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POSITIVE SOLUTIONS FOR A CLASS OF FRACTIONAL

DIFFERENCE BOUNDARY VALUE PROBLEMS
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(Communicated by Chris Goodrich)

Abstract. In this paper using the fixed point index and the Leggett-Williams fixed point theorem
we establish the existence and multiplicity of positive solutions for a class of fractional difference
boundary value problems.

1. Introduction

In this paper we study the existence and multiplicity of positive solutions for the
fractional difference boundary value problem{

−Δν
ν−3y(t) = f (t + ν −1,y(t + ν −1)), t ∈ [0,b+2]N0,

y(ν −3) = [Δα
ν−3y(t)]|t=ν−α−2 = [Δβ

ν−3y(t)]|t=ν+b+2−β = 0,
(1.1)

where 2 < ν � 3, 1 < β < 2, ν −β > 1, 0 < α < 1, b > 3 (b∈ N) , Δν
ν−3 is a discrete

fractional operator. For the nonlinear term f , we assume that
(H0) f (t + ν − 1, ·) : [ν − 1,b+ ν + 1]Nν−1 ×R

+ → R
+ is a continuous function

(R+ := [0,+∞)).
Note that, in this paper we use [a,b]Na to represent {a,a+1,a+2, · · ·,b} (b−a∈

N1) , where Na := {a,a+1,a+2, · · ·} .

REMARK 1. If we delete α in (1.1), then [Δα
ν−3y(t)]|t=ν−α−2 is changed to y(ν −

2) . Indeed, the fractional condition at ν −α − 2 and the Dirichlet condition at ν − 2
are equivalent. Note[

Δα
ν−3y(t)

]∣∣∣
t=ν−α−2

=
[ 1

Γ(−α)

t+α

∑
s=ν−3

(t−α −1)−α−1y(s)
]∣∣∣

t=ν−α−2

=
1

Γ(−α)

ν−2

∑
s=ν−3

(ν −α − s−3)−α−1y(s)

=
1

Γ(−α)
(−α)−α−1y(ν −3)+ y(ν −2).
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As a result, y(ν −3) = 0 implies that
[
Δα

ν−3y(t)
]∣∣∣

t=ν−α−2
= y(ν −2) . Consequently,

in (1.1), [Δα
ν−3y(t)]|t=ν−α−2 = 0 could be replaced by y(ν −2) = 0.

In [1, 2, 3, 4], the authors developed the fundamental theory of discrete delta and
nabla fractional calculus and applications to various difference equations were pre-
sented in the literature (see for example [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19] and the references therein). In [5] the author studied the discrete fractional
boundary value problems of order less than one{

(α−1Δαu)(t) = f (t + α −1,u(t + α −1)), t ∈ [0,T ]N, α ∈ (0,1],
au(α −1)+bu(α +T ) = c,

using the Banach fixed point theorem, and in [6, 7, 8] the authors used a similar method
to study existence and uniqueness of solutions for some boundary value problems of
fractional difference equations. In [9] the authors used the Guo-Krasnoselskii’s fixed
point theorem in a cone to study existence of positive solutions for the three-point
boundary value problem of the nonlinear Caputo fractional difference equation⎧⎪⎨⎪⎩

Δα
Cu(t)+a(t + α −1) f (u(θ (t + α −1))) = 0, t ∈ N0,T ,

u(α −3) = Δ2u(α −3) = 0,

u(T + α) = λ Δ−βu(η + β ),

under the superlinear and sublinear conditions:

f0 = lim
u→0+

f (u)
u

= 0 or ∞, f∞ = lim
u→∞

f (u)
u

= ∞ or 0. (1.2)

In [10, 11, 12, 13, 19] the authors used fixed point theorems and condition (1.2) to
study many types of discrete fractional boundary value problems with nonnegative and
semipositone nonlinearities.

In this paper, we use the fixed point index to obtain three existence and multiplicity
theorems of positive solutions with a nonnegative nonlinearity. Our growth conditions
on the nonlinearity improves that in (1.2) (see conditions (H1)–(H4) in section 3). We
also use the Leggett-Williams fixed point theorem to obtain a result of twin positive
solutions with a semipositone nonlinearity.

2. Preliminaries

We introduce some background materials from discrete fractional calculus; for
more details we refer the reader to [1, 2, 3, 4, 16].

DEFINITION 1. We define tν := Γ(t+1)
Γ(t+1−ν) for any t,ν ∈ R for which the right-

hand side is well-defined. We use the convention that if t + 1− ν is a pole of the
Gamma function and t +1 is not a pole, then tν = 0.
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DEFINITION 2. For ν > 0, the ν− th fractional sum of a function f is

Δ−ν
a f (t) =

1
Γ(ν)

t−ν

∑
s=a

(t− s−1)ν−1 f (s), for t ∈ Na+ν .

We also define the ν− th fractional difference for ν > 0 by

Δν
a f (t) = ΔNΔν−N

a f (t), for t ∈ Na+N−ν ,

where N ∈ N with 0 � N−1 < ν � N .

LEMMA 1. For t,ν ∈ R , we have Δtν = νtν−1 if tν , tν−1 are well-defined.

LEMMA 2. Let N ∈ N with 0 � N−1 < ν � N . Then

Δ−ν
0 Δν

ν−Ny(t) = y(t)+ c1t
ν−1 + c2t

ν−2 + · · ·+ cNtν−N (ci ∈ R, 1 � i � N).

