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FRACTIONAL LYAPUNOV INEQUALITIES ON SPHERICAL SHELLS
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Abstract. This paper, deals with Lyapunov inequalities of conformable fractional boundary value
problems on an N-dimensional spherical shell. Applicability of these Lyapunov inequalities
will be examined by establishing the disconjugacy as a nonexistence criterion for nontrivial
solutions, lower bound estimation for eigenvalues of the corresponding fractional eigenvalue
problem, upper bound estimation for maximum number of zeros of the nontrivial solutions and
distance between consecutive zeros of an oscillatory solution.

1. Introduction

The theory of fractional calculus that acts on the arbitrary order differentiation and
integration, tries to generalize the ordinary calculus. But, unfortunately expected gener-
alization has not occurred by now. As we know, fractional calculus essentially was con-
structed based on the Riemann-Liouville fractional operators, see [16],[18],[19],[22].
On the other hand, V E. Tarasov in references [25],[26] proves that all of Riemann-
Liouville based differentiation operators do not satisfy in the Leibniz and chain rules as
in the ordinary calculus. Overcomming this inconvenience, more recently R. Khalil et
al, in [15], introduced a new definition for fractional order differentiation operators that
generalizes the limit approach of the classic differentiation. They called these operators
conformable fractional differentiation operators that will be presented in the next sec-
tion.
But about the Lyapunov inequalities, this is well known that the concept of the Lya-
punov inequality turns to the deep studies of the Russian mathematician A. M. Lya-
punov on stability of motion, in the late XIX century. Maybe the best interpretation of
the Lyapunov inequalities can be stated as follows:

THEOREM 1.1. (cf. [5]-[9],[13]) If the boundary value problem{
y
′′
(t)+q(t)y(t) = 0, a < t < b,

y(a) = 0 = y(b),
(1.1)

has a nontrivial solution, where q is a real and continuous function, then∫ b

a
|q(s)|ds >

4
b−a

. (1.2)
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Since then, the literature has been developed by many generalizations and refine-
ments of the Lyapunov inequality (1.2) by now. Since we are interested in study of
the fractional approach of the Lyapunov inequalities, one may suggest for instance the
basic papers [4]-[12],[20],[23] for detailed consultation. One of the greatest advantages
of the Lyapunov inequalities in comparison with other ones turns to their ability in
establishing collection of qualitative behavior of related differential or difference equa-
tions such as stability, disconjugacy, solvability and spectral properties. Further more,
applying these inequalities one may estimate maximum number of zeros for nontrivial
solutions of considered problems and distance between consecutive zeros of the oscil-
latory solutions.

So, now it seems that why we interested in the study of these inequalities for
fractional order differential and difference equations. To the best of our knowledge,
investigation about Lyapunov inequalities for differential and difference equations of
fractional order introduced for first time in literature by Portuguese mathematician R.
A. C. Ferreira. We briefly state the works of the Ferreira as follows.

The author in [5], in the late 2013, studied the following two-point fractional
boundary value problem{

(aDαy)(t)+q(t)y(t) = 0, a < t < b, 1 < α � 2,
y(a) = 0, y(b) = 0,

(1.3)

where aDα stands for the left sided Riemann-Liouville fractional derivative of order
α and q : [a,b] → R is a continuous function. The author using properties of the
corresponding Green function to the (1.3) obtained a Lyapunov inequality of the form∫ b

a
|q(s)|ds > Γ(α)

(
4

b−a

)α−1

. (1.4)

The Lyapunov inequality (1.4) generalizes the classic Lyapunov inequality (1.2), (ex-
cepted α = 2). He used then the Lyapunov inequality (1.4) to prove that a Mittag-
Leffler function of the fractional eigenvalue problem corresponding to the (1.3) has no
real zeros on a determined interval.

