψ(t).

Since E(u0) < 0, we can select T1,T2 > 0 such that ψ(−T1) < 0 and ψ(T2) < 0.
Hence φ(−T1) < 0 and φ(T2) < 0; this is a contradiction. Note that the last assertion
(4.1) follows from [2, Remark 3.1.6 (ii)]. �

4.2. Existence of scattering states

Next we consider the asymptotic completeness for (CP)a with a = a(N) . Define

Q(u;τ) :=
∫

RN

[∣∣∣ x
2
u+ iτ∇u

∣∣∣2 − (N−2)2

4|x|2 τ2|u|2
]
dx.

We see that

Q(u;τ) = τ2 ‖P1/2
a(N)u‖2

L2 − τ Im
∫

RN
xu ·∇udx+

1
4
‖xu‖2

L2 . (4.2)

Applying Lemma 3.1 we obtain

|Q(u;τ)| � τ2 ‖P1/2
a(N)u‖2

L2 + |τ|‖P1/2
a(N)u‖L2 ‖xu‖L2 +

1
4
‖xu‖2

L2

=
(1

2
‖xu‖L2 + |τ|‖P1/2

a(N)u‖L2

)2
.
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On the other hand, Q is deduced by ‖P1/2
a · ‖2

L2 :∥∥∥P1/2
a(N)

[
exp

( |x|2
4iν

)
u
]∥∥∥2

L2
=

∫
RN

[∣∣∣∇[
exp

( |x|2
4iν

)
u
]∣∣∣2− (N−2)2

4|x|2
∣∣∣exp

( |x|2
4iν

)
u
∣∣∣2]dx

=
∫

RN

[∣∣∣exp
( |x|2

4iν

)[ x
2iν

u+ ∇u
]∣∣∣2− (N−2)2

4|x|2 |u|2
]
dx

=
1

ν2

∫
RN

[∣∣∣ x
2
u+ iν∇u

∣∣∣2− (N−2)2

4|x|2 ν2|u|2
]
dx =

1
ν2 Q(u;ν).

THEOREM 4.2. Assume either that

(A1) g(u) = λ |u|p−1u with λ > 0 and 1+2/N < p < 1+4/(N−2);
(A2) g(u) = λ |x|−r|u|p−1u with λ > 0 , 0 < r < 2 , and 1+(2−2r)/N < p < 1+(4−
2r)/(N−2);
(A3) g(u) = λ (|x|−γ ∗ |u|2)u with λ > 0 and 1 < γ < min{N,4};
(A4) g(u)= λu |x|−α [|x|−β ∗(|x|−α |u|2)] with λ > 0 , α > 0 , β > 0 , and 1 < 2α +β <
min{N,4} .

Then for every u0 ∈ Σ1∗(RN) there uniquely exists (u+,u−) ∈ L2(RN)2 such that⎧⎪⎨⎪⎩
lim
t→∞

exp(itPa(N))u(t) = u+ strongly in L2(RN),

lim
t→−∞

exp(itPa(N))u(t) = u− strongly in L2(RN).
(4.3)

Here u(t) ∈ C(R;X1(RN))∩C1(R;X−1(RN)) is the unique global solution to (CP)a

with a = a(N) and u(0) = u0 .

Proof. We divide the proof into three steps.

Step 1. First we consider the pseudo-conformal transform

(C u)(t,x) := (1− t)−N/2u
( t

1− t
,

x
1− t

)
exp

( −i|x|2
4(1− t)

)
. (4.4)

Here v(t,x) := (C u)(t,x) satisfies iv′ = Pa(N)v+(1− t)ωg(v) . Note that G(u) satisfies
the convexity type inequality:∣∣∣∫

RN
g(u)vdx

∣∣∣ � qG(u)1−1/qG(v)1/q, G(u) ≡ 1
q

∫
RN

g(u)udx. (4.5)

Here ω and q are

(A1) ω = N(p−1)/2−2, q = p+1;

(A2) ω = N(p−1)/2+ r−2, q = p+1;

(A3) ω = γ −2, q = 4;

(A4) ω = 2α + β −2, q = 4.
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Note that it is sufficient to prove that there exists v+ ∈ L2(RN) such that

v(t) → v+ (t → 1−0) strongly in L2(RN). (4.6)

Step 2. We show that for 0 < t < 1

‖P1/2
a v(t)‖2

L2 �
{

(1− t)ω −1 < ω � 0,

1 ω > 0,
(4.7)

G(v(t)) � 1. (4.8)

To end this we define another energy function.

