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VIRIAL IDENTITIES FOR NONLINEAR SCHRODINGER EQUATIONS
WITH A CRITICAL COEFFICIENT INVERSE-SQUARE POTENTIAL

TOSHIYUKI SUZUKI

(Communicated by Pavel I. Naumkin)

Abstract. Virial identities for nonlinear Schrodinger equations with some strongly singular po-
tential (a|x|~2) are established. Here if a =a(N) := —(N —2)?/4, then Pyvy = —A+a(N)|x|?
is nonnegative selfadjoint in the sense of Friedrichs extension. But the energy class D((1+
PH(N))I/ 2) does not coincide with H'(RY). Thus justification of the virial identities has a lot of
difficulties. The identities can be applicable for showing blow-up in finite time and for proving
the existence of scattering states.

1. Introduction and main results

In this article we consider the following Cauchy problems for nonlinear Schrodinger
equations with inverse-square potentials

i% - (—A+ ﬁ)uﬁ-g(u) inRxRY, <,
u(0,x) = up(x) inRY,
where i =+/—1, N >3 and
a>a(N) ::_M' (L.1)
Here (1.1) is based on the nonnegative selfadjointness of P, := —A+alx| =2 in L?>(RN)

in the sense of Friedrichs extension, which is followed by the usual Hardy inequality
_ 2
(IS luHngmHVuan VfeH (RY),N=>3. (1.2)

By virtue of a > a(N) we see that D((1+ P,)'/?) coincides with H'(RV). Thus
a lot of studies of (CP), are available. Specifically for nonlinear problems, Okazawa—
Suzuki-Yokota[9] showed the global unique existence of (CP), with power-type non-
linearities under unsatisfactory conditions of a via the contraction methods. The worse
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assumption of a is removed in Okazawa—Suzuki—Yokota[10] by applying the abstract
energy methods. For Hartree type nonlinearities (in general non-local nonlinearities
with non-convolution) see Suzuki[13]. Moreover, a finite time blow-up for (CP), is
shown in Suzuki[l4]. On the other hand, the scattering problems of Hartree equa-
tions (g(u) := u(|x| =" *|u|?), 1 <y < max{N,4}) are considered in Suzuki [16] in the
weighted energy space X! (R") := H!(RV) N D(|x|). Whereas Zhang—Zheng [17] stud-
ied the scattering problems (especially construction of the wave operators in H'(RV))
of power type (g(u) := [u|P~'u, 14+4/N < p < 1+4/(N —2)) under the unsatisfac-
tory condition of a. Thus we cannot apply their methods to scattering problems for the
critical case @ = a(N).

On the other hand, we remark if « = a(N), then we see that the energy class
D((1+ Pyy))'/?) does not coincide with H'(RV). Now we write down the energy

space D((1+ Pyy))'/?) as X'(RY). The well-posedness for (CP), in X'(RY) is
shown in Suzuki [15] and he analyzed X' (R") spaces.

To observe the blow-up in finite time and the scattering problem we usually need
the virial identity. For example, if g(u) = A|u|P~'u (1 € R), then we can calculate
formally

4NA( WD) ey

2
1/2
() 172 = 81 P4 u(o) |7 + jay

d

dr? |
If a > a(N), then Suzuki [14] justified the virial identity for (CP),. But if a = a(N),
then we have never justified owing to the solvability that has not shown in H'(RV).
Thus we need to try the case a = a(N). Here we know H'(RV) c X' (RV) c H*(RV)
(0 < s < 1). Thus the approximated argument as in Suzuki [14] can be applicable even
in a = a(N). Here when we prove the convergence a — a(N) + 0, we need to prepare
for the Mellin transform argument as in Suzuki [15] (see Lemma 3.1 and (3.7) for useful
results in this article).

This paper is divided into four sections. In Section 2 we give some preliminary
results. Notations are prepared in Section 2.1. Sections 2.2 is devoted to the linear
operator —A + alx|~>. The virial identities for (CP), with a = a(N) is justified in
Section 3. We give some typical example for the virial identities in Section 3.1. In
Section 4 we apply the virial identities to two problems: blow-up in finite time (Section
4.1) and existence of scattering states (Section 4.2).

2. Notations and preliminaries
2.1. Notations
To simplify the notation, we write
P:=—A+alx| %, a>a(N)=—(N-2)?/4. 2.1)

Also we use the notation A(u) < B(u); an abbreviation of A(u) < CB(u), where C is
independent of u.
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LP(RN) is the usual Lebesgue space with norm

lullr = ([l ax) ", we @) (1< p <o),

|||z := esssup |u(x)], ue€L(RY).

Let p € [1,0]. Then p’ € [1,0] denotes the Holder conjugate p’:=p/(p—1). H'(RY)
is the usual L?-type Sobolev space with the norm

el g = (lullzs + 1Vl 32)', we H'(RY).
On the other hand, H~!(R") is the dual of H'(RV). Note that we have a usual triplet
HY(RY) c L2(RY) c HY(RY),

where the inclusions are continuous and dense. In particular, we have the Sobolev
embeddings

, 2N
H'(RY) c LIRN), LY (RY) c HTY(RY), 2<g¢g< v N3

H'(RN) coincides with the energy space D((1+P,)'/?) (a > a(N)). Here we de-
note the energy space D((1+ P,(y))"/?) as X' (RY). X~!(R") is the dual of X!(R").
As we see

H'RY) c x'(RY) c H¥(RY) (s<1).

In particular, applying fractional Sobolev inequality and [15, Theorem 3.2] we see that
forall u€ X'(RV) and 0 < s < 1

s/2
ol w2 < Cova l(=8)"2ull2 < Cova G |22 il

Note that we also obtain for all u € X' (RY) and 0 <s < 1

1/2

1—
aall o2 < CIE A+ Pauy) ™ a2 el 2

Define D(|x|) := {u € L*(RY);|x|u € L>(RV)}. Then we denote the weighted
energy spaces as

' RY) :=H'RY)ND(|x]), ZyRY):=Xx"(RY)ND([x)).
Let I C R be an open interval and Y be a Banach space. Then C(I;Y) is a
family of the continuous Y -valued function on 7. On the other hand, the vector-valued

Lebesgue space LP(I;Y) is equipped with norm

lllzorry = ey [l gy < o
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Moreover the vector-valued Sobolev space W' (I;Y) is equipped with norm

||u||W1~P(I;Y) = ”u”LI’(I;Y) + Hu/”LI’(I;Y) <o

Here u’ denotes the weak derivative of u respect to time variable 7 € I. Then it is
well-known that W''P(I;Y) € C(1;Y) for p > 1.