LEMMA 3. For α > 0 and ν ∈ R , we have Δα
ν tν = Γ(ν+1)tν−α

Γ(ν+1−α) .

We now construct the Green’s function associated with (1.1). For this, we let
h : [ν−1,b+ν +1]Nν−1 →R be a continuous function. Then we consider the fractional
difference boundary value problem{

−Δν
ν−3y(t) = h(t + ν −1), t ∈ [0,b+2]N0,

y(ν −3) = [Δα
ν−3y(t)]|t=ν−α−2 = [Δβ

ν−3y(t)]|t=ν+b+2−β = 0,
(2.1)

where ν,α,β ,b are as in (1.1). The following two lemmas are in [19] (for completeness
we present their proofs).

LEMMA 4. (see [19, Theorem 2.1]) The problem (2.1) has a unique solution

y(t) =
b+2

∑
s=0

G(t,s)h(s+ ν −1), t ∈ [ν −1,b+ ν +1]Nν−1 , (2.2)

where

G(t,s) =
1

Γ(ν)

⎧⎪⎨⎪⎩
tν−1(ν+b−β−s+1)ν−β−1

(ν+b−β+2)ν−β−1 − (t− s−1)ν−1, 0 � s < t−ν +1 � b+2,

tν−1(ν+b−β−s+1)ν−β−1

(ν+b−β+2)ν−β−1 , 0 � t−ν +1 � s � b+2.

(2.3)

Proof. From Lemma 2 we have

y(t)=− 1
Γ(ν)

t−ν

∑
s=0

(t−s−1)ν−1h(s+ν−1)+c1t
ν−1+c2t

ν−2+c3t
ν−3, (ci ∈R, 1 � i � 3).
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The boundary condition y(ν −3) = 0 guarantees that c3 = 0. Therefore, we have

Δα
ν−3y(t) = c1Δα

ν−3t
ν−1 + c2Δα

ν−3t
ν−2−Δ−(ν−α)

0 h(t + ν −1)

= c1
Γ(ν)tν−α−1

Γ(ν −α)
+ c2

Γ(ν −1)tν−α−2

Γ(ν −α −1)

− 1
Γ(ν −α)

t−ν+α

∑
s=0

(t − s−1)ν−α−1h(s+ ν −1).

Using this and [Δα
ν−3y(t)]|t=ν−α−2 = 0 gives c2 = 0. Moreover, we obtain

[Δβ
ν−3y(t)]|ν+b+2−β

=

[
c1

Γ(ν)tν−β−1

Γ(ν −β )
− 1

Γ(ν −β )

t−ν+β

∑
s=0

(t − s−1)ν−β−1h(s+ ν −1)

]∣∣∣
t=ν+b+2−β

= 0,

and

c1 =
1

Γ(ν)(ν +b+2−β )ν−β−1

b+2

∑
s=0

(ν +b−β − s+1)ν−β−1h(s+ ν −1).

As a result, we have

y(t) = − 1
Γ(ν)

t−ν

∑
s=0

(t− s−1)ν−1h(s+ ν −1)

+
tν−1

Γ(ν)(ν +b+2−β )ν−β−1

b+2

∑
s=0

(ν +b−β − s+1)ν−β−1h(s+ ν −1).

Thus (2.2) holds. This completes the proof. �

LEMMA 5. (see [19, Theorem 2.2]) The Green function (2.3) has the properties
(i) G(t,s) > 0 , (t,s) ∈ [ν −1,b+ ν +1]Nν−1 × [0,b+2]N0,
(ii) q(t)G(b+ ν +1,s) � G(t,s) � G(b+ ν +1,s) , (t,s) ∈ [ν −1,b+ ν +1]Nν−1

× [0,b+2]N0, where q(t) = tν−1

(b+ν+1)ν−1 .

Proof. Clearly G(t,s) > 0 when 0 � t−ν +1 � s � b+2. If 0 � s < t−ν +1
� b+2, we have

ΔtG(t,s) =
(ν −1)tν−2(ν +b−β − s+1)ν−β−1

Γ(ν)(ν +b−β +2)ν−β−1
− (ν −1)(t− s−1)ν−2

Γ(ν)

=
(ν −1)(t− s−1)ν−2

Γ(ν)

[
tν−2(ν +b−β − s+1)ν−β−1

(t− s−1)ν−2(ν +b−β +2)ν−β−1
−1

]
.
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Let

F(t,s,β ) =
tν−2(ν +b−β − s+1)ν−β−1

(t− s−1)ν−2(ν +b−β +2)ν−β−1

=
tν−2Γ(b+4)

(t− s−1)ν−2Γ(b− s+3)
(b+ ν −β − s+1)−s−1.

Then F(t,s,β ) is nondecreasing in β (1 < β < 2) since Δβ F(t,s,β ) > 0. This implies

F(t,s,β ) > F(t,s,1) =
tν−2(ν +b− s)ν−2

(t − s−1)ν−2(ν +b+1)ν−2

=
t(t−1) · · · (t−s)(b+3)(b+2) · · · (b−s+3)

(t−ν+2)(t−ν+1) · · ·(t−ν+2−s)(ν+b+1)(ν+b) · · ·(ν+b+1−s)
.