The author in [8], (2014), proved that if u(t) is a nontrivial solution of Caputo
fractional boundary value problem{(

cDα
0+u
)
(t)+q(t)u(t) = 0, a < t < b, 1 < α � 2,

u(a) = 0, u(b) = 0,
(1.5)

then the Lyapunov inequality∫ b

a
|q(s)|ds >

Γ(α)αα

[(α −1)(b−a)]α−1 , (1.6)

holds, provided that q(t) is a real continuous function.
Also, the author in [9], (2015), considered the following two-point fractional Δ−

difference boundary value problem{
(Δαy)(t)+q(t + α −1)y(t + α −1) = 0, t ∈ N

b+1
0 ,

y(α −2) = 0 = y(α +b+1), or y(α −2) = 0 = Δy(α +b),
(1.7)
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and using Green function technique, achieved to the following discrete fractional Lya-
punov inequality corresponding to the first pair of boundary conditions:

b+1

∑
s=0

|q(s+ α −1)|> 4Γ(α)
Γ(b+ α +2)Γ2

(
b
2 +2

)
(b+2α)(b+2)Γ2

(
b
2 + α

)
Γ(b+3)

, b : even,

b+1

∑
s=0

|q(s+ α −1)|> Γ(α)
Γ(b+ α +2)Γ2

(
b+3
2

)
Γ2
(

b+1
2 + α

)
Γ(b+3)

, b : odd.

(1.8)

In the second step, the author obtained for the second pair of boundary conditions, the
following Lyapunov inequality:

b+1

∑
s=0

|q(s+ α −1)|> 1
(b+2)Γ(α −1)

. (1.9)

2. Conformable Fractional Calculus

This section includes a brief overview on the conformable fractional calculus that
makes this paper self contained in view point of the fractional calculus community.

DEFINITION 2.1. [15] The left and right sided conformable fractional derivatives
of order n− 1 < α � n, n ∈ N , for n−differentiable function f (t) on t ∈ (a,b) are
defined by:

T α
a+ f (t) = lim

ε→0

f ([α ]−1)(t + ε(t−a)[α ]−α)− f ([α ]−1)(t)
ε

, (2.1)

T α
b− f (t) = (−1)n lim

ε→0

f ([α ]−1)(t + ε(b− t)[α ]−α)− f [α ]−1(t)
ε

, (2.2)

where [α] is the smallest integer greater than or equal to α .

Taking h = ε(t −a)[α ]−α in (2.1) and h = ε(b− t)[α ]−α in (2.2), a direct calcula-
tion leads us to the following golden identities of the conformable fractional calculus:

T α
a+ f (t) = (t−a)[α ]−α f (n)(t), (2.3)

T α
b− f (t) = (−1)n(b− t)[α ]−α f (n)(t). (2.4)

REMARK 2.2. Taking α = n in golden identities (2.3) and (2.4), one has

Tn
a+ f (t) = f (n)(t),

Tn
b− f (t) = (−1)n f (n)(t).

Also taking α = 0, then n = [α] = α = 0. We define

T 0
a+ f (t) = T 0

b− f (t) = f (t).
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We notice that, apparently there is happening a serious misunderstanding about nature
of the conformable fractional calculus. As nobody can represent the zeroth-order or-
dinary differentiation via limit approach, so we must not expect that for finding the
zeroth-order conformable fractional derivative, we shall take α = 0 in definitions (2.1)
or (2.2). Instead, following conformability of the new fractional operators we must use
the golden identities (2.3) and (2.4) to define the zeroth-order conformable fractional
derivatives as we do it in the ordinary calculus. See for details the references [14] and
[21].

Since we are going to study Lyapunov inequalities on an N-dimensional spherical
shell, so we have to define conformable fractional partial derivatives.