Strichartz estimates for exp(—itP,y)) are proved in Suzuki[15, Proposition 4.8].

LEMMA 2.1. Let N >3 and (pj,q;) be Schridinger admissible pairs (j =0,1,2),
ie.,

Pj

2 N N
52 pj>2,q;=22.
Then the following inequalities hold for ¢ € L2(RY) and ® € LP (R;L41(RV)):
[l exp(=itPy(n)) @l 1ro riz90) < C @1l 2, (2.2)

H/Ot exp(—i(t — )Py (s,x) ds 2.3)

LP2(R;L92) s¢ HcI)”L”l ]RL"I)

Here the end point (7,p) = (2,2N/(N —2)) is open.

2.2. Spherical harmonics decomposition

Next we consider the spherical harmonics decomposition; see [ 12, Chapter IV] for
details. A function Q: RN — C is said to be £-th solid harmonic if Q is harmonic
(i.e., AQ = 0) and a homogeneous polynomial of degree ¢ (i.e., Q(x) = |x|'Q(x/|x|)).
Let 2, be a family of £-th solid harmonic functions. Then 2y is a finite dimensional
vector space. Moreover, 2, has an orthogonal normal system {Y7  }:

9= Span{Y( k}k; / Y, kl )Y( kz( )dS( ) {(1) ]]: #iza
Let Q € 2; and f € L2(0,0). Then
f@) = x|~ VU2 E(x)0(x) € LA(RY).

In fact, we can calculate as follows:

Lalrrax= ([ 1owipas)( [ orar) <= o

Thus we define the subspace of L*>(RV) as

L2 (8Y) = Sl O Yis(0): o € (0., Yo € 21},
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In particular, L2 j(RY) = L2 ,(R"), the family of radially symmetric functions. Also
we define

L2,(RN) := P L2, (RY).
{>=d

Now we have the following (see e.g. [12, Lemma IV.2.18]).
PROPOSITION 2.2. Let £, ¢, {5 be nonnegative integers. Then one has

(i) L2 /(RN) is a closed subspace of L*(RN);
(i) L2, (RY) LLZ, (RN) if 6y # b, ie,

SIS dx=0 ¥ fi € 12, (RY), ¥ f € 12, (RY);

(iii) L2(RY) = @7 L2, (RY), i.e., for every f € L*(RN) there uniquely exists {fi} C
L*(RY) such that f; € L2 ,(RN) for ¢ € NU{0} and

f= 2 f¢  (spherical harmonics decomposition).
(=0
As seen in Suzuki [15], we have
—Af=Auf VfELLRY), (2.5)
Puf =Ayf VfeLZRY), (2.6)

where A = (N —2)/2 and

~ ~ — ~ 2— 2 ~
A\/f = _3}"2f_ N ’ 18rf+ ! rzzl fa (27)
wl) :=pr=~r+4¢. (2.8)
v(0) == v, = [(A+0)?+d]"% (2.9)

Next we introduce the Mellin transform.

DEFINITION 2.1. Let f be a complex-valued measurable function such that x7~! f(x) €
L'(0,00;C) for some y € R. Then the Mellin transform of f is defined as

AN = [ ) ar
In general, let f € [? (RN ) (N = 2). Then the Mellin transform of f is defined as

AW = [ (T ) ar

x|
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Note that . [r® f(r)|(z) = A [f(r)](z+ o) for oe € R. Next we see that
AM0rf1(z) = (1 —2)A[f](z—1).
As in Suzuki[15, (2.20)] (see also [11]) we have for v >0 and 6 > 0

I((z—A+Vv)/2)T(1-(z—0—-A1-V)/2)
I((z—o—2+Vv)/2)T(1—(z—A—V)/2)

where A = (N —2)/2.

MATf)(z) =2°

Here we have the Plancherel type equality

1

/Omf(s)msN_lds = —/_i///[f} (g +iy>¢///[g]<g+iy> dy

(see Suzuki[15, Lemma 2.5]).

3. Proof of the virial identities

First we consider the key inequalities.

(2.10)

M fl(z—0), (2.11)

(2.12)

LEMMA 3.1. Let a > a(N). Assume that ¢ is real-valued and radially symmet-

ric. Then
i [ @0 Vud| < 11+ Pl 2 [xu
R

(3.1)

Proof. Let u =Y u¢x(r)Y;x be a spherical harmonics decomposition. Then we

see that

P Vudr= 2 || a0 () A ar

By using (2.12) and (2.10) we obtain that

/0 U (1) (Byugy) (r) N dr

- % /:) parE (g + iy)//[rqou&k} (%v + iy) dy

i [ N ' N '
+ o /_wy///[w,k] <§ -1+ zy)//[qou&k] <E +1+ ,y> dy
N
- 511 +12.

Here I; is calculated

112/ r_lugﬁkr(pugﬁkrN_ldrzf (p(r)|ug’k(r)|2rN_ldr6R.
0 0

(3.2)

(3.3)
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Thus we have

Im /O U (1) (Bugs) () N dr = Imby

= %Re /_iy///[u&k} (%l -1+ iy)///[(pu/;7k} (g +1 +iy> dy. (3.4)
On the other hand, we see from (2.11) that
[Al/zf}( +ly>
o T(v=i)/2)T((v+ L +iy) /2) N
= ly)r((V—I—iy)/Z)l"((v—i-l—iy)/2) m<2 1+y>

Using I'(Z) = I'(z) we obtain

/Ow\Ai/zfler‘ldrzﬁ/_ vy )/// (ﬁ—l—i-zy))zdy. (3.5)