E1(t) :=
1
2
‖P1/2

a(N)v(t)‖2
L2 +(1− t)ωG(v(t)). (4.9)

Note that E1(t) = E(v(t)) if ω = 0. Since v = C u and u satisfies (CP)a with a =
a(N) , we see from (4.4) and (4.9) that

E1(t) =
1
8
‖xu(σ(t))‖2

L2 +
(1− t)−2

2
‖P1/2

a(N)u(σ(t))‖2
L2

− (1− t)−1

8
d

dσ
‖xu(σ)‖2

L2

∣∣∣
σ=σ(t)

+ (1− t)−2G(u(σ(t)))

= (1− t)−2E(u(σ(t)))+
1
8
‖xu(σ(t))‖2

L2 − (1− t)−1

4
d

dσ
‖xu(σ)‖2

L2

∣∣∣
σ=σ(t)

where σ(t) := t/(1− t) . Hence we calculate the derivative of E1 by using σ ′(t) =
(1− t)−2 and the virial identity (See Section 3.1):

d
dt

E1(t) = 2(1− t)−3E(u0)− (1− t)−3

8
× d2

dσ2 ‖xu(σ)‖2
L2

∣∣∣
σ=σ(t)

= 2(1− t)−3E(u0)− (1− t)−3
[
‖P1/2

a(N)u(σ(t))‖2
L2 +(ω +2)G(u(σ(t)))

]
= 2(1− t)−3E(u0)−2(1− t)−3E(u(σ(t)))−ω(1− t)−3G(u(σ(t))).

It follows from the conservation of laws that

d
dt

E1(t) = −ω(1− t)−3G(u(s(t))) = −ω(1− t)ω−1G(v(t)). (4.10)

If ω � 0, then E1(t) � E1(0) for 0 < t < 1. Hence we see (4.7). (4.7) yields (4.8).
On the other hand, it follows form (4.10) that

d
dt

[(1− t)−ωE1(t)] = −−ω
2

(1− t)−ω−1‖P1/2
a(N)v(t)‖2

L2 .

Hence we conclude from −1 < ω � 0 that (1− t)−ωE1(t) � E1(0) for 0 < t < 1. Thus
we obtain (4.7) and (4.8).
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Step 3. If ω � 0, then we see that

v ∈ L∞(0,1;X1(RN))∩W 1,∞(0,1;X−1(RN)) ⊂C([0,1];L2(RN))

and hence we simply obtain (4.6). Thus we assume −1 < ω � 0 and prove (4.6).
First we verify that

v(t) → v+ (t → 1−0) strongly in X−1(RN). (4.11)

We see from

‖g(v)‖X−1 = sup
{

Re
∫

RN
g(v)ψ dx;‖ψ‖X1 � 1

}
� sup

{
(p+1)G(v)1−1/qG(ψ)1/q;‖ψ‖X1 � 1

}
� G(v)1−1/q sup

{
G(ψ)1/q;‖ψ‖X1 � 1

}
� G(v)1−1/q. (4.12)

On the other hand, we have

‖Pa(N)v‖X−1

= sup
{

Re〈Pa(N)v,ψ〉X−1,X1 ;‖ψ‖X1 � 1
}

= sup
{

Re〈(1+Pa(N))
1/2v,(1+Pa(N))

1/2ψ〉L2 −Re〈v,ψ〉L2 ;‖ψ‖X1 � 1
}

� sup
{
‖v‖X1 ‖ψ‖X1 +‖v‖L2 ‖ψ‖L2;‖ψ‖X1 � 1

}
� 2‖v‖X1 . (4.13)

Combining (4.13) into (4.7) and (4.12) into (4.8) we obtain

‖v′(t)‖X−1 � ‖Pa(N)v(t)‖X−1 +(1− t)ω‖g(v)‖X−1

� ‖v(t)‖X1 +(1− t)ωG(v(t))p/(p+1)

� (1− t)ω/2 +(1− t)ω � (1− t)ω. (4.14)

Thus (4.7) and (4.14) yield that v ∈ W 1,1/(δ−ω)(0,1;X−1(RN)) ⊂ C([0,1];X−1(RN))
for sufficiently small δ > 0. Thus we see (4.11).