DEFINITION 2.3. Assume n−1 < α � n, n ∈ N and t = (t1,t2, ...,tN) ∈ [a,b]N .
If f : [a,b]N → R , then left and right sided conformable fractional partial derivatives of
order α are defined as follows, respectively,

( ∂ α
a+

∂ tk
f

)
(t) = lim

ε→0

f ([α]−1)
(
t1,t2 , ...,tk−1 ,tk + ε(t−a)[α]−α ,tk+1, ...,tN

)
− f ([α]−1)(t1,t2 , ...,tN )

ε
, (2.5)

( ∂ α
b−

∂ tk
f

)
(t) = (−1)n lim

ε→0

f ([α]−1)
(
t1,t2 , ...,tk−1 ,tk + ε(b− t)[α]−α ,tk+1, ...,tN

)
− f ([α]−1)(t1,t2 , ...,tN )

ε
.

(2.6)

Making use of the golden identities (2.3), (2.4) for special order 0 < α � 1, one
may derive the following lemma.

LEMMA 2.4. Assume 0 < α � 1 . Then,

1. Tα
a+

(
(t−a)α

α

)
= 1 ;

2. Tα
a+

(
e

(t−a)α
α

)
= e

(t−a)α
α ;

3. Tα
a+

(
sin
(

(t−a)α

α

))
= cos

(
(t−a)α

α

)
;

4. Tα
a+

(
cos
(

(t−a)α

α

))
= −sin

(
(t−a)α

α

)
.

In the following technical lemma, one can observe that why we call the fractional
differentiation operators (2.1) and (2.2), con f ormable .

LEMMA 2.5. Assume 0 < α � 1 . Suppose that f and g are two real-valued α -
differentiable functions on an interval (a,b) in the sense of (2.1) and for each t > a, we
have g(t) �≡ 0 . Then the fractional Leibniz and chain rules are as follows, respectively,

(i)
(
Tα
a+ f g

)
(t) =

(
T α
a+ f
)
(t).g(t)+ f (t).

(
T α
a+g
)
(t);

(ii)
(
Tα
a+ f ◦ g

)
(t) =

(
T α
a+g
)
(t).
(
Tα
a+ f
)
(g(t)).(g(t)−g(a))α−1 .
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Proof. Making use of the golden identity (2.3), yields the following(
T α
a+ f g

)
(t) = (t −a)1−α( f g)

′
(t)

= (t −a)1−α
{

f
′
(t)g(t)+ f (t).g

′
(t)
}

= (t −a)1−α f
′
(t).g(t)+ f (t).(t−a)1−αg

′
(t)

=
(
T α
a+ f
)
(t).g(t)+ f (t).

(
T α
a+g
)
(t).

To prove the assertion (ii) , note that(
T α
a+ f ◦ g

)
(t) = (t−a)1−α( f ◦ g)

′
(t)

= (t−a)1−α
{

g
′
(t). f

′
(g(t))

}
=
(
T α
a+g
)
(t).(g(t)−g(a))1−α . f

′
(g(t)).(g(t)−g(a))α−1

=
(
T α
a+ f ◦ g

)
(t) =

(
T α
a+g
)
(t).
(
T α
a+ f
)
(g(t)).(g(t)−g(a))α−1.

This completes the proof. �

DEFINITION 2.6. (cf. [1]) Assume that n−1 < α � n, n∈N . If f ∈ L([a,b];R) ,
then the left and right sided conformable fractional integrals are defined as follows:

Iα
a+ f (t) =

1
(n−1)!

∫ t

a
(t − s)n−1(s−a)α−n f (s)ds, (2.7)

Iα
b− f (t) =

1
(n−1)!

∫ b

t
(s− t)n−1(b− s)α−n f (s)ds. (2.8)

The composition rules due to the conformable fractional operators can be repre-
sented as below. These rules will play a fundamental role in the next section.

