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MULTIPLE POSITIVE SOLUTIONS FOR A CHOQUARD

EQUATION INVOLVING BOTH CONCAVE–CONVEX AND

HARDY–LITTLEWOOD–SOBOLEV CRITICAL EXPONENT

R. ECHARGHAOUI, M. KHIDDI AND S. M. SBAI

(Communicated by Claudianor O. Alves)

Abstract. In this paper, we consider a Choquard equation involving both concave-convex and
Hardy-Littlewood-Sobolev critical exponent. By using the N ehari manifold, fibering maps and
the Lusternik-Schnirelman category, we prove that the problem has at least cat(Ω)+ 1 distinct
positive solutions.

1. Introduction and main result

In this paper, we are concerned with the multiplicity of positive solutions of the
following critical nonlocal problem⎧⎨⎩−Δu =

(∫
Ω

|u(y)|2∗μ
|x−y|μ dy

)
|u|2∗μ−2u+ λuq in Ω,

u = 0 on ∂Ω,
(1.1)

where 0 ∈ Ω is a smooth bounded domain of R
N , N � 3, 0 < q < 1, λ is a positive

parameter, 0 < μ < N, and 2∗μ = 2N−μ
N−2 is the critical Sobolev exponent (in the sense

of the Hardy-Littlewood-Sobolev inequality). This problem has a wide ring of appli-
cation in physics and related sciences such as quantum theory of a polaron at rest by
S. Pekar in [16] and the modeling of an electron trapped in its own hole in the work
of P. Choquard, as well as a certain approximation to the Hartree-Fock theory of one-
component plasma [13]. For a complete and updated discussion on the current literature
of such problems, we refer the reader to the guide [15]. Recently, many papers have
studied the multiplicity of positive solutions by way of N ehari manifolds, fibering
maps and the Lusternik-Schnirelman category for different semilinear, quasilinear, and
nonlocal problems involving a critical exponent and concave and convex nonlinearities
(see [4, 6, 10]). Our purpose here continue this line of work by relating the number
of positive solutions of a nonlinear Choquard equation (1.1) to topology of Ω. Several
works have been devoted to the study of nonlinear Choquard equations of the type (1.1).
The reader can find a lot of papers in the literature involving this subject, we cite [1],
[2], [6], [9], [8], [14]. The main result is the following.
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THEOREM 1. Let N > 4 and 2
N−2 � q < 1. Then, there exists ∧∗ > 0 such that

if for each λ
2

1−q ∈ (0,∧∗), problem (1.1) has a least cat(Ω)+1 distinct positive solu-
tions.

To establish our main result we follow, as in [1], [3], [5], a classical approach,
some techniques employed in [18], and an argument developed in [8]. The paper is
organized as follows. In Section 2, we fix some notations and give some preliminary
results and known facts. In section 3, we show some technical lemmas which enable
us to construct homotopies between Ω and certain sublevel set of the energy functional
associated to (1.1). In section 4, we prove theorem 1.

2. Some notations and preliminaries

In this section, we recall some preliminary results that are required in the later
sections.

We denote | · |p as the standard Lp(Ω) norm with 1 < p < ∞, and ‖ ·‖ for H1
0 (Ω)

norm. we set |Ω| the Lebesgue measure of Ω and
∫

Ω |u|qdx � Cq‖u‖q. The follow-
ing well-known Hardy-Littlewood-Sobolev