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A NEW OSCILLATORY CRITERION FOR

THE GENERALIZED HILL’S EQUATION

G. A. GRIGORIAN

(Communicated by Satoshi Tanaka)

Abstract. In this note we use an oscillatory theorem for the second order linear ordinary differ-
ential equation in order to establish an oscillatory criterion for the generalized Hill’s equation.
We formulate a hypothesis about representation of the sum of periodic functions with rational
dependent periods by a sum of periodic functions with rational independent periods.

1. Introduction

Let q(t) be a real valued continuous function on [t0;+∞) . Consider the equation

φ ′′(t)+q(t)φ(t) = 0, t � t0. (1)

Hereafter we will consider only the real solutions of this and other equations.

DEFINITION 1. Eq. (1) is said to be oscillatory if its each solution has arbitrarily
large zeroes.

The study of the oscillatory behavior of Eq. (1) is an important problem of the
qualitative theory of differential equations and many works are devoted to it (see [1]
and cited works therein, [2 -12]).

In the case of periodic function q(t) = qT (t) , where T > 0 is the minimal period
of qT (t) , Eq. (1) was first studied by G. W. Hill (the Hill’s equation) in connection with
motion of the moon in a periodic gravitation field (see [13]):

φ ′′(t)+qT (t)φ(t) = 0, t � t0. (H )

In particular for qT (t) = a+bcost, t � t0, where a and b �= 0 are some real constants,
Eq. (H ) was firstly studied by M. Emile Mathieu in 1886 (the Mathieu’s equation),
which has very important applications (see for example [14]). One of the generaliza-
tions of the Hill’s equation is Eq. (1) with q(t) = qT1

(t)+qT2
(t), t � t0 , where qT1

(t)
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and qT2
(t) are periodic functions with the rational independent periods T1 and T2 re-

spectively:
φ ′′(t)+ [qT1

(t)+qT2
(t)]φ(t) = 0, t � t0. (H̃ )

It is well known that (see for example [15]), that Eq. (H ) is oscillatory if

t0+T∫
t0

qT (τ)dτ � 0.

This result was generalized in [12], where it was shown that Eq. (H̃ ) is oscillatory if

1
T1

t0+T1∫
t0

qT1
(τ)dτ +

1
T2

t0+T2∫
t0

qT2
(τ)dτ � 0.

In this note we use an oscillatory theorem, proven in [12], for establishing an oscillatory
criterion for a new generalization of Eq. (H̃ ) .Our result is a generalization of the
above mentioned result for Eq. (H̃ ) .

2. Auxiliary propositions

In this section we formulate the oscillation theorem from [12] and prove an impor-
tant lemma. They will be used in the section 3 for establishing an oscillatory criterion
for the generalized Hill’s equation.

Denote by Ω the set of positive and continuously differentiable functions on
[t0;+∞) . For any f ∈ Ω denote

Iq, f ≡
+∞∫
t0

exp

{ t∫
t0

dτ
f (τ)

τ∫
t0

[
2 f (s)q(s)− 1

2
f ′(s)2

f (s)

]
ds

}
dt.

Denote A±
q,λ ≡

{
t � t0 : ±

(
λ +

t∫
t0

q(τ)dτ
)

� 0

}
, λ ∈ R .

THEOREM 1. Let for some f ∈ Ω the following conditions be satisfied:
1). Iq, f = +∞;
2). there exists an infinitely large sequence {θn}+∞

n=1 such, that

sup
n�1

{
1

f (θn)

θn∫
t0

[
4 f (τ)q(τ)− f ′(τ)2

f (τ)

]
dτ −4

θn∫
t0

q(τ)dτ
}

< +∞,

and let for some λ ∈ R

3).
∫

A+
q,λ

dτ = +∞; 4).
∫

A−
q,λ

(
λ +

τ∫
t0

q(s)ds
)2

dτ = +∞;

Then Eq. (1) is oscillatory.
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See proof in [12].

DEFINITION 2. The numbers a1, ...,an are said to be rational independent (or lin-
early independent over the field of rational numbers), if for the arbitrary not all zero

integers j1, ..., jn , the inequality
n
∑

k=1
jkak �= 0 holds.

REMARK 1. The rational independence of the numbers a1 and a2 means that the
relation a1/a2 is irrational.