LEMMA 2.7. (cf. [1]) Let n− 1 < α � n, n ∈ N and f : [a,b] → R be an n-
differentiable function on (a,b) . Then for each t ∈ (a,b) ,

(
Iα
a+T α

a+ f
)
(t) = f (t)−

n−1

∑
k=0

f (k)(a)(t−a)k

k!
, (2.9)

(
Iα
b−T α

b− f
)
(t) = f (t)−

n−1

∑
k=0

(−1)k f (k)(b)(b− t)k

k!
. (2.10)

3. Fractional Lyapunov Inequalities

In this position, we consider the main problem of the paper as follows:(
Tα
a+u
)
(t)+q(t)u(t) = 0, a < t < b, 1 < α < 2, (3.1)

subject to the boundary conditions

u(a) = 0, u(b) = 0, (3.2)



358 YOUSEF GHOLAMI AND KAZEM GHANBARI

where q ∈C ([a,b];R) . At this moment, we draw a multi step way that leads us to the
Lyapunov inequality of the conformable fractional boundary value problem (3.1)-(3.2).
The first step can be stated as follows.

LEMMA 3.1. Let h ∈ C ([a,b];R) . Then the conformable fractional boundary
value problem {(

T α
a+u
)
(t)+h(t) = 0, a < t < b, 1 < α < 2,

u(a) = 0, u(b) = 0,
(3.3)

in a unique manner can be transformed into the integral equation

u(t) =
∫ b

a
G (t,s)h(s)ds, (3.4)

in which

G (t,s) =
1

b−a

⎧⎨
⎩

[(t−a)(b− s)− (b−a)(t− s)](s−a)α−2 ; a < s � t < b,

(t−a)(b− s)(s−a)α−2 ; a < t � s < b.
(3.5)

is called the Green function of the boundary value problem (3.3).

Proof. Concentrating on the governing equation(
T α
a+u
)
(t)+h(t) = 0,

and then taking conformable fractional integral Iα
a+ on both sides of it, in the light of

the composition rule (2.9) gives us

u(t) = c0 + c1(t−a)−
∫ t

a
(t − s)(s−a)α−2h(s)ds. (3.6)

Now, making use of the first boundary condition u(a) = 0 in (3.6), one has c0 = 0.
Next, imposing the second boundary condition u(b) = 0 into the (3.6), it follows that

c1 =
1

b−a

∫ b

a
(b− s)(s−a)α−2h(s)ds. (3.7)

Consequently, substituting the uniquely determined coefficients c0 and c1 into the
(3.6), gives us the following

u(t) =
t−a
b−a

∫ b

a
(b− s)(s−a)α−2h(s)ds−

∫ t

a
(t− s)(s−a)α−2h(s)ds

=
1

b−a

∫ t

a
[(t −a)(b− s)− (b−a)(t− s)](s−a)α−2h(s)ds

+
1

b−a

∫ b

t
(t−a)(b− s)(s−a)α−2h(s)ds

=
∫ b

a
G (t,s)h(s)ds.
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This completes the proof. �
The second step, includes an analytic assessment of the Green function G (t,s) as

follows.

LEMMA 3.2. The Green function G (t,s) defined by (3.5), satisfies the following
analytic components:

(A1) G (t,s) is continuous on (a,b)× (a,b);

(A1) sup
t,s∈(a,b)

G (t,s) = G2

(
a+(α −1)b

α
,
a+(α −1)b

α

)
=

1
α

(
(α −1)(b−a)

α

)α−1

.

Proof. The assertion (A1) is immediate. So, we focus on the property (A2) . To
prove it, we recall once again the Green function G (t,s) as consequences

G (t,s) =

⎧⎨
⎩

G1(t,s); a < s � t < b,

G2(t,s); a < t � s < b,

where

G1(t,s) =
[(t−a)(b− s)− (b−a)(t− s)](s−a)α−2

b−a
, (3.8)

G2(t,s) =
(t−a)(b− s)(s−a)α−2

b−a
. (3.9)

As can be observed,
sup

t,s∈(a,b)
G (t,s) = sup

t,s∈(a,b)
G2(t,s).

In one hand
∂
∂ t

G2(t,s) =
(b− s)(s−a)α−2

b−a
> 0, (3.10)

that yields

sup
t∈(a,b)

G2(t,s) = G2(s,s) =
(b− s)(s−a)α−1

b−a
, (3.11)

and on the other hand,

d
ds

G2(s,s) =
(s−a)α−2

b−a
{a+(α −1)b−αs}.