Applying (3.5) and (2.12) we calculate

LRe /jo v lug g (%v —1+ iy)///[(pu/),k} (g +1+ iy) dy

27t
Son [/ AT k](%—lﬂy)rdy} 1/2 [/_i)///[(pu/j7k]<%+1—|—iy>)2dy} 1/2
- /o ‘A%ﬂwqd" /O ru sV dr| 2
Therefore we have
im /: Q) (D) (r) P ]
< [/Ow \AL{?)ﬂZ,N—ldr} 1/2 [/()w‘r(pu£7k|2rN_1dr}1/2

= 1P e k¥ 2
Summing (3.6) over k and ¢ we conclude (3.1) from (3.2). [

(3.6)

REMARK 3.1. Let ¢(x) = 1. In a way similar to Lemma 3.1 we can conclude
that for all u, v € =} (RV)

‘/ Xl - Vvdx‘ ||quLz||P v||Lz+ HuHLszHLz. (3.7

Now we show the virial identities for (CP), with a = a(N). To end this we
consider approximated problems for (CP),:

Qg g a .
i 8? :(_A'FW)ug’a"'gg(ug’a) inR xRV,

g 4(0,x) = up(x) in RV,

(CP)¢a
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Here g, is approximation of g. g and g, satisfy weak closedness (see [10, (G5)]):

V(1) — v(t) (m — oo) weakly in L™ (—T,T;Xs),
8(vm(1)) — f(t) (m — eo) weakly” in L™(=T,T; Xs)

()@ dx=1m [ flepioya,

= 0=IlmIm [ g
m—oo RN

where X := H'(RY) (a>a(N))or X' (RV) (a=a(N)). Assume further that v,,(t) —
v(t) in C([~T,T];L*(RN)). Then f(¢) = g(v(t)).

We give three types of nonlinearities g and their approximations as we can con-
sider in this article.

EXAMPLE 3.1. Let g: C — C be power type nonlinearities so that
(N1) g(0) =0 and there exist p € [1,(N+2)/(N—2)) and K > 0 such that

lg(z1) — 8(z2)] S K(1+ 21| + |z2P N|z1 — 22| Vz1,22 € C;

(N2) g(x) €R (x>0) and g(e'?7) = ¢Pg(z) (z€C, 6 €R).

In such a case we define g¢(u) := pg * [g(pe * u)], where pg is the Friedrichs mollifier.
Moreover, the energy functionals of g and g, are

G(u) := RNF(|u(x)|)dx, Ge(u) = /RNF(|pg*u(x)|)dx,

where F' is the primitive integral of g:
X
F(x) ::/ g(s)ds Yx>0.
0
EXAMPLE 3.2. Let
gu) =4l uP e AER, 0<r<2, 1<p<(N+2-2r)/(N-2)).
In such a case we define
— 2 —r/2 p—1
ge(u) = A pex[(|x[7+ €)% |pe xulP™" (pe * u)].
Moreover, the energy functionals of g and g, are

)P+ [pe * ux)|P*!

6= [ O 4 Gy ma
=2 fo T P G =2 o ey

EXAMPLE 3.3. Let g(u) := uK[k](|u|?), where

KI() = [ kxS ) dy
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Here k satisfies three conditions:

(K1) k is a symmetric real-valued function, that is, k(x,y) = k(y,x) € R a.a. x,y € RV;

(K2) ke Lf(L;)—f—Lf(LS‘) for some o, B € [1,0] suchthat « < and o'+ B! <
4/N;

(K3) k(x,y) :=x- Vik(x,y) +y-V,yk(x,y) belongs to L;’;’(L;"H—L)IC3 (Lyﬁ‘) for some &, ff €
[1,00] such that & < 8 and &'+ B~! < 4/N.

Note that L (Ly') is the family of k(x,y) such that k(x, ) € L* (RV) a.a. x € RN with
(| 1 Cx, )| e HLﬁ < oo. In such a case we define g¢(u) := uKlke](|u|?), where

e(x.y) //RN v PeEE=E)Pe(y = mK(G, m)dS dn.

Moreover, the energy functionals of g and g, are

)= %//]RNXRNk(x’y)|u(x)|2|u(y)|2dXdy,
- %//]RNXRN ke (x,y) \u(x)|2 ‘M(y)|2dxdy,

REMARK 3.2. Condition (K2) implies that we can divide k into kg + (k — kg),
where

k(x,y) |k(x,y)| <R,
kR(xvy) = R k(x7y) > R7
—R k(x,y) < —R.

Here kg € L7 (L7) with HkRHL;’(L;?) <R and Hk—kR||Lﬁ(La) — 0 (R — o). Moreover,

define Lol 1 N
:[1—§(a+ﬁ>} € [1m> (3.8)
Then we have (see [13, Lemma 2.4]) if k € Lf (LS‘),
IKLF < Wkl g g Il f € LY(RY). (3.9)
By virtue of (3.9), (K1) and (K2) imply

|G(u) = G(v)|, |Ge(u) — Ge(v)] < CM* ||k — k|| +RM |lu—v]| 2 (3.10)

J740%2)
for every u, v € X' (RV) with ||lul|y1 <M, ||v|x1 <M (see [14, (2.13)]) and
Ge(9) = G(p) (e—0), @eX'(RY)

(see [14, Remark 2.2]).
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Here we give a plan to prove the virial identities for (CP), with a = a(N).

Stage 1. We construct the virial identities for (CP)¢, with a > a(N). This step has
already finished: see Suzuki [14].

Stage 2. To show ue , — e (a — a(N)+0) we need uniform boundednessin X! (RV).
Here u, is a solution to (CP)., with a = a(N). u is also satisfies a certain virial
identity.

Stage 3. Next we let € — +0. Applying the Strichartz estimates (2.2) and (2.3) we can
show uz — u. Since u satisfies (CP), with a = a(N), we can prove the desired virial
identity.

Before deriving the virial identity for (CP), with a = a(N) we calculate the first

derivative of |lxu(z)]]2, .