Since (t−i)(b+3−i)
(t−ν+2−i)(ν+b+1−i) � 1(0 � i � s) , we see that F(t,s,β ) > F(t,s,1) � 1 and thus

ΔtG(t,s) � 0. As a result G(t,s) is nondecreasing in t , i.e.,

G(t,s) � G(s+ ν −1,s) =
Γ(s+ ν)Γ(b+ ν −β − s+2)Γ(b+4)

Γ(ν)Γ(s+1)Γ(b+3− s)Γ(ν +b−β +3)
> 0.

Thus (i) of Lemma 5 is true.
When 0 � t−ν +1 � s � b+2, we have

ΔGt(t,s) =
(ν −1)tν−2(ν +b−β − s+1)ν−β−1

Γ(ν)(ν +b−β +2)ν−β−1
> 0,

and thus G(t,s) � G(s+ ν −1,s). Moreover,

G(t,s)
G(b+ ν +1,s)

=

tν−1(ν+b−β−s+1)ν−β−1

(ν+b−β+2)ν−β−1

(b+ν+1)ν−1(ν+b−β−s+1)ν−β−1

(ν+b−β+2)ν−β−1 − (b+ ν −1)ν−1

�
tν−1(ν+b−β−s+1)ν−β−1

(ν+b−β+2)ν−β−1

(b+ν+1)ν−1(ν+b−β−s+1)ν−β−1

(ν+b−β+2)ν−β−1

=
tν−1

(b+ ν +1)ν−1 .

When 0 � s < t − ν + 1 � b+2, from (i) we have ΔGt(t,s) � 0 and then G(s+ ν −
1,s) < G(t,s) � G(b+ ν +1,s). Moreover,

G(t,s)
G(b+ ν +1,s)

=

tν−1(ν+b−β−s+1)ν−β−1

(ν+b−β+2)ν−β−1 − (t− s−1)ν−1

(b+ν+1)ν−1(ν+b−β−s+1)ν−β−1

(ν+b−β+2)ν−β−1 − (b+ ν −1)ν−1

=
tν−1

[
(ν+b−β−s+1)ν−β−1

(ν+b−β+2)ν−β−1 − (t−s−1)ν−1

tν−1

]
(b+ ν +1)ν−1

[
(ν+b−β−s+1)ν−β−1

(ν+b−β+2)ν−β−1 − (b+ν−s)ν−1

(b+ν+1)ν−1

] ,
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where

(t−s−1)ν−1

tν−1

(b+ν−s)ν−1

(b+ν+1)ν−1

=
(t− s−1)ν−1(b+ ν +1)ν−1

tν−1(b+ ν − s)ν−1

=
(t−ν +1)(t−ν) · · · (t−ν +1− s)(ν +b+1)(ν +b) · · ·(ν +b+1− s)

t(t −1) · · ·(t − s)(b+2)(b+1) · · ·(b− s+2)
� 1,

i.e.,
(t− s−1)ν−1

tν−1 � (b+ ν − s)ν−1

(b+ ν +1)ν−1 .

Therefore, we have

(ν+b−β−s+1)ν−β−1

(ν+b−β+2)ν−β−1
− (t−s−1)ν−1

tν−1 � (ν+b−β−s+1)ν−β−1

(ν+b−β+2)ν−β−1
− (b+ν−s)ν−1

(b+ν+1)ν−1 ,

and
G(t,s)

G(b+ ν +1,s)
� tν−1

(b+ ν +1)ν−1 .

Consequently, (ii) of Lemma 5 holds. This completes the proof. �

Let ϕ(s+ ν − 1) = G(b+ ν + 1,s) for s ∈ [0,b+ 2]N0 . Then ϕ(t) = G(b+ ν +
1,t−ν +1) for t ∈ [ν −1,b+ ν +1]Nν−1 . From Lemma 5 we have the inequalities

b+ν+1

∑
t=ν−1

q(t)ϕ(t) ·ϕ(s+ ν −1) �
b+ν+1

∑
t=ν−1

G(t,s)ϕ(t) �
b+ν+1

∑
t=ν−1

ϕ(t) ·ϕ(s+ ν −1), (2.4)

for s ∈ [0,b+2]N0 . For convenience, we let κ1 =
b+ν+1

∑
t=ν−1

q(t)ϕ(t) and κ2 =
b+ν+1

∑
t=ν−1

ϕ(t) .

Let E be the collection of all maps from [ν − 3,b + ν + 1]Nν−3 to R , which is
equipped with the max norm, ‖ · ‖ . Then E is a Banach space. Define a set P ⊂ E by

P =
{
y ∈ E : y(t) � 0, t ∈ [ν −1,b+ ν +1]Nν−1

}
.

Then P is a cone on E .
From Lemma 4, we have that (1.1) is equivalent to the sum equation

y(t) =
b+2

∑
s=0

G(t,s) f (s+ ν −1,y(s+ ν −1)) := (Ay)(t), t ∈ [ν −1,b+ ν +1]Nν−1 ,

(2.5)
where G is defined in (2.3). From (H0) it is immediate that A : P → P is completely
continuous. It is clear that y ∈ P \ {0} is a positive solution for (1.1) if and only if
y ∈ P\ {0} is a fixed point of A .
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LEMMA 6. Let P0 = {y∈P : y(t)� q(t)‖y‖,∀y∈ t ∈ [ν−1,b+ν+1]Nν−1} . Then
A(P) ⊂ P0 .

This is a direct result from (ii) of Lemma 5.