Next we confirm that

v(t) → v+ (t → 1−0) weakly in L2(RN). (4.15)

Since ‖v(t)‖L2 = ‖v0‖L2 for t ∈ [0,1) , for any sequence {t j} j ⊂ (0,1) there exists
v+1 ∈ L2(RN) and a subsequence { j(k)}k ⊂ { j} such that

v(t j(k)) → v+1 (k → ∞) weakly in L2(RN) ⊂ X−1(RN).
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Here (4.11) implies that v+1 = v+ . Thus (4.15) is verified. Hence it follows from (4.15)
that

〈v+− v(t),v+〉L2 → 0 t → 1−0. (4.16)

Next we show that

〈v+ − v(t),v(t)〉L2 → 0 t → 1−0. (4.17)

Let 0 < t < τ < 1. We calculate

|〈v(τ)− v(t),v(t)〉L2 | �
∫ τ

t
|〈v′(s),v(t)〉X−1,X1 |ds

� 2
∫ τ

t
‖P1/2

a(N)v(s)‖L2‖P1/2
a(N)v(t)‖L2 ds

+
∫ τ

t
(1− s)ω

∣∣∣∫
RN

g(v(s))v(t)dx
∣∣∣ds.

Here the convexity (4.5) implies that∣∣∣∫
RN

g(v(s))v(t)dx
∣∣∣ � qG(v(s))1−1/q G(v(t))1/q.

Applying (4.7) and (4.8) and letting τ → 1−0 we ensure (4.17):

|〈v+− v(t),v(t)〉L2 | �
∫ 1

t
(1− t)ω/2(1− s)ω/2 ds+

∫ 1

t
(1− s)ω ds � (1− t)ω+1.

Finally we conclude from (4.16) and (4.17) that

‖v+− v(t)‖2
L2 = 〈v+ − v(t),v+〉L2 −〈v+− v(t),v(t)〉L2 → 0 t → 1−0.

This is nothing but (4.6). �

REMARK 4.1. Under the conditions in Theorem 4.2 let u be a solution to (CP)a

with u(0) = u0 ∈ Σ1∗(RN) . Then w(t) := u(−t) satisfies (CP)a with w(0) = u0 . Hence
we conclude that the scattering states

lim
t→∞

exp(itPa(N))u(t) = u+ = Ω+u0 strongly in L2(RN),

lim
t→−∞

exp(itPa(N))u(t) = u− = Ω−u0 strongly in L2(RN)

satisfy Ω−ϕ = Ω+ϕ for ϕ ∈ Σ1∗(RN) .

REMARK 4.2. Assume either that

(A1a) g(u) = λ |u|p−1u with λ > 0 and 1 � p � 1+2/N ;

(A2a) g(u) = λ |x|−r|u|p−1u with λ > 0, 0 < r � 1 and 1 � p � 1+(2−2r)/N ;

(A3a) g(u) = λ (|x|−γ ∗ |u|2)u with λ > 0 and 0 < γ � 1;
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(A4a) g(u) = λu |x|−α [|x|−β ∗ (|x|−α |u|2)] with λ > 0, α > 0, β > 0 and 0 < 2α +
β � 1.

Then if u0 ∈ Σ1∗(RN) satisfies

lim
t→∞

exp(itPa(N))u(t) = u+, strongly in L2(RN),

lim
t→−∞

exp(itPa(N))u(t) = u− strongly in L2(RN)

for some u+,u− ∈ L2(RN) , then u+ = 0 = u− and hence u0 = 0. Therefore (CP)a

with a = a(N) has no free scattering state; see e.g. [7, Theorem 3.1 (2)].

REMARK 4.3. Assume either that

(A1b) g(u) = λ |u|4/Nu with λ > 0;

(A2b) g(u) = λ |x|−r|u|(4−2r)/Nu with λ > 0 and 0 < r < 2;

(A3b) g(u) = λ (|x|−2 ∗ |u|2)u with λ > 0;

(A4b) g(u) = λu |x|−α [|x|−β ∗(|x|−α |u|2)] with λ > 0, α > 0, β > 0 and 2α +β = 2.

If u is a solution to iu ′ = Pa(N)u+ g(u) , then v(t,x) = (C u)(t,x) satisfies also iv ′ =
Pa(N)v+ g(v) . This problem has global unique solution v belongs to C(R;Σ1∗(RN))∩
C1(R;X−1(RN)) if v(T0) ∈ Σ1∗(RN) . Especially, we can put T0 = 1. Thus we can
construct wave operators W+ : u+ �→ u(0) and W− : u− �→ u(0) in Σ1∗(RN) such that

lim
t→∞

exp(itPa(N))u(t) = W+u+ strongly in Σ1
∗(R

N),

lim
t→−∞

exp(itPa(N))u(t) = W−u− strongly in Σ1
∗(R

N).

Note that W−ϕ = W+ϕ . Other nonlinearities seem to be applied another method. Par-
tial constructions are available in Suzuki [16] in Σ1(RN) for a > −(N − 2)2/4 with
(A3) (1 < γ < 2) applying the contraction method. The case a = a(N) is open.
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