
D ifferential
Equations

& Applications

Volume 9, Number 3 (2017), 393–412 doi:10.7153/dea-2017-09-28

TWO–SCALE CONVERGENCE IN THIN DOMAINS WITH

LOCALLY PERIODIC RAPIDLY OSCILLATING BOUNDARY

IRINA PETTERSSON

Abstract. The aim of this paper is to adapt the notion of two-scale convergence in Lp to the
case of a measure converging to a singular one. We present a specific case when a thin cylinder
with locally periodic rapidly oscillating boundary shrinks to a segment, and the corresponding
measure charging the cylinder converges to a one-dimensional Lebegues measure of an interval.
The method is then applied to the asymptotic analysis of linear elliptic operators with locally pe-
riodic coefficients and a p-Laplacian stated in thin cylinders with locally periodic rapidly varying
thickness.
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