LEMMA 7. (see [20]) Let E be a real Banach space and P a cone on E . Suppose
that Ω ⊂ E is a bounded open set and that A : Ω∩P → P is a continuous compact
operator. If there exists ω0 ∈ P\ {0} such that

ω −Aω �= λ ω0, ∀λ � 0, ω ∈ ∂Ω∩P,

then i(A,Ω∩P,P) = 0 , where i denotes the fixed point index on P.

LEMMA 8. (see [20]) Let E be a real Banach space and P a cone on E . Suppose
that Ω ⊂ E is a bounded open set with 0 ∈ Ω and that A : Ω∩P → P is a continuous
compact operator. If

ω −λAω �= 0, ∀λ ∈ [0,1], ω ∈ ∂Ω∩P,

then i(A,Ω∩P,P) = 1 .

DEFINITION 3. Given a cone P in a real Banach space E , a functional α : P →
R

+ is said to be nonnegative continuous concave on P , provided α(tx + (1− t)y) �
tα(x)+ (1− t)α(y) , for all x,y ∈ P with t ∈ [0,1] .

Let a,b,r > 0 be constants and let the functional α be as defined above. Let
Pr = {y ∈ P : ‖y‖ < r} and P{α,a,b} = {y ∈ P : α(y) � a,‖y‖ � b} .

LEMMA 9. (Leggett-Williams fixed point theorem, see [20]) Let E be a real
Banach space, P ⊂ E a cone in E . Suppose that A : Pc → Pc (c > 0 is a constant) is
a continuous compact operator, and α is a nonnegative continuous concave functional
on P such that α(y) � ‖y‖ for y ∈ Pc . Assume there exist 0 < a < b < d � c such that

(i) {y ∈ P(α,b,d)|α(y) > b} �= /0 and α(Ay) > b for all y ∈ P(α,b,d) ,
(ii) ‖Ay‖ < a for all ‖y‖ � a,
(iii) α(Ay) > b for all y ∈ P(α,b,c) with ‖Ay‖ > d .
Then A has at least three fixed points yi (i = 1,2,3) with

‖y1‖ < a, b < α(y2), ‖y3‖ > a, α(y3) < b.

3. Main results

Now, we list our assumptions on f in this section.
(H1) liminfy→+∞

f (t,y)
y > κ−1

1 uniformly on t ∈ [ν −1,b+ ν +1]Nν−1 .

(H2) limsupy→0+
f (t,y)

y < κ−1
2 uniformly on t ∈ [ν −1,b+ ν +1]Nν−1 .

(H3) liminfy→0+
f (t,y)

y > κ−1
1 uniformly on t ∈ [ν −1,b+ ν +1]Nν−1 .

(H4) limsupy→+∞
f (t,y)

y < κ−1
2 uniformly on t ∈ [ν −1,b+ ν +1]Nν−1 .
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(H5) There exists M > 0 such that f (t,y) < κ−1
2 M for (t,y) ∈ [ν − 1,b + ν +

1]Nν−1 × [0,M] .
Let Bρ := {y ∈ E : ‖y‖ < ρ} for ρ > 0.

THEOREM 1. Suppose that (H0)–(H2) hold. Then (1.1) has at least one positive
solution.

Proof. From (H1), there exist ε1 > 0 and d1 > 0 such that

f (t,y) � (κ−1
1 + ε1)y−d1, for y ∈ R

+, t ∈ [ν −1,b+ ν +1]Nν−1 . (3.1)

This implies

(Ay)(t) �
b+2

∑
s=0

G(t,s)[(κ−1
1 + ε1)y(s+ ν −1)−d1]

� (κ−1
1 + ε1)

b+2

∑
s=0

G(t,s)y(s+ ν −1)−d1κ2, for y ∈ R
+,

t ∈ [ν −1,b+ ν +1]Nν−1 .

(3.2)

In what follows, we prove that there is a R > 0 such that

y �= Ay+ λ ϕ∗, ∀y ∈ ∂BR ∩P, λ � 0, (3.3)

where ϕ∗ is a fixed element on P0 . If the claim is false, there exists y0 ∈ ∂BR ∩P and
λ0 � 0 such that

y0 = Ay0 + λ0ϕ∗.

This implies:
(i) y0 ∈ P0 since A(P) ⊂ P0 and ϕ∗ ∈ P0 ,
(ii) y0(t) � (Ay0)(t), for t ∈ [ν −1,b+ ν +1]Nν−1 .
From (3.2), we have

y0(t) � (κ−1
1 + ε1)

b+2

∑
s=0

G(t,s)y0(s+ ν −1)−d1κ2, for t ∈ [ν −1,b+ ν +1]Nν−1 .

(3.4)
Multiplying both sides of (3.4) by ϕ(t) , and from (2.4) we have

b+ν+1

∑
t=ν−1

y0(t)ϕ(t) �
b+ν+1

∑
t=ν−1

ϕ(t)

[
(κ−1

1 + ε1)
b+2

∑
s=0

G(t,s)y0(s+ ν −1)−d1κ2

]

� (κ−1
1 + ε1)κ1

b+2

∑
s=0

y0(s+ ν −1)ϕ(s+ ν −1)−d1κ2
2

= (1+ ε1κ1)
b+ν+1

∑
t=ν−1

y0(t)ϕ(t)−d1κ2
2 .

(3.5)
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As a result, we have
b+ν+1

∑
t=ν−1

y0(t)ϕ(t) � ε−1
1 d1κ−1

1 κ2
2 .