Thus, it follows that

d
ds

G2(s,s)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

> 0; s <
a+(α −1)b

α
,

< 0; s >
a+(α −1)b

α
.
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Thereby, we have the following

sup
s∈(a,b)

G2(s,s) = G2

(
a+(α −1)b

α
,
a+(α −1)b

α

)
. (3.12)

As a result, making use of the (3.10) and (3.12) we conclude that

sup
t,s∈(a,b)

G (t,s) = G2

(
a+(α −1)b

α
,
a+(α −1)b

α

)
=

1
α

(
(α −1)(b−a)

α

)α−1

.

So, the proof is completed now. �
Throughout this paper, everywherewe discuss on the real line R , we are concerned

with the Banach space (B;‖.‖) such that

B := Cn ([a,b]) , ‖u‖ = sup
t∈(a,b)

{|u(t)|∣∣ u ∈ B}.

In this position, we are ready to the final step, that is extracting Lyapunov inequality of
the conformable fractional boundary value problem (3.1)-(3.2). This step directly relies
on the previous two steps and is presented as below.

THEOREM 3.3. Let u(t) is a nontrivial solution of the conformable fractional
boundary value problem (3.1)-(3.2). Then the Lyapunov inequality

∫ b

a
|q(s)|ds >

αα

(α −1)α−1

1
(b−a)α−1 , (3.13)

holds.

Proof. In the light of Lemma 3.1, we can transform the boundary value problem
(3.1)-(3.2) into the integral equation

u(t) =
∫ b

a
G (t,s)q(s)u(s)ds,

in which G (t,s) denotes the Green function (3.5). Since u(t) is a nontrivial solution
of the boundary value problem (3.1)-(3.2), making use of the property (A2) in Lemma
3.2, yields

‖u‖ < ‖u‖ 1
α

(
(α −1)(b−a)

α

)α−1 ∫ b

a
|q(s)|ds,

that is, ∫ b

a
|q(s)|ds >

αα

(α −1)α−1

1
(b−a)α−1 .

This completes the proof. �
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It is time to migration from the real line R into the N-dimensional space R
N for

N ∈ N . Based on the references [2] and [3], the elements of this space are introduced
as follows:

A :=B(0,b)−B(0,a), 0 < a < b, (spherical shell); (3.14)

B(0,r) :=
{
x ∈ R

N
∣∣ |x| < r, r > 0

}
, (N-dimensional ball centered by 0 with radius r);

(3.15)

SN−1 :=
{
x ∈ R

N
∣∣ |x| = 1

}
, (unit sphere on the R

N); (3.16)

ωN :=
∫

SN−1
dω =

2π
N
2

Γ(N
2 )

, (surface area of SN−1); (3.17)

|.|, (Euclidean norm on the R
N). (3.18)

REMARK 3.4. (cf. [2],[3] and [24], pp. 149-150)

(R1) Each x ∈ R
N −{0} , can be uniquely represented as x = rω where r ∈ R

+ and
ω ∈ SN−1 . Here r = |x| > 0 and ω = x

r ∈ SN−1 .

(R2) For u ∈C
(
A
)
, one has∫

A
F(x)dx =

∫
SN−1

(∫ b

a
F(rω)rN−1dr

)
dω . (3.19)

In particular, A = [a,b]×SN−1 .

(R3) As a special case of (3.19), one may take F(x) ≡ 1. So, we have∫
A
dx =

∫
SN−1

(∫ b

a
rN−1dr

)
dω =

bN −aN

N
.
2π

N
2

Γ(N
2 )

. (3.20)

At this moment, the recent supplementary data related to the spherical shell A ,
enables us to direct transfer the conformable fractional boundary value problem (3.1)-
(3.2) and its Lyapunov inequality (3.13) over the spherical shell A .