LEMMA 1. Let the positive numbers T1, ...,Tn be rational independent. Then for
each ε > 0 and for the arbitrary real numbers ξ1, ...,ξn there exist infinitely large
sequences of positive integers {mk j}+∞

j=1, k = 1,n such, that

|m1 jT1−mk jTk − ξk| � ε, k = 2,n, j = 1,2, .... (2)

Proof. For an arbitrary real number x denote by {x} its fractional part, and by [x]
- its integer part (x = [x]+{x}, {x} ∈ [0;1)). Since T1, ...,Tn are rational independent

(see [16], p 59, Theorem6.3 and Example 6.1) the set of points

({
mT1

T2

}
, ...,

{
mT1

Tn

})
,

m = 1,2, ... is everywhere dense in [0;1]n−1 . Therefore there exists an infinitely large
sequence of positive integers m1 j, j = 1,2, ... such that∣∣∣∣

{
m1 j

T1

Tk

}
−

{
ξk

Tk

}∣∣∣∣ <
ε
Tk

, k = 2,n, j = 1,2, .... (3)

Denote: mk j ≡
[
m1 j

T1
Tk

]− [ ξk
Tk

]
, k = 2,n, j = 1,2, ... . We will assume m1 j, j = 1,2, ....

so large that mk j > 0, k = 2,n, j = 1,2, ... . It is evident that the sequences {mk j}+∞
j=1 ,

k = 2,n are infinitely large. From (3) we have:
∣∣m1 j

T1
Tk
−mk j − ξk

Tk

∣∣ < ε
Tk

, k = 2,n ,
j = 1,2, ... . From here it follows (2). The lemma is proved. �

3. Oscillation criterion for the generalized Hill’s equation

Let H0(t), H1(t), ...,Hn(t) be real valued continuous functions on [t0;+∞) and let

H(t) ≡ n
∑

k=0
Hk(t), t � t0 . Consider the equation

φ ′′(t)+H(t)φ(t) = 0, t � t0. (4)

THEOREM 2. Let the integral
+∞∫
t0

H0(τ)dτ be convergent (conditionally), and let

H1(t), ...,Hn(t) be periodic functions with the rational independent periods T1, ...,Tn

respectively such that H1(t) �≡ 0, and

n

∑
k=1

1
Tk

t0+Tk∫
t0

Hk(τ)dτ � 0. (5)
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Then Eq. (4) is oscillatory.

Proof. Let us prove the theorem only for the case

t0+Tk∫
t0

Hk(τ)dτ = 0, k = 1,n. (6)

The proof in the general case can be derived from the realized proof by using the Sturm

comparison criterion (see [17], p. 332). Let hk(t) ≡
t∫

t0
Hk(τ)dτ, t � t0, k = 1,n. It

is easy to derive from (6) that hk(t) is a periodic function with period Tk (k = 1,n).

Denote hk ≡ 1
Tk

t0+Tk∫
t0

hk(τ)dτ, k = 1,n . Then

hk(t) = hk +h0
k(t), t � t0, k = 1,n, (7)

where
t0+Tk∫
t0

h0
k(τ)dτ = 0, k = 1,n. (8)

By virtue of mean value theorem the equality hk = hk(ξk) holds for some ξk ∈ [t0; t0 +

Tk], (k = 1,n) . Then since hk(t) = hk(ξk)+
t∫

ξk

Hk(τ)dτ, t � t0, k = 1,n , from (6) and

(7) it follows, that

h0
k(t) =

t∫
ξk+mTk

Hk(τ)dτ, t � t0, k = 1,n, (9)

for each m = 0,1, .... Denote M ≡ min{M1,M2} , where M1 ≡
∣∣ min
t∈[t0;t0+T1]

h0
1(t)

∣∣ , M2 ≡
max

t∈[t0;t0+T1]
h0

1(t) . From (8) and H1(t) �≡ 0 it follows that M > 0. Since by virtue of

(6) and (9), we have h0
k(ξk) = 0, and therefore, for enough small value of δ > 0 the

following inequality holds

|h0
k(t)| <

M
8

, t ∈ [ξk − δ ;ξk + δ ], k = 2,n. (10)

Let ξ0 be a minimum point of the function h0
1(t) . We have:

t∫
ξ0

H1(τ)dτ = −h1(ξ0)+h1(t) = −h0
1(ξ0)+h0

1(t), t � t0. (11)

It is evident that
−h0

1(ξ0) � M. (12)
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Since the integral
+∞∫
t0

H0(τ)dτ is convergent we chose T � t0 so large that

∣∣∣∣
+∞∫
t

H0(τ)dτ
∣∣∣∣ <

M
8

, t � T. (13)

Since T1, ...,Tn are rational independent on the basis of Lemma 1 we chose the positive
integers n0 and mk, k = 2,n such that

|ξk +mkTk − ξ0−n0T1| < δ , k = 2,n; (14)

ξ0 +n0T1 � T, (15)

and take t1 ≡ ξ0 +n0T1 . Denote: gk(t)≡
t∫

t1
Hk(τ)dτ, t � t1, k = 0,n . By (13) and (15)

we have:

|g0(t)| � M
4

, t � t1. (16)

By virtue of (6) and (11) the following equality takes place

g1(t) = −h0
1(ξ0)+h0

1(t), t � t1. (17)