Note that y0 ∈ P0 , and then

‖y0‖
b+ν+1

∑
t=ν−1

q(t)ϕ(t) � ε−1
1 d1κ−1

1 κ2
2 , and ‖y0‖ � ε−1

1 d1κ−2
1 κ2

2 .

Therefore, we can choose R > ε−1
1 d1κ−2

1 κ2
2 so (3.3) is true. From Lemma 7 we have

i(A,BR ∩P,P) = 0. (3.6)

From (H2), there exist r ∈ (0,R) and ε2 ∈ (0,κ−1
2 ) such that

f (t,y) � (κ−1
2 − ε2)y, for y ∈ [0,r], t ∈ [ν −1,b+ ν +1]Nν−1 . (3.7)

This implies

(Ay)(t) � (κ−1
2 −ε2)

b+2

∑
s=0

G(t,s)y(s+ν −1), for y∈ Br, t ∈ [ν −1,b+ν +1]Nν−1 .

(3.8)
Now we prove

y �= λAy, ∀y ∈ ∂Br ∩P, λ ∈ [0,1]. (3.9)

Suppose there exists y1 ∈ ∂Br ∩P , λ1 ∈ [0,1] such that

y1(t) = λ1(Ay1)(t) � (κ−1
2 −ε2)

b+2

∑
s=0

G(t,s)y1(s+ν −1), for t ∈ [ν −1,b+ν +1]Nν−1 .

(3.10)
Multiplying both sides of the above inequality by ϕ(t) , and from (2.4) we have

b+ν+1

∑
t=ν−1

y1(t)ϕ(t) �
b+ν+1

∑
t=ν−1

ϕ(t)

[
(κ−1

2 − ε2)
b+2

∑
s=0

G(t,s)y1(s+ ν −1)

]

� κ2(κ−1
2 − ε2)

b+2

∑
s=0

y1(s+ ν −1)ϕ(s+ ν −1)

= (1− ε2κ2)
b+ν+1

∑
t=ν−1

y1(t)ϕ(t).

(3.11)

This implies
b+ν+1

∑
t=ν−1

y1(t)ϕ(t) ≡ 0 and so y1(t) ≡ 0 for t ∈ [ν −1,b+ ν +1]Nν−1 . This

contradicts y1 ∈ ∂Br ∩P . Hence, (3.9) is true. From Lemma 8 we have

i(A,Br ∩P,P) = 1. (3.12)
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From (3.6) and (3.12) we have

i(A,(BR \Br)∩P,P) = i(A,BR ∩P,P)− i(A,Br∩P,P) = 0−1 = −1 �= 0. (3.13)

Consequently, the operator A has a fixed point in (BR \Br)∩P , i.e., (1.1) has at least
one positive solution in (BR \Br)∩P . This completes the proof. �

THEOREM 2. Suppose that (H0), (H3)–(H4) hold. Then (1.1) has at least one
positive solution.

Proof. From (H3), there exist ε3 > 0 and r > 0 such that

f (t,y) � (κ−1
1 + ε3)y, for y ∈ [0,r], t ∈ [ν −1,b+ ν +1]Nν−1 . (3.14)

Consequently, we have

(Ay)(t) � (κ−1
1 +ε3)

b+2

∑
s=0

G(t,s)y(s+ν−1), for y ∈ [0,r], t ∈ [ν−1,b+ν+1]Nν−1 .

(3.15)
We prove that

y �= Ay+ λ ϕ∗, ∀y ∈ ∂Br ∩P, λ � 0, (3.16)

where ϕ∗∗ is a fixed element on P . Suppose there exists y2 ∈ ∂Br ∩P and λ2 � 0 such
that

y2 = Ay2 + λ2ϕ∗∗.

This implies y2(t) � (Ay2)(t), for t ∈ [ν −1,b+ν +1]Nν−1 . Now with (3.15), we have

y2(t) � (κ−1
1 + ε3)

b+2

∑
s=0

G(t,s)y2(s+ ν −1), for t ∈ [ν −1,b+ ν +1]Nν−1 . (3.17)

Multiplying both sides of (3.17) by ϕ(t) , and from (2.4) we have

b+ν+1

∑
t=ν−1

y2(t)ϕ(t) �
b+ν+1

∑
t=ν−1

ϕ(t)

[
(κ−1

1 + ε3)
b+2

∑
s=0

G(t,s)y2(s+ ν −1)

]

� (κ−1
1 + ε3)κ1

b+2

∑
s=0

y2(s+ ν −1)ϕ(s+ ν −1)

= (1+ ε3κ1)
b+ν+1

∑
t=ν−1

y2(t)ϕ(t).

(3.18)

Hence, we have
b+ν+1

∑
t=ν−1

y2(t)ϕ(t) = 0, and thus y2(t) ≡ 0 for t ∈ [ν −1,b+ν +1]Nν−1 .

This contradicts y2 ∈ ∂Br ∩P . Thus (3.16) holds. From Lemma 7 we have

i(A,Br ∩P,P) = 0. (3.19)
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From (H4), there exists d2 > 0 and ε4 ∈ (0,κ−1
2 ) such that

f (t,y) � (κ−1
2 − ε4)y+d2, for y ∈ R

+, t ∈ [ν −1,b+ ν +1]Nν−1 . (3.20)

Thus

(Ay)(t)� (κ−1
2 −ε4)

b+2

∑
s=0

G(t,s)y(s+ν−1)+d2κ2, for y∈R
+, t ∈ [ν−1,b+ν+1]Nν−1 .