THEOREM 3.5. Let q∈C
(
A
)

and u(x) be a nontrivial solution of the conformable
fractional partial differential equation(∂ α

a+

∂ r
u

)
(x)+q(x)u(x) = 0, x ∈ A, (3.21)

subject to the boundary conditions

u(∂B(0,a)) = 0, u(∂B(0,b)) = 0, (3.22)

where u(x) �= 0 for each x ∈ A. Then, the multivariate Lyapunov inequality∫
A
|q(x)|dx >

2aN−1π N
2

Γ(N
2 )

αα

(α −1)α−1

1
(b−a)α−1 , (3.23)

holds.
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Proof. Paying attention on (R1) in Remark 3.4, the governing equation (3.21),
one may rewrite it as follows:(∂ α

a+

∂ r
u

)
(rω)+q(rω)u(rω) = 0, (r,ω) ∈ [a,b]×SN−1, (3.24)

where q(.ω) ∈C ([a,b]) , for each ω ∈ SN−1 . Note that in this case

u(aω) = 0, u(bω) = 0, w ∈ SN−1, (3.25)

in which, u(rω) �= 0 for each r ∈ (a,b) and ω ∈ SN−1 . Thereby, for a fixed ω ∈ SN−1 ,
by the Lyapunov inequality (3.13) we conclude that

αα

(α −1)α−1

1
(b−a)α−1 <

∫ b

a
|q(rω)|dr =

∫ b

a
|q(rω)|rN−1r1−Ndr

�
(∫ b

a
|q(rω)|rN−1dr

)
a1−N.

This leads us to the inequality

∫ b

a
|q(rω)|rN−1dr > aN−1 αα

(α −1)α−1

1
(b−a)α−1 , ω ∈ SN−1. (3.26)

Consequently, making use of the (3.17) and (R2 ) in Remark 3.4, it follows that

∫
SN−1

(∫ b

a
|q(rω)|rN−1dr

)
dω >

(
aN−1 αα

(α −1)α−1

1
(b−a)α−1

)(
2π

N
2

Γ(N
2 )

)
.

Equivalently, ∫
A
|q(x)|dx >

2aN−1π
N
2

Γ(N
2 )

αα

(α −1)α−1

1
(b−a)α−1 .

This completes the proof. �

REMARK 3.6. Considering the nonnegative part of q(x) as

q+(x) = max{0,q(x)} =
q(x)+ |q(x)|

2
,

the following multivariate Lyapunov inequality is immediate

∫
A
q+(x)dx >

2aN−1π N
2

Γ(N
2 )

αα

(α −1)α−1

1
(b−a)α−1 .

Now, having the multivariate Lyapunov inequality (3.23) in hand, we are ready
to examine its applicability to establish the qualitative dynamic of the conformable
fractional boundary value problem (3.21)-(3.22) over the spherical shell A .
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4. Applications

In this section, we are going to represent the applied aspect of the multivariate
Lyapunov inequality (3.23). To this end, we establish qualitative dynamic of the con-
formable fractional boundary value problem (3.21)-(3.22), consisting of its disconju-
gacy as a non-existence criterion for nontrivial solutions, Lower bound estimation for
eigenvalues in corresponding eigenvalue problem, distance between consecutive zeros
of the nontrivial solution and zero count estimation for nontrivial solutions. So, we
begin with the following definition.

DEFINITION 4.1. Suppose q∈C(A) and n−1 < α < n, n∈N . The conformable
fractional differential equation(∂ α

a+

∂ r
u

)
(x)+q(x)u(x) = 0, x ∈ A,

is said to be disconjugate on spherical shell A , if and only if each nontrivial solution
u(x) has less than [α]+1 zeros on A

In the light of this definition, we can now introduce a non-existence criterion for
nontrivial solutions as follows.

THEOREM 4.2. Assume that 1 < α < 2 . If

∫
A
|q(x)|dx � 2aN−1π

N
2

Γ(N
2 )

αα

(α −1)α−1

1
(b−a)α−1 , (4.1)

then, the conformable fractional boundary value problem (3.21)-(3.22) is disconjugate
on A.