LEMMA 3.2. Let u € C([-T;,T2); X' (RY)) be a solutions to (CP), with a =
a(N) and up € ZL(RN). Then u belongs to C([—Ty,T»];ZL(RY)) and satisfies

%qu(t)Hiz :4Im/RN Vu(t) - xa(t) dx. 3.11)

Proof. Using assumption of g we can calculate

() o 0
1+5\x\2 m/ Vil 1—|—5\x\)]d

dt

Lemma 3.1 with ¢(x) = (1 + &|x|>)~2 implies that

<41 +Pa<N>>1/2”(t)“LZH%

2
12

2

‘dtH\/H%

Thus we see that

2| [ o) ]

1+ Olx|? 1122

1—|—5|)c|2

Letting 6 — 0 we conclude that

1
(e < ollzz +2] [ (s) s

In a way similar to the above we also obtain

)l = e <2 o) o

hence u is continuous in X! (RV) and satisfies (3.11). [
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Henceforth we prove the virial identities for (CP), with a = a(N) only the case
of nonlinearities as in Example 3.3. Other cases are similar ways.

Summary of Stage 1. Let ug € H'(RY) ¢ X'(R") and a > a(N). Then global weak
solution ug , € C(R;H'(RV))NCHR; HH(RY)) to (CP) ¢, with ug 4(0) = ug exists
uniquely. Also ug , satisfies the conservation laws

te.a(t)l| 2 = lluoll 2, Eea(ue(t)) = Eealuo) ViteR,
where

1/2

Eea(g )-=—||P ¢l7: +Ge(), ¢cH'(RY).

Here the virial identities for (CP) , (a > a(N)) is verified in Suzuki[14, Section 3]

2

d
s el = 8 P

1/2
Pt a(0)]12

2[R ylueat 0P uealry) Pdxdy Vi€ R,
RN xRN

where kg € L3(LY) and

Geloy)i= [[ | pelx=E)pely—mk(E m)d&dn
+//RNxRN[5s(x—(§)ps(y—n)+ps(x—(S)ﬁs(y—n)]k(é,n)dédn,
Pe(x) := N pe(x) +x- Ve (x).

Proof of Stage 2. First we show there exists ug such that ug , — ue (a — a(N)+0)
weakly in some sense. Applying the conservation laws we see that

1/2 1/2

| Pa ”e,a(t)”Lz | Pa MOHiz+2G£(”O)_2G£(”e,a(t))

Since G is continuous in L?(RY), there exists a non-decreasing function dg : (0,e0) —
(0,e0) suchthat |G¢(@)| < de(||@]|;2); in this case (Example 3.3) we have d¢ (|| @||,2) :=
(1/4) Hkg||L;o(L§¢) ||(pHi2 . Thus we conclude that

1/2 1/2

1P tte. ()17 < |IPa" w0l 7> +4de(|luol| 2) V1 €R.

On the other hand,

1/2

1/2
1P ool < [P 20ll2 V@ € H'(RY).

Combining these we obtain

1/2 1/2

1B,

uw()uL2 1P’ “uo||72 +4de(|Juoll ) VtER. (3.12)



338 TOSHIYUKI SUZUKI

On the other hand, we can see that

4l
(N—2)?

1/2
1Pavllgr < (1+ ) IR .

Putting v := ue 4(1) we obtain

4la] \1/2 1/2
IPatte.a(0) -1 < (1+ (N—2)2> (1 +Po)! e a1 2
4la] \1/2 1/2
< (14 i) " 1100+ R s+ ol 2)]

Also we can calculate

lge (te.a ()2 < de(llute.at) | 2) lte.a(t) |2 = de(lluoll 2) ol 2

where d(||@|2) = HkgHL;(L;)H(szZ. Thus we obtain for all € R

litg.a ()1 =1 < 1L+ Pa) ol 2 + Adte ([luoll 2)] /% + de([luol2) ol 2. (3.13)

Since X' (RY) c H~!(RY") is continuous, applying the Ascoli-Arzela type lemma (see
[2, Proposition 1.1.2]) we conclude that for any 7 > 0 there exist {a;}; C (a(N),0)
and ug(r) such that a; — a(N) (j — =) and

Uea,(t) = ue(t) (j—o°) Vi€ (~T,T) weaklyinX'(R").

Next we show that u, satisfies (CP), with a=a(N) and g = ge . Since ge(ue q, (1))
is uniformly bounded in L= (—T,T;L*(R"Y)), we see that 8e(Ueq;(t)) — fe(t) weakly”
in L°(—T,T;L*(RV)); alsoin L= (—T,T;X ' (RV)). By virtue of the weak closedness
of g¢ (see (GS5) in [13, Lemma 3.1]) we have

Im/RN fe(t)ue(r)dx = 0.
Thus we obtain
lue(@)17> = lluollj> = lluea(®)llfz V1€ (=T,T),
Weak convergence and the convergence of the corresponding norms imply that
Uga,(t) = ug(t) (j— o) Vte(=T,T) stronglyin L*(R").

Hence we conclude from the weak closedness of g (in a way similar to the verification
of (G5) of [13, Lemma 3.1]) that u. satisfies iué = Pa(N)ug + ge(ue) and

te.a, (1) = ue(t) (j — o) inC([=T,THLARY)).
Next we prove

Ug.a; (1) — ue(t) (j — o) strongly in X' (RV). (3.14)



Differ. Equ. Appl. 9, No. 3 (2017), 327-352. 339

The conservation of laws imply that

1L+ Po) e a(0) 17>

=2E; 4(teo(t)) —2Ge(ue (1))
=2F¢ 4(ug) —2Ge(ug o(t))
— 2E¢(up) —2Ge(ue(t)) (a— a(N)+0)

= 2E¢(ug(t)) — 2Ge(ue(t)) = || (1 + Pyw) " Pue (1)I7..
Moreover, we see that

limsup [|(1+Py))'Puea(t)]7: < limsup [[(1+Po)'2uea(r)]72
a—a(N)+0 a—a(N)+0

= [[(1+ P ute ()17
Thus the weak convergence implies (3.14).