It is evident that gk(t) = hk(t)−hk(t1) = h0
k(t)−h0

k(t1), t � t1, k = 2,n , or due to (9)

gk(t) = h0
k(ξk +mkTk)−h0

k(t1)+h0
k(t), t � t1, k = 2,n. (18)

By virtue of (14) we will assume δ > 0 so small that

n

∑
k=2

|h0
k(ξk +mkTk)−h0

k(t1)| �
M
4

. (19)

Denote h(t) ≡
t∫

t1
H(τ)dτ, t � t1 (then h(t) =

n
∑

k=0
gk(t), t � t1 ). From (16) it fol-

lows, that g0(t) � −M
4 , t � t1 , and from (19) we have:

n
∑

k=2
[hk(ξk +mkTk)− hk(t1)] �

−M
4 . Then taking into account (12), (16), (17) and (16) that we will get:

t∫
t1

h(τ)dτ =

t∫
t1

g0(τ)dτ +(t− t1)[−h0
1(ξ0)+

n
∑

k=2
(h0

k(ξk ++mkTk)−h0
k(t1))]+

n
∑

k=1

t∫
t1

h0
k(τ)dτ � M

2 (t−

t1)+
n
∑

k=1

t∫
t1

h0
k(τ)dτ, t � t1. From here and from (8) it follows that if f (t)≡ 1 and t0 = t1

then for Eq. (4) the conditions 1) and 2) of Theorem 1 are fulfilled. Since g1(t), ...,gn(t)
are periodic functions we have

gk(t) = gk +g0
k(t), t � t1. (20)
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where gk ≡ 1
Tk

t1+Tk∫
t1

gk(τ)dτ, k = 1,n ,

t1+Tk∫
t1

g0
k(τ)dτ = 0. (21)

Let us take λ ≡−
+∞∫
t1

H0(τ)dτ −
n
∑

k=1
gk . Then from (20) it follows that

λ +
t∫

t1

H(τ)dτ = −
+∞∫
t

H0(τ)dτ +
n

∑
k=1

g0
k(t), t � t1. (22)

Since g0
1(t) �≡ 0, we can find the maximum and minimum points. Let η+ and η− be

maximum and minimum point of g0
1(t) on [t1;t1 +T1] respectively. Obviously g0

1(t) =
h0

1(t) , t � t1 . Therefore

g0
1(η+) � M, g0

1(η−) � −M. (23)

Let g0
k(ηk) = 0, ηk ∈ [t1;t1 +Tk], k = 2,n (the existence of ηk(k = 2,n) follows from

(21)). Chose Δ > 0 so small that Δ < δ and that

g0
1(t) >

M
2

, |t−η+| � 2Δ; (24)

g0
1(t) < −M

2
|t−η−| � 2Δ; (25)

|g0
k(t)| �

M
8n

, |t−ηk| � 2Δ, k = 2,n (26)

By virtue of Lemma 1 we chose infinitely large sequences of positive integers {n±j }+∞
j=1 ,

{m±
k j}+∞

j=1, k = 2,n such, that |n±j T1 + η± − (m±
k jTk + ηk)| < Δ, k = 2,n, j = 1,2, ... .

Then from (13), (22), (24) and (26) it follows, that λ +
t∫

t1
H(τ)dτ � M

4 , t ∈ [n+
j T1 +

η+−Δ;n+
j T1 +η+ +Δ], j = 1,2, ..., and from (15), (20), (22), (25) and (26) it follows

that λ +
t∫

t1
H(τ)dτ � −M

4 , t ∈ [n−j T1 +η−−Δ;n−j T1 +η−+Δ], j = 1,2, ... . From here

it follows that if t0 = t1 then for Eq. (4) the conditions 3) and 4) of Theorem 1 are
fulfilled. The theorem is proved. �

REMARK 2. Due to remark 1 we conclude that Theorem 2 is a generalization of
Corollary 1 from [12].

REMARK 3. Let ΔH(t) be a real valued continuous function on [t0;+∞) such

that sup
t�t1

∣∣ t∫
t1

ΔH(τ)dτ
∣∣ < M

8 , for each t1 � T , and for some T � t0 (the number M is
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defined in the proof of Theorem 2). Slightly changing the proof of Theorem 1 it can be
shown that the equation

φ ′′(t)+ [H(t)+ ΔH(t)]φ(t) = 0, t � t0.

is oscillatory if H(t) satisfies of the conditions of Theorem 2.

