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MONOTONE DYNAMICS OR NOT? DYNAMICAL CONSEQUENCES

OF VARIOUS MECHANISMS FOR DELAYED LOGISTIC GROWTH

TORSTEN LINDSTRÖM

Abstract. In this paper we interpret the global stability properties of the delayed single species
chemostat in terms of monotone dynamics on an asymptotically invariant hyperplane in the state
space. The consequence is a translation of advanced analysis and delay differential equations
into sign checks and ordinary differential equations for an important single species model with
explicit resource dynamics. Complete proofs are included, since the limiting behavior at asymp-
totically invariant sets may not agree with the limiting behavior of the original system even in
the finite dimensional case (Thieme (1992)).

A delayed logistic equation based on explicit resource dynamics falls out as a limiting case
of the chemostat and we claim this to be a new mechanistic interpretation of delayed logistic
models. We continue by comparing these results to several other delayed logistic models that
has been mechanistically justified in the literature. We conclude that monotone dynamics apply
in several cases. We improve one global stability result that cannot be obtained with by the use of
monotone dynamics and end up by pointing out the dynamical differences between Hutchinson’s
(1948) delayed logistic equation and those with mechanistic interpretations.
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[23] J. MALLET-PARET AND G. R. SELL, The Poincaré-Bendixson theorem for monotone cyclic feedback

systems with delay, Journal of Differential Equations 125 (1996), 441–489.
[24] A. J. NICHOLSON, An outline of the dynamics of animal populations, Australian Journal of Zoology

2 (1954), 9–65.
[25] A. J. NICHOLSON, The self-adjustment of populations to chance, Cold Spring Harbor Symposia on

Quantitative Biology, 22 (1957), 153–173.
[26] R. M. NISBET AND W. S. C. GURNEY, Modelling Fluctuating Populations, The Blackburn Press, P.

O. Box 287, Caldwell, New Jersey, 07006 USA, 1982.
[27] W. RUDIN, Principles of Mathematical Analysis, McGraw-Hill, Auckland, third edition, 1987.
[28] D. SINGER, Stable orbits and bifurcation of maps of the interval, SIAM Journal of Applied Mathe-

matics 35, 2 (1978), 260–267.
[29] H. L. SMITH, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Co-

operative Systems, Providence, R.I., American Mathematical Society, 1995.
[30] H. L. SMITH, An Introduction to Delay Differential Equations with Applications to Life Sciences,

Springer, 2011.
[31] H. L. SMITH AND P. WALTMAN, The Theory of the Chemostat: Dynamics of Microbial Competition,

Cambridge University Press, 1995.
[32] J. W. SO AND J. S. YU, Global attractivity for a population model with time delay, Proceedings of

the American Mathematical Society 123, 9 (1995), 2687–2694.
[33] H. R. THIEME, Convergence results and a Poincaré-Bendixson trichotomy for asymptotically au-
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