Since the strong convergence in X'(RY) and |[ue 4, (t)||x1 is uniformly bounded
int € [-T,T], we see from the dominated convergence theorem implies that if uy €
! (RN), then

!
e 1) = ol 3+ dtm | 575 g+ (o= Ve s)) s,

where
— 12 2 ‘. 2 2
Ve):=8IP IR =2 [[ | Kl WP () dudy.
Thus we obtain

— |xue (1)]75 = Ve (ue (1)) (3.15)

REMARK 3.3. Let ug € X'(RY) in general. We can apply the continuous depen-
dence of initial values. First set {ugm}m C Z'(RY) such that ug, — uo strongly in
T (RV). Next let ug , be a unique solution to (CP) ., with ug ,u(0) = ugy, . Then ug
satisfies

[l xue m(t) Hiz
— |lxttom 22 + 4rIm /R Tl Vi dx -+ /0 (1= $)Ve (e m(s)) ds.
Since the continuous dependence and the dominated convergence theorem imply that
/O (1= $)Velutem(s))ds — /O (1 = 5)Ve(ue(s)) ds
uniformly in # € [—T,T]. (3.7) yields that

Im/ xu0m-Vu0mdx—>Im/ xug - Vuodx.
RN RN

Hence we conclude the virial identity (3.15) even when ug € X 1 (RN ).



340 TOSHIYUKI SUZUKI

Proof of Stage 3. First we show the uniform convergence of us (¢ — +0); see also
[14, Lemma 3.2].

PROPOSITION 3.3. Let u € C([~Ty,Ta; X' (RN)) be a local weak solution to
(CP), in (—Ti,T>). Then ug — u (& — +0) strongly in C([—T1, T); X (RV)).

Proof. Step 1. First we show the uniform boundedness of ue :
lue@)|lx1 <My Ye>0,Vtel|-T,T]. (3.16)
Let M > ||up|| 1 . Define

T :=sup{||uc(t)|lx: <M, t € [-T,T]}.
>0

If 7¢ = oo, then we have proved the uniform boundedness. Thus we assume Tz < oo.
Since ue € C(R; X' (RN)), 1. satisfies
e (Te)|[x1 =M or [Jue(—7e) [ x1 = M. (3.17)

By using the conservation laws we have

e (1)[[%1 = lluol|%1 = 2[Ge (o) — G (ue (1))] (3.18)
<2CM* ||k — Kell p o T 2RM? [Jug — ue (1) 2

On the other hand, we see from the verification of (G2) in [13, Lemma 3.1] (or [13,
Lemma 2.5]) that

| Patte () |-+ + [luee (1) K ke] (uee (1) ) |-
Jue (1) |1+ Ro |ue (1) |72 + C Ik — ke | (w9 lete () I3

M?=:C(M) V1t€[T, 1|

lue(®)llx-1 < |
<|
<M+ Rol|uol|3> +C [k — kroll )
Applying [2, Lemma 3.3.6] we obtain

e (1) — ue(s)| 2 < V2CM) |t — 5|2, 1,5 € [—Te, Te). (3.19)

Combining (3.19) with setting s = 0 into (3.18), we see that

e 1) — ol < 2C M [k — el g, +2VZRMPCOM) 12

Letting t = +1. and applying (3.17) we have

3M%—8CM* ||k — kg
A2 [ ||Lﬁ 9 o
8vV2RM3C(M)
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note that ||k — kg|| s @)~ 0 (R — o) implies the positivity. Thus we obtain (3.16) by
putting ‘

3-8CM?||k— kRHLﬁLa

TM::[ 8v2RMC(M) >0

Step 2. Next we show that ue — u (&€ — 0) strongly in L=(—T1,T; L*>(RV)) and in
L' (=T, T5; L% (RV)), where 7 is defined in (3.8) and r(y) := 4y/[N(y—1)]. Note
that u and u, satisfy the following integral equations:

ult) = expl—it Py o~ || exp(—i(t=5)Puy o) KR u(s) ) s,
uelt) = exp(—itPugy o~ | exp(=ilt —5)Pun e (s) KIke () ) .

We divide u(t) — ue(t) into Jy(r;€) + Jo(1;€) + J3(t; €),, where

1(138) i= =i [ expl(=i(t = 5)Pa) u(s) (KIWa9) ) — Kikel (u(5))) } s,
Tise) 1= i [ exp(=i(t = 5)Pu{(uls) — el ) Klke () s,
Iu(t3€) i= =i [ expl(—i(t = 5)Pap) e 5) Kl (1s) P~ () s

For simply we denote || f|;z(z0) := || fllz7(—7,7:10)- Applying the Strichartz estimates
(2.3) we have the estimate for J;

[1llzr(zey < Ce, (ki — (kr)e] ([u*) 11 12
+ Cyyo K [(k— kg) — (ke — (kg)e)] (|uf® Mt

Applying (3.9) and the dominated convergence theorem, we see that
1]z oy — 0 (€ — +0). (3.20)
For J, applying the Strichartz estimates we have

121l 27 (e
SCor H(”_”e)K[(kR)S](‘”F)HL' (L%)
+C(y) o1 ( — e) Klke — (kr)e](|u® M,
< 2Cun eRT [l B gyl — a2 12

+Cyp (2T) 72 |k — krll g 1g) IIMIIL«» poy [l —uel] ) (g2n)"
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In a way similar to J>, we can evaluate J3 as follows:

131l 27 (20)
< Cone e K (kr)e) (> — ute P 1312,
+ g lte Klke = (ke = e )y
< 2CRT ||”8||L;°(L2)(||”||L;°(L2) + H”SHL;“(LZ))HM - ”£||L;°(L2)

+Cr(y),r(2T)1_2/r(Y) Hk_kRHLE %) HMEHL‘”(LZV)
x (HuHL;'“(LZY) + HuSHL;”(LZY)) | — ’48” W (127"
Set (7,p) = (0,2) and (r(y),27). Now we put

M := maX{Hu0||L27 HuHU(Y)(ij;LZY)? SE)P ) ”uSHU(Y)(fT’T;LZV)} < oo,
£€(0,1

Take Ty € (0,7) such that 6(Ce e+ Ce. () ) RM>Ty < 1/2 and 3(Cy(y) o +Criy) r(y)) Ik —
kRHL/} ) M?(2T)'~2/"") < 1/2. Then we obtain
([ = well i (g, yoazry + 11— el L= 7:22)

<2 HJI ||L°°(7T0,T0;L2) +2 ||Jl HU(V)(_TO,TO;LZW (3.2D)

It follows from (3.20) that
ue —u (€ — +0) strongly in L= (—Tp, To; L* (RY))
and in L") (= Ty, To; L*" (RV)). (3.22)

Extending the interval step by step, we conclude that ue — u (¢ — +0) strongly in
L= (=Ty, To; L2(RV)) and in L' (=T}, T LY (RV)).