EXAMPLE 1. Consider the generalized Mathieu equation

φ ′′(t)+
[
a+

+∞

∑
k=1

ak cos(λkt + ωk)+
m

∑
k=1

bkt
αk cos(μkt

βk)+
p

∑
k=1

ckt
γk sin(νkt

δk )
]
φ(t) = 0,

(27)
t � t0 , where a , ak , λk , ωk (k = 1,2, . . .) , bk , αk , μk , βk (k = 1,m) , ck , γk , νk , δk

(k = 1, p) are some real constants. We suppose that akλk �= 0, k = 1,2, . . . , bkμk �= 0,

k = 1,m , ckνk �= 0, k = 1, p . Let a � 0, 1
λ1

+ ...+ 1
λn

be rational independent,
+∞
∑

k=1
|ak|<

+∞ , 2
+∞
∑

k=n+1

∣∣ ak
λk

∣∣ < 1
8 max

1�k�n

{∣∣ ak
λk

∣∣} , αk−βk+1< 0, k = 1,m , λk−δk+1 < 0, k = 1, p .

Here H0(t) =
m
∑

k=1
bktαk cos(μktβk)+

p
∑

k=1
cktγk sin(νktδk) , Hk(t) = a

n + ak cos(λkt + ωk) ,

k = 1,n , H(t) =
n
∑

k=0
Hk(t) , ΔH(t) =

+∞
∑

k=n+1
ak cos(λkt + ωk) , t � t0 , M = max

1�k�n

{∣∣ ak
λk

∣∣}.

We can check the convergence of
+∞∫
t0

H0(τ)dτ by integrating by parts of the elementary

integrals
t∫

t0
ταk cos(μkτβk)dτ , k = 1,m ,

t∫
t0

τγk sin(νkτδk )dτ , k = 1, p , and then tending

t to +∞ . Obviously the minimal periods of H1(t), . . . ,Hn(t) are T1 = 2π
λ1

, . . . ,Tn = 2π
λn

respectively. Therefore from the rational independence of 1
λ1

, . . . , 1
λn

it follows the

rational independence of T1, . . . ,Tn , It is not difficult to check that
t0+Tk∫
t0

Hk(τ)dτ =

a
n � 0, k = 1,n . From the convergence of

+∞
∑

k=n+1
|ak| it follows that ΔH(t) is a con-

tinuous function on [t0;+∞) and |
t∫

t1
ΔH(τ)dτ| �

+∞
∑

k=n+1
| ak

λk
[sin(λkt + ωk)− sin(λkt1 +

ωk)]| � 2
+∞
∑

k=n+1
| ak

λk
|, t � t1 � t0 . Without loss of generality we can take that | a1

λ1
| =

max
1�k�n

{| ak
λk
|} and t0 = −ω1

λ1
. Then obviously (recall the definition of M ; see above)

M = | min
t∈[t0;t0+T1]

t∫
t0

a1 cos(λ1τ +ω1)dτ| = max
t∈[t0;t0+T1]

t∫
t0

a1 cos(λ1τ +ω1)dτ = | a1
λ1
| . Hence

we have sup
t�t1

|
t∫

t1
ΔH(τ)dτ| < M

8 , t � t1 � t0. . Thus we see that all the conditions of

Theorem 2 and Remark 3 are fulfilled for Eq. (27). Therefore Eq. (27) is oscillatory.
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It is easy to verify that the oscillation criterion of Ph. Hartman (see [2], p. 138,
Theorem 52) is not applicable to Eq. (27) (in general to Eq. (4)). and the oscillation
criterion of I. V. Kamenev [3] is not applicable to Eq (27) for a = 0 (in general to Eq.

(4) for
n
∑

k=1

1
Tk

t0+Tk∫
t0

Hk(τ)dτ = 0). It is hard to verify (if it is possible) the oscillatory

behavior of Eq. (27) by using oscillation criteria of J. S. W. Wong (see [2], p. 100,
Theorem 1), Y. Jan (see [4], Theorem 1), M. K. Kwong (see [6], p. 16, Theorem 11),
Q. Kong (see [7], p. 265, Theorem 2.3), A. Elbert (see [10], p. 2, Theorem 2).

REMARK 4. (a hypothesis). If T1 and T2 are rational dependent then F1(t) ≡
H1(t)+H2(t), t � t0, is a periodic function with some period T̃1 > 0. We conjecture
that this statement is true for the general case, i. e. if T1, ...,Tn are rational dependent
then there exist periodic functions F1(t), ...,Fm(t) , (m < n) with rational independent

periods T̃1, ..., T̃m respectively such that
n
∑

k=1
Hk(t) =

m
∑

k=1
Fk(t), t � t0 . If this statement is

true then it is easy to show that
n
∑

k=1

1
Tk

t0+Tk∫
t0

Hk(τ)dτ =
m
∑

k=1

1
T̃k

t0+T̃k∫
t0

Fk(τ)dτ , and therefore

the condition of rational independence of T1, ...,Tn can be omitted from the formulation
of Theorem 2.
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