Proof. Suppose on contrary that the conformable fractional boundary value prob-
lem (3.21)-(3.22) is not disconjugate on A . Therefore, there exists at least one nontriv-
ial solution u(x), x ∈ A such that u(x) has at least two zeros on A . This means that
according to the essential Theorem 3.5, the multivariate Lyapunov inequality

∫
A
|q(x)|dx >

2aN−1π
N
2

Γ(N
2 )

αα

(α −1)α−1

1
(b−a)α−1 ,

is satisfied. Resulted contradiction with the assumption (4.1) proves the desired asser-
tion. �

LEMMA 4.3. Assume that the assumptions of Theorem 4.2 are satisfied. Then, the
conformable fractional boundary value problem (3.21)-(3.22) has no nontrivial solu-
tion on A.
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Proof. Since the proof is the same as of Theorem 4.2, we omit it here. �
Second application is devoted to a lower bound estimation for the eigenvalues

of the conformable fractional eigenvalue problem corresponding to the conformable
fractional boundary value problem (3.21)-(3.22).

THEOREM 4.4. Assume 1 < α < 2 and u(x) is a nontrivial solution of the con-
formable fractional eigenvalue problem⎧⎨

⎩
(∂ α

a+

∂ r
u

)
(x)+ λu(x) = 0, x ∈ A,

u(∂B(0,a)) = 0, u(∂B(0,b)) = 0,
(4.2)

where u(x) �= 0 for each x ∈ A. Then

|λ | > N
aN−1

bN −aN

αα

(α −1)α−1

1
(b−a)α−1 . (4.3)

Proof. Replacing λ with q(x) ∈ C(A) in the conformable fractional boundary
value problem (3.21)-(3.22), and taking into account (3.20), in Remark 3.4 the follow-
ing is immediate

∫
A
|λ |dx =

∫
SN−1

(∫ b

a
|λ |rN−1dr

)
dω

= |λ |
∫

SN−1

∫ b

a
rN−1drdω

= |λ |b
N −aN

N
.
2π N

2

Γ(N
2 )

.

Now, taking a look at the multivariate Lyapunov inequality (3.23), it follows that

|λ |b
N −aN

N
.
2π

N
2

Γ(N
2 )

>
2aN−1π

N
2

Γ(N
2 )

αα

(α −1)α−1

1
(b−a)α−1 .

Equivalently, we conclude that

|λ | > N
aN−1

bN −aN

αα

(α −1)α−1

1
(b−a)α−1 .

This completes the proof. �
In this position, we are going to establish maximum number of zeros of a nontrivial

solution of the conformable fractional boundary value problem (3.21)-(3.22), making
use of the its multivariate Lyapunov inequality (3.23).

THEOREM 4.5. Assume that u(x) is a nontrivial solution of the conformable frac-
tional boundary value problem (3.21)-(3.22). Suppose {rkω}2M+1

k=1 be an increasing
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sequence of zeros of the u(x) on A, such that rk � 1, k = 1, ...,2M + 1 , vary on a
compact interval I having length l(I) . Then,

M <

{
Γ(N

2 )

2π
N
2

(l(I)(α −1))α−1

αα

∫
SN−1

M

∑
k=1

(∫ r2k+1

r2k−1

|q(rω)|rN−1dr

)
dω

} 1
α

(4.4)

Proof. Since rkω for each k = 1,2, ...,2M +1 are roots of the nontrivial solution
u(x) on A , so we can apply Theorem 3.5 for each subinterval [r2k+1,r2k−1] ⊂ I, k =
1,2, ...,M . Hence, in the light of the assumption rk � 1, k = 1, ...,2M + 1, it follows
that

∫
SN−1

(∫ r2k+1

r2k−1

|q(rω)|rN−1dr

)
dω >

(
rN−1
2k−1

αα

(α −1)α−1

1
(r2k+1 − r2k−1)α−1

)(
2π

N
2

Γ(N
2 )

)

� 2π
N
2

Γ(N
2 )

.
αα

(α −1)α−1 .(r2k+1 − r2k−1)−α+1.