Step 3. Assume that ue 4 u (¢ — +0) in C([~T;,T); X' (RY)). Then there exist
& > 0 and bounded sequences {&}n, C (0,1) and {ty}n C [~T1,T2] such that

e, (tm) — u(tm) || x1 > €, meN.

We may also assume that &, — 0 and #,, — t9|—T;,T2] (m — ). Since u belongs
to C([~T1,T2); X' (RN)), we have |[u(tn) — u(to)|x1 < &2 for sufficiently large m.
Therefore we obtain
&
letey, (1) — ut0) 11 > =

On the other hand, it follows from Step 2 that |jug,, (fn) — u(tw)l|;2 — 0 (m — o).
Since u € C(1;L*(R")), we have |lu(ty) —u(to)||;2 — 0 (m — o). Thus we obtain
||ug, (tm) u(to)||;2 — 0 (m — oo). This means that ug,, (t,,) — u(tp) (m — o) strongly
in L?(RN) but ug,, (1) /> u(ty) (m — o) strongly in X' (R"). To derive a contradiction
it remains to show that

ue,, (tm) — u(tg) (m — o) strongly in X ' (R"). (3.23)
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Next we show

1/2 1/2

1P,/ julto)llf  (m— ). (3.24)

To end this, first we see from the conservation laws that
Eg, (ug, (tm)) = Eg,, (o) — E(uo) = E(u(tg)) (m — oo). (3.25)

Next we prove

wytten ()72 = 1B,y

Ge, (g, (1m)) — G(ulto))  (m — o). (3.26)
Applying (3.10) we calculate

|G, (e, (m)) — G(u(to))|
< |G, (ug, (tm)) = Ge,, (u(10))| +|Ge,, (u(t0)) — G(u(to))|

SCOMP =kl p ) + RM e, () = u(t0) | 2
+|Ge, (u(t0)) — Glulto))
= CM* k=kell p gy (m— o).

Since R > 0 is arbitrary, (K2) implies (3.26). Now we can write as for ¢ € X' (R")

1/2 1/2

Ee(9) = —HP 10l +Gelo), E(p)= —||P

Combining (3.25) and (3.26) into (3.27) we obtain (3.24).
On the other hand, by the boundedness of ||ug,, (1) ||x1 there exist v € X! (RY) and
a weak convergent subsequence {ugm(j) (tm(j))}; such that e,y i (tw(j)) = v (J — )

(P||L2 +G(9). (3.27)

weakly in X' (RY). Since ug,, (t(;)) — u(to) (j — o) strongly in L*(RY), we obtain
e, ; (tm(j)) — u(to) (j — o) weakly in X'(RY). Therefore from the weak conver-
gence in X' (RV) of {ugm(j) (tm(j))}; to u(to) and the convergence of the corresponding
norms we conclude (3.23), a contradiction. [

Now we are the final position to prove the virial identities for (CP), (a = a(N)).
Since the strong convergence in X' (RY) and |lug(t)||y1 is uniformly bounded in 7 €
[-T1,T»] and €, we see from the dominated convergence theorem implies that if ug €
TL(RN), then

t
()2 = ||xu0H%2+4tIm/RNx_uo-Vuodx+/0 (t — )V (ue(s)) ds,
where
1/2
V) =8By EIE =2 [ K@ o) P dxdy

(see [14, Remark 2.1]). Thus we obtain

2
(e} 2 = v (u()
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REMARK 3.4. We consider the nonlinearity as in Example 3.1. We obtain

d? 1/2
e a0) 172 = 812"

ea(t)32 =8N [ F(lpewtea(r) )
4N [ Ipe st (1) 8(1pe # (1) )
—8Re /RN Pe * e o(t) §(Pe * Ue o(2)) dx

and

2
Sl O3 = 812 w03 =8N [ F(lpewue(r)

4N [ lpe e (1) 8(1pe # (1) )
- SRG/RN Pe * ue (1) g(pe * ug (1)) dx.

Thus we see from pg * f — 0 (€ — +0) strongly in L¢(R"Y) (1 < g < o) that

1/2
& )32 = 8IP ) s 8N [ F(uto))as +48 [ | ()]0 .
REMARK 3.5. We consider the nonlinearity as in Example 3.2. We obtain

e * Ue ot )‘pH

d
(P ey

O el = 8128 e — a2 [P

(N —r)|x|? + Ne
RV (p+ 1)(]x* +g)7/2H!

_8ARe / B # ool pe * tp.alt)
RN ’ ’

+ 81 \pg*uw(t)\pde

|pe * e a(1)]P!
(|x[>+&)r/2

and

_ 1/2 |pe * ue (1) P!
dﬂ o) = 81 ) s +48 / (< +e)72

2
— + N¢g
—8%/ ( r)|x| i 17+1d

RN (p—|—1)(|x|2+g)r/2+1|p8*u8( ) x

|pe * ue(1)]P !

—87LRe/ De * Ue(t) pe * ug(t
RNpg I/lg( )pg Mg( ) (‘x‘2+£)r/2
Thus we see from pg * f — 0 (€ — +0) strongly in L(RY) (1 < g < o) that

d? 1/2
()72 = 8112a*u()|}2 +

47L(Np—N—|—2r)/ \u(t)|1’+1dx
p+1 RV x| '
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3.1. Typical examples of the virial identity for (CP), with a = a(N)

(V1) g(u) == Aul/P"'u (AL€R, 1 <p< (N+2)/(N—-2))

d? 1/2 4AN(p—1)
t2||x”( )i = BB yult )7 +T/RN ()P dx
40 (Np—N—4)

— 16 E(u()) + /RN (1) dx; (3.28)

(V2) g(u) = Alx| "[ulPlu (AER,0<r<2, 1< p<(N+2-2r)/(N—2))

d? 12 o AAWNp=N+2r) [ |u()|P*!
dt2 ||xu( )||L2 8 HP (Z)HLZ + p+1 ~/RN |x|r dx
4 442 p+l
— 165 () + AP I [ MOT g o)
p+1 ]RN ‘x‘r