(3.21)
Now we prove there is a R > r (r is defined in (3.14)) such that

y �= λAy, ∀y ∈ ∂BR ∩P, λ ∈ [0,1]. (3.22)

Suppose there exists y3 ∈ ∂BR ∩P , λ3 ∈ [0,1] such that

y3(t)= λ3(Ay3)(t)� (κ−1
2 −ε4)

b+2

∑
s=0

G(t,s)y3(s+ν−1)+d2κ2, for t ∈ [ν−1,b+ν+1]Nν−1 .

(3.23)
Multiplying both sides of the above inequality by ϕ(t) , and from (2.4) we have

b+ν+1

∑
t=ν−1

y3(t)ϕ(t) �
b+ν+1

∑
t=ν−1

ϕ(t)

[
(κ−1

2 − ε4)
b+2

∑
s=0

G(t,s)y3(s+ ν −1)+d2κ2

]

� κ2(κ−1
2 − ε4)

b+2

∑
s=0

y3(s+ ν −1)ϕ(s+ ν −1)+d2κ2
2

= (1− ε4κ2)
b+ν+1

∑
t=ν−1

y3(t)ϕ(t)+d2κ2
2 .

(3.24)

This implies
b+ν+1

∑
t=ν−1

y3(t)ϕ(t) � ε−1
4 d2κ2.

Note that y3 = λ3Ay3 ∈ P0 from Lemma 6. Hence,

‖y3‖ � ε−1
4 d2κ−1

1 κ2.

Taking R > max{r,ε−1
4 d2κ−1

1 κ2} we have (3.22). From Lemma 8 we have

i(A,BR ∩P,P) = 1. (3.25)

As a result, from (3.19) and (3.25) we have

i(A,(BR \Br)∩P,P) = i(A,BR ∩P,P)− i(A,Br∩P,P) = 1−0 = 1 �= 0. (3.26)

Consequently, the operator A has a fixed point in (BR \Br)∩P , i.e., (1.1) has at least
one positive solution in (BR \Br)∩P . This completes the proof. �
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THEOREM 3. Suppose that (H0), (H1), (H3), (H5) hold. Then (1.1) has at least
two positive solutions.

Proof. From (H5), for (t,y) ∈ [ν −1,b+ ν +1]Nν−1 × [0,M] , we have

(Ay)(t) =
b+2

∑
s=0

G(t,s) f (s+ ν −1,y(s+ ν −1))

<
b+2

∑
s=0

G(t,s)κ−1
2 M � κ−1

2 M
b+ν+1

∑
t=ν−1

ϕ(t) = M.

(3.27)

This implies
‖Ay‖ < ‖y‖ for y ∈ ∂BM ∩P. (3.28)

We now show
y �= λAy, ∀y ∈ ∂BM ∩P, λ ∈ [0,1]. (3.29)

Suppose there exists y4 ∈ ∂BM ∩P and λ4 ∈ [0,1] such that y4 = λ4Ay4 . Hence,

(Ay4)(t) � y4(t), for t ∈ [ν −1,b+ ν +1]Nν−1 .

Consequently, ‖Ay4‖ � ‖y4‖ , and this contradicts (3.28). Thus (3.29) holds. From
Lemma 8 we have

i(A,BM ∩P,P) = 1. (3.30)

Note that we can choose R > M > r such that (3.6) and (3.19) are satisfied. Now with
(3.30), we obtain

i(A,(BR \BM)∩P,P) = i(A,BR ∩P,P)− i(A,BM ∩P,P) = 0−1 = −1 �= 0,

i(A,(BM \Br)∩P,P) = i(A,BM ∩P,P)− i(A,Br∩P,P) = 1−0 = 1 �= 0.
(3.31)

As a result, the operator A has two fixed points in (BR \BM)∩P and (BM \Br)∩P ,
respectively. Therefore, (1.1) has at least two positive solutions. This completes the
proof. �

Consider the semipositone condition:
(H0) ′ f (t + ν − 1, ·) : [ν − 1,b+ ν + 1]Nν−1 ×R

+ → R is a continuous function,
and moreover, there exists a positive constant M1 > 0 such that

f (t,y) � −M1, for all (t,y) ∈ [ν −1,b+ ν +1]Nν−1 ×R
+.

In the following we replace (H0) with (H0) ′ .
Let q0 := mint∈[ν−1,b+ν+1]Nν−1

q(t) = mint∈[ν−1,b+ν+1]Nν−1

tν−1

(b+ν+1)ν−1 > 0.

THEOREM 4. Suppose that (H0) ′ holds. Moreover, there exist positive constants
e,a,c,N with M1κ2q

−1
0 < e < e+M1κ2 < a < q2

0c, q−1
0 < N < q0

c
a such that

(H6) f (t,y) < e
κ2

−M1 for t ∈ [ν −1,b+ ν +1]Nν−1 , 0 � y � e,
(H7) f (t,y) � a

q0κ2
N−M1 for t ∈ [ν −1,b+ ν +1]Nν−1 , a−M1κ2 � y � a

q2
0
,

(H8) f (t,y) � c
κ2

−M1 for t ∈ [ν −1,b+ ν +1]Nν−1 , 0 � y � c.
Then (1.1) has at least two positive solutions.
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Proof. Let ω be a solution of{
−Δν

ν−3y(t) = 1, t ∈ [0,b+2]N0,

y(ν −3) = [Δα
ν−3y(t)]|t=ν−α−2 = [Δβ

ν−3y(t)]|t=ν+b+2−β = 0,
(3.32)

where ν,α,β ,b are as in (1.1). Define z = M1ω , and then from Lemma 4, we have

z(t) = M1ω(t) = M1

b+2

∑
s=0

G(t,s) � M1

b+2

∑
s=0

ϕ(s+ ν −1) = M1

b+ν+1

∑
s=ν−1

ϕ(s) = M1κ2.