Now, summing over both sides of the recent inequality from k = 1 to M , one has

∫
SN−1

M

∑
k=1

(∫ r2k+1

r2k−1

|q(rω)|rN−1dr

)
dω >

2π N
2

Γ(N
2 )

.
αα

(α −1)α−1

M

∑
k=1

(r2k+1 − r2k−1)−α+1.

(4.5)
Let us define concave up function ψ(x) := x−α+1, α > 1 on positive half-line (0,∞) .
So, we have

1
M

M

∑
k=1

ψ(ak) � ψ

(
1
M

M

∑
k=1

ak

)
, (see [6]),

where ak := r2k+1 − r2k−1 > 0. Therefore, it follows that

∫
SN−1

M

∑
k=1

(∫ r2k+1

r2k−1

|q(rω)|rN−1dr

)
dω >

2π
N
2

Γ(N
2 )

.
αα

(α −1)α−1

M

∑
k=1

(r2k+1 − r2k−1)−α+1

2π
N
2

Γ(N
2 )

.
αα

(α −1)α−1 M

(
1
M

M

∑
k=1

(r2k+1− r2k−1)

)−α+1

� 2π
N
2

Γ(N
2 )

.
αα

(α −1)α−1 Mα (l(I))−α+1.

After simplification, we conclude that

M <

{
Γ(N

2 )

2π N
2

(l(I)(α −1))α−1

αα

∫
SN−1

M

∑
k=1

(∫ r2k+1

r2k−1

|q(rω)|rN−1dr

)
dω

} 1
α

,

which coincides with our desired result. �
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The last application due to the multivariate Lyapunov inequality (3.23), is dealt
with oscillatory solutions of the conformable fractional boundary value problem (3.21)-
(3.22). In this stage, we demonstrate that distance between consecutive zeros of each
oscillatory solution of (3.21)-(3.22), when their indices tend to infinity can not be finite.

THEOREM 4.6. Assume that u(x) is an oscillatory solution of the conformable
fractional boundary value problem (3.21)-(3.22). Suppose {rnω}∞

n=1, rn � 1 be an
increasing sequence of zeros of u(x) in positive half-line [0,∞) . If for any positive
constant M , ∫ r+M

r
|q(sω)|sN−1ds → 0, as s → ∞, (4.6)

then, rn+1− rn → ∞ , as n → ∞ .

Proof. Relying on this fact that {rnω}∞
n=1 is a sequence of zeros of the oscillatory

solution u(x) of the conformable fractional boundary value problem (3.21)-(3.22), we
can apply Theorem 3.5 for each consecutive zeros rnω and rn+1ω . In this case we
reach to the following multivariate Lyapunov inequality

∫
SN−1

(∫ rn+1

rn
|q(rω)|rN−1dr

)
dω >

αα

(α −1)α−1

(
1

rn+1− rn

)α−1
(

2π
N
2

Γ(N
2 )

)
. (4.7)

Now, suppose on contrary that for a large enough index n , there exists a subsequence
{rnkω}∞

k=1 of the sequence {rnω}∞
n=1 and there exists a positive constant M such hat

rnk+1− rnk � M , for large enough k . So, we have

∫
SN−1

(∫ rnk+1

rnk

|q(rω)|rN−1dr

)
dω >

αα

(α −1)α−1

(
1

rnk+1− rnk

)α−1
(

2π N
2

Γ(N
2 )

)
.

(4.8)
Equivalently, we conclude that

1 <
Γ(N

2 )

2π
N
2

(M(α −1))α−1

αα

∫
SN−1

⎛
⎜⎜⎜⎝
∫ rnk+1

rnk

|q(rω)|rN−1dr︸ ︷︷ ︸
−→0

⎞
⎟⎟⎟⎠dω → 0,

as k → ∞ . The resulting algebraic contradiction, completes the proof. �
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