(V3) g(u) := A(|x|7"* |ul*)u (A €R, 0 <y < min{N,4})

d 2 12 o et )| Ju(e,») P
)3 =8P B+ 2ay [ dedy

(%) [u(t, ) P
—16E 22(y—2) // dxdy, (330
wo)+22(r-2) [ IS day: 630

(V4) g(u) == Aulx| *[|x| P % (|x| *[u*)] (A €R, >0, B>0, 0<20+B <
min{N,4})

d2
et 2
1/2
=8[BI +22a+B) [

Ju(t, ) u(r, y)

dxd
Y o fe— Byl

= 16E(u(r)) + 24200+ B — 2//RN ue PP (3.31)

xRN x| [x — y|P |y

4. Applications

4.1. Blow-up in finite time

THEOREM 4.1. Let a = a(N) and ug € ZL(RN) with E(up) < 0. Assume either
that
(B1) g satisfies (N1), (N2), and 2(N +2) F(x) —Nxf(x) > 0 for x> 0;

(B2) g(u) = Alx|""|ulP~lu with L <0, 0<r<2,and 1+ (4—2r)/N<p <1+ (4—
2r)/(N—2);
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(B3) g(u) = uK[k](|u|?), where k satisfies (K1), (K2), (K3), and

1~
k(x7y) + Ek(xuy) = 0.

Then there exist Ty, Ty > 0 such that the unique local weak solution u € C (LXY(RM)N
CHI;X Y (RN)) to (CP),, is exist if I C (—T1,T») and u satisfies

fim (U Page) 2u@) |2 = 0 = lim 10+ Pao) P2u®llz, - @D

t——T1+
that is, the local weak solution blows up in finite time and hence cannot extend globally

in time.

Proof. Assume that a local solution u € C([—T,T]; X' (R")) to (CP), can be ex-
tended globally in time. Then we see that

@(t) :=|lxu(t)|;, >0 VieR

The virial identity for (CP),, and the assumption imply that ¢” (z) < 16E(ug) < 0. Thus
we obtain

(1) < [lxuol[2 + @' (0)¢ +8E (uo)e* =: (1)

Since E(up) < 0, we can select Tj,7> > 0 such that w(—T) < 0 and y(T») < 0.
Hence ¢(—71) <0 and ¢(72) < O; this is a contradiction. Note that the last assertion
(4.1) follows from [2, Remark 3.1.6 (i1)]. [

4.2. Existence of scattering states

Next we consider the asymptotic completeness for (CP), with ¢ = a(N). Define

2 (N=2)?
O(u;7) := /RN H%u—FiTVu‘ — ( 4x2) 12\u|2
We see that
O(u;7) =17 le/z u||L2—‘L'Im/ i - Vudx—|— qu||L2 (4.2)

Applying Lemma 3.1 we obtain

1/2 1/2
0@ 7)| < 7 ([P g ulZ + 7l 1Py, uuLzuxu||Lz+ a2

2
1/2
= (gl +1llB2ulz)
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On the other hand, Q is deduced by ||Pa1/2 . Hiz :

2 2 92 2
it ewe (g ol = L 19 [ewe (5 ol [~ g levo ()

= o [ exp <%> [;—.vu—l-Vu} ’2— (v—2)" |u\2] dx

4iv 4|x/?
1
_ W/RN{

THEOREM 4.2. Assume either that

(A1) g(u) = AlulP~'u with A >0 and 1+2/N < p < 1+4/(N—2);

(A2) g(u) = Alx|"|ulP~tu with A >0, 0<r<2,and 1+ (2—2r)/N<p <1+ (4—
2)/(N-2);

(A3) g(u) = A(|x|77 % |u|*)u with A >0 and 1 < y < min{N,4};

(A4) g(u) = Au x|~ [|x| B (|x|~*|ul*)] with A >0, >0, B >0, and 1 <20+ <
min{N,4}.

X

2

2 (N—=2)? 1
u—i—ivVu‘ _(4x2) v2|u\2] dx:WQ(u;v).

Then for every ug € LL(RN) there uniquely exists (ui,u_) € L*(RN)? such that

tlim exp(it P,y )u(t) = uy strongly in L*(RN),
- (4.3)
lim exp(it Py Ju(t) = u— strongly in L*(RN).

f——oo

Here u(t) € C(R; X' (RV))NCH(R; X~ 1(RY)) is the unique global solution to (CP),,
with a = a(N) and u(0) = ug.

Proof. We divide the proof into three steps.

Step 1. First we consider the pseudo-conformal transform

(Cu)(1,x) == (1 —z)—N/zu(lL_t7 li_t) exp(4z1i|i|j)>. 4.4)

Here v(1,x) 1= (Cu)(t,x) satisfies iv' = P,v)v+ (1 —1)“g(v). Note that G(u) satisfies
the convexity type inequality:

| /R L gwrdx| <qG)' 16w, G(u)zé /R Jeadx. (45

Here w and g are

AD o=N(p—-1)/2—-2,q=p+1;
A2) o=N(p—1)/2+r—-2,g=p+1;
A3 o=y-2,9=4;

Ad) o =20a+p-2,g=4.
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Note that it is sufficient to prove that there exists v € L?>(R") such that

v(t) — vy (t —1—0) strongly in L*(RM). (4.6)

Step 2. We show that for 0 <7 < 1

1/2 (1-1)? —-1<w<0,
P, 4.7
[ sz{l o0 @7
<I. (4.8)
To end this we define another energy function.
_ Lypl/2 2 _\O
Ei(t) = HP WOl + (1 =0)°G()). 4.9)

Note that E1(r) = E(v(r)) if @ =0. Since v =%u and u satisfies (CP), with a =
a(N), we see from (4.4) and (4.9) that

B1(0) = Ssuto )+ LR o) s
-1
-C Ll + (-0 6(o0)
a1
= (1-0) B (o) + (o)~ L @)

where () :=1/(1 —1t). Hence we calculate the derivative of E; by using ¢’(r) =
(1 —1)72 and the virial identity (See Section 3.1):

(1-073 d?