We note that (1.1) (under condition (H0) ′ ) has a positive solution y if and only if
y+ z = ỹ is a solution of the problem{

−Δν
ν−3y(t) = f̃ (t + ν −1,y(t + ν −1)− z(t + ν −1)), t ∈ [0,b+2]N0,

y(ν −3) = [Δα
ν−3y(t)]|t=ν−α−2 = [Δβ

ν−3y(t)]|t=ν+b+2−β = 0,
(3.33)

and ỹ(t) � z(t) for t ∈ [ν −1,b+ ν +1]Nν−1 , where ν,α,β ,b are as in (1.1) and

f̃ (t,y) =

{
f (t,y)+M1, (t,y) ∈ [ν −1,b+ ν +1]Nν−1 ×R

+,

f (t,0)+M1, (t,y) ∈ [ν −1,b+ ν +1]Nν−1 × (−∞,0).

For y ∈ P , we define the operator

(By)(t) =
b+2

∑
s=0

G(t,s) f̃ (s+ν−1,y(s+ν−1)−z(s+ν−1)), for t ∈ [ν−1,b+ν+1]Nν−1 .

Note that q0 > 0. Then from Lemma 6 we have B(P)⊂ P1 , where P1 = {y∈ P : y(t) �
q0‖y‖,∀t ∈ [ν−1,b+ν+1]Nν−1} . We now show that all the conditions of Lemma 9 are
satisfied. We first define the nonnegative, continuous concave functional α : P → R

+

by α(y) = mint∈[ν−1,b+ν+1]Nν−1
|y(t)| . For each y ∈ P , we see that α(y) � ‖y‖ . Next

we prove that B(Pc) ⊂ Pc . Let y ∈ Pc . Then for t ∈ [ν −1,b+ ν +1]Nν−1 , we have

(i) if y(t) � z(t) , then 0 � y(t)− z(t) � y(t) � c and f̃ (t,y(t)− z(t)) = f (t,y(t)−
z(t))+M1 � 0. From (H8) we have f̃ (t,y(t)− z(t)) � c

κ2
.

(ii) if y(t) < z(t) , then y(t)− z(t) < 0 and f̃ (t,y(t)− z(t)) = f (t,0) +M1 � 0.
From (H8) we have f̃ (t,y(t)− z(t)) � c

κ2
.

Therefore, we have proved that, if y ∈ Pc , then f̃ (t,y(t)− z(t)) � c
κ2

for t ∈
[ν −1,b+ ν +1]Nν−1 . Then,

‖By‖ = max
t∈[ν−1,b+ν+1]Nν−1

b+2

∑
s=0

G(t,s) f̃ (s+ ν −1,y(s+ ν −1)− z(s+ ν −1))

� c
κ2

b+2

∑
s=0

ϕ(s+ ν −1)

= c.
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This implies B(Pc) ⊆ Pc . If y ∈ Pe , then (H6) yields f̃ (t,y(t)− z(t)) � e
κ2

for t ∈
[ν −1,b+ ν +1]Nν−1 . Thus B : Pe → Pe , i.e., assumption (ii) of Lemma 9 holds.

Let y(t) = a
q2
0
, for t ∈ [ν −1,b+ ν +1]Nν−1 . Then y ∈ P , α(y) = a/q2

0 > a , i.e.,

{y ∈ P(α,a, a
q2
0
) : α(y) > a} �= /0 . Moreover, if y ∈ P(α,a, a

q2
0
) , then α(y) � a , and

a � ‖y‖ � a
q2
0
. Thus, 0 < a−M1κ2 � y(t)− z(t) � y(t) � a

q2
0
,t ∈ [0,1] . From (H7) we

obtain f̃ (t,y(t)− z(t)) � a
q0κ2

N for t ∈ [ν − 1,b+ ν + 1]Nν−1 . From the definition of
α , we have

α(By) = min
t∈[ν−1,b+ν+1]Nν−1

(By)(t) � q0‖By‖

� q0 max
t∈[ν−1,b+ν+1]Nν−1

b+2

∑
s=0

G(t,s) f̃ (s+ ν −1,y(s+ ν −1)− z(s+ ν−1))

� q0
a

q0κ2
N

b+2

∑
s=0

G(t,s) � q0
a

q0κ2
N

b+2

∑
s=0

q(t)ϕ(s+ ν −1) > a.

Therefore, condition (i) of Lemma 9 is satisfied with d = a/q2
0 .

Finally let y ∈ P(α,a,c) with ‖By‖ > a/q2
0 . Then we have α(By) � q0‖By‖ �

a
q0

> a. Hence, condition (iii) of Lemma 9 holds with ‖By‖ > a/q2
0 .

As a result all the conditions in Lemma 9 are satisfied. Hence B has at least three
positive fixed points ỹ1 , ỹ2 and ỹ3 such that

‖ỹ1‖ < e, a < α(ỹ2), ‖ỹ3‖ > e, α(ỹ3) < a.

Furthermore, ỹi = yi + z ( i = 1,2,3) are solutions of (3.33) and moreover,

ỹ2(t) � q0‖ỹ2‖ � q0α(ỹ2) > q0a > q0M1κ2q
−1
0 � z(t), t ∈ [ν −1,b+ ν +1]Nν−1 ,

ỹ3(t) � q0‖ỹ3‖ > q0e > q0M1κ2q
−1
0 � z(t), t ∈ [ν −1,b+ ν +1]Nν−1 .

Thus y2 = ỹ2 − z , y3 = ỹ3 − z are two positive solutions of (1.1). This completes the
proof. �

RE F ER EN C ES

[1] F. M. ATICI AND P. W. ELOE, A transform method in discrete fractional calculus, Int. J. Difference
Equ. 2 (2007), 165–176.

[2] F. M. ATICI AND P. W. ELOE, Discrete fractional calculus with the nabla operator, Electron. J. Qual.
Theory Differ. Equ. 3 (2009), 1–12.

[3] F. M. ATICI AND P. W. ELOE, Initial value problems in discrete fractional calculus, Proc. Am. Math.
Soc. 137 (2009), 981–989.

[4] F. M. ATICI AND P. W. ELOE, Two-point boundary value problems for finite fractional difference
equations, J. Differ. Equ. Appl. 17 (2011), 445–456.

[5] R. A. C. FERREIRA, Existence and uniqueness of solution to some discrete fractional boundary value
problems of order less than one, J. Difference Equ. Appl. 19, 5 (2013), 712–718.

[6] S. LAOPRASITTICHOK AND T. SITTHIWIRATTHAM, Existence and uniqueness results of nonlocal
fractional sum-difference boundary value problems for fractional difference equations involving se-
quential fractional difference operators, Journal of Computational Analysis and Applications 23, 6
(2017), 1097–1111.



Differ. Equ. Appl. 9, No. 4 (2017), 479–493. 493

[7] T. SITTHIWIRATTHAM, Existence and uniqueness of solutions of sequential nonlinear fractional dif-
ference equations with three-point fractional sum boundary conditions, Math. Meth. Appl. Sci. 38
(2015), 2809–2815.

[8] T. SITTHIWIRATTHAM,Boundary value problem for p-Laplacian Caputo fractional difference equa-
tions with fractional sum boundary conditions, Math. Meth. Appl. Sci. 39 (2016), 1522–1534.

[9] J. REUNSUMRIT AND T. SITTHIWIRATTHAM,Positive solutions of three-point fractional sum bound-
ary value problem for Caputo fractional difference equations via an argument with a shift, Positivity
20 (2016), 861–876.

[10] Z. LV, Y. GONG AND Y. CHEN, Multiplicity and uniqueness for a class of discrete fractional boundary
value problems, Applications of Mathematics 59 (2014), 673–695.

[11] Z. HAN, Y. PAN AND D. YANG, The existence and nonexistence of positive solutions to a discrete
fractional boundary value problem with a parameter, Appl. Math. Lett. 36 (2014), 1–6.

[12] C. S. GOODRICH, On a first-order semipositone discrete fractional boundary value problem, Arch.
Math. 99 (2012), 509–518.

[13] C. S. GOODRICH, On semipositone discrete fractional boundary value problems with non-local
boundary conditions, J. Differ. Equ. Appl. 19 (2013), 1758–1780.

[14] C. S. GOODRICH,On a fractional boundary value problem with fractional boundary conditions, Appl.
Math. Lett. 25 (2012), 1101–1105.

[15] C. S. GOODRICH, Existence and uniqueness of solutions to a fractional difference equation with
nonlocal conditions, Comput. Math. Appl. 61 (2011), 191–202.

[16] C. S. GOODRICH AND ALLAN C. PETERSON, Discrete Fractional Calculus, Springer, 2015.
[17] W. LV AND X. ZHU, Solvability for a discrete fractional mixed type sum-difference equation boundary

value problem in a Banach space, Boundary Value Problems, 2016, 77.
[18] H. LIU, Y. JIN AND C. HOU, Existence of positive solutions for discrete delta-nabla fractional bound-

ary value problems with p-Laplacian, Boundary Value Problems, 2017, 60.
[19] Q. GE AND C. HOU, Existence of multiple positive solutions for a class of fractional difference equa-

tions boundary value problems, Journal of Northeast Petroleum University, 36, 4 (2012), 101–110,
(Chinese).

[20] D. GUO AND V. LAKSHMIKANTHAM, Nonlinear Problems in Abstract Cones, Academic Press, Or-
lando, 1988.

(Received July 1, 2017) Jiafa Xu
School of Mathematical Sciences

Chongqing Normal University
Chongqing 401331, China

e-mail: xujiafa292@sina.com

Donal O’Regan
School of Mathematics, Statistics and Applied Mathematics

National University of Ireland
Galway, Ireland

e-mail: donal.oregan@nuigalway.ie

Chengmin Hou
Department of Mathematics

Yanbian University
Yanji 133002, China

e-mail: cmhou@foxmail.com

Yujun Cui
State Key Laboratory of Mining Disaster Prevention and

Control Co-founded by Shandong Province and the Ministry of
Science and Technology

Shandong University of Science and Technology
Qingdao 266590, China

e-mail: cyj720201@163.com

Differential Equations & Applications
www.ele-math.com
dea@ele-math.com