LB =200 —1) B () - x|

dt =0 (1)
(1=1)E (o) = (1 =) 1Py u(0 (1) [12: + (@ +2)G(u(o (1))
(1=1)E(uo) = 2(1—1)E(u(c(1))) — (1 1) G(u(0(1))).
It follows from the conservation of laws that

d

S0 = ~0(1-)6us() = —o(-0°"'G0w).  @10)

If >0, then E|(r) < E(0) for 0 <7 < 1. Hence we see (4.7). (4.7) yields (4.8).
On the other hand, it follows form (4.10) that

2
2

d -0 1/2
L—1)"CE(1)] = ——~(1—1)"*"!||Pf 2.
S0 B 0] = (10 B0
Hence we conclude from —1 < @ <0 that (1 —¢)"“E; () < E;(0) for 0 <z < 1. Thus
we obtain (4.7) and (4.8).
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Step 3. If o > 0, then we see that
ve L0, X' (RM) nwh=(0, ;X 1(RY)) c ([0, 1]; L*(RY))

and hence we simply obtain (4.6). Thus we assume —1 < o < 0 and prove (4.6).
First we verify that

v(t) = vy (t —1—0) strongly in X 1(RM). (4.11)
We see from
/ gV vl <1}

(p+1)G0)'1G(y) /%y < 1}

lg()l[x-1 = sup

{re
{

< sup
<SGyl sup{G< W'yl <1
< Gv) e, (4.12)
On the other hand, we have
[ PaqvyVllx-1
= sup{Re (P n W) 1 i Wl <1}

{Re (14 Page)) 20, (14 Py) 2w 2 = Re ) 23 [yl < 1
sup{n L It IVl sl <1}
< 21vlxr- (4.13)
Combining (4.13) into (4.7) and (4.12) into (4.8) we obtain
< NPayv @)1+ (1 =1)?llg()llx 1
S (@) llxr + (1= 1)°G(v(e))? P+
<SA=0)°P+(1-0)° < (1-1)°. (4.14)

V(O llx-

Thus (4.7) and (4.14) yield that v € Wh1/(8=@)(0, 1, X~ 1(RV)) c C([0, 1];X "1(RV))
for sufficiently small § > 0. Thus we see (4.11).
Next we confirm that

(1) — vy (1 —1—0) weakly in L2(RY). (4.15)

Since || (t)||Lz = ||vo||2 for t € ]0,1), for any sequence {z;}; C (0,1) there exists
vi1 € L*(RV) and a subsequence {j(k)}; C {j} such that

v(tjr) — v41 (k—ee)  weakly in L2(RV) X '(RY).
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Here (4.11) implies that v | = v, . Thus (4.15) is verified. Hence it follows from (4.15)
that
(v —v(t),v4)2 =0 t—1-0. (4.16)

Next we show that
(vg —v(®),v(t)p—0 t—1-0. (4.17)
Let 0 <t <1< 1. We calculate
(8 v O)a] < [ 10601l ds

1/2 1/2
<[ HP/ )2 1By vl 2 s

+/ (1—s) ’/g 1) dx| ds.

Here the convexity (4.5) implies that

g(V(S))V(t)dX) <qG((s))' TV1G(v(0) .

o
Applying (4.7) and (4.8) and letting T — 1 — 0 we ensure (4.17):
vl S [ (=020 =5 st [[(1-5)ds 5 (10,
Finally we conclude from (4.16) and (4.17) that
i = v(0)[2 = (vi = v(t),vi g — (v = (), 9(0)) 2 — 01— 1 0.

This is nothing but (4.6). U

REMARK 4.1. Under the conditions in Theorem 4.2 let u be a solution to (CP),
with u(0) = ug € ZL(RN). Then w(t) := u(—t) satisfies (CP), with w(0) = ig. Hence
we conclude that the scattering states

lim exp(it Py (v )u(t) = us = Qiug  strongly in L*(RY),

[{—o0

tllIEl exp(it Py )u(t) =u—=Q_ug strongly in L*(RY)

satisfy Q¢ = Q. ¢ for ¢ € TL(RV).

REMARK 4.2. Assume either that
(Ala) g(u) = Alu|’~'u with A >0 and 1 < p < 1+2/N;
(A2a) g(u) = Alx| "|ulP~'u with 2 >0,0<r<1and 1 <p<1+(2-2r)/N;
(A3a) g(u) = A(|x|"7* |u/*)u with A >0 and 0 < y< 1;
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(Ada) g(u) = Au|x|~*[|x| =B % (|x|~%|u|?)] with L >0, ¢ >0, B >0 and 0 < 20+
B<1.

Then if up € X! (RV) satisfies

lim exp(it P, (y))u(t) = us, strongly in L*(RM),

[—o0

tlim exp(itPyyy)u(t) =u—  strongly in L*(RY)
for some uy,u_ € L>(RV), then uy =0 =u_ and hence ug = 0. Therefore (CP),
with a = a(N) has no free scattering state; see e.g. [7, Theorem 3.1 (2)].

REMARK 4.3. Assume either that
(A1b) g(u) = Alu|*Nu with A > 0;
(A2b) g(u) = Alx|~"|u|*2)/Ny with A >0 and 0 < r < 2;
(A3b) g(u) = A(|x| = * [u|?)u with A > 0;
(A4b) g(u) = Au|x|~%[jx| 7B s (|x|~¥|u|?)] with 2 >0, & >0, B >0 and 20+ ff =2.

If u is a solution to iu’ = P,yyu+ g(u), then v(r,x) = (u)(t,x) satisfies also iv' =
P,xyv+g(v). This problem has global unique solution v belongs to C(R;ZL(RY))N
CHR; X 1(RY)) if v(Ty) € ZL(RY). Especially, we can put Ty = 1. Thus we can
construct wave operators W, : uy +— u(0) and W_ : u_ + u(0) in Z!(RY) such that

tlim exp(itPyyy)u(t) = Wiuy  strongly in TL(RN),
tliIEl exp(it P,y )u(t) = W_u_  strongly in TL(RN).

Note that W_¢ = W, @. Other nonlinearities seem to be applied another method. Par-
tial constructions are available in Suzuki[16] in Z'(RY) for a > —(N —2)?/4 with
(A3) (1 < y < 2) applying the contraction method. The case @ = a(N) is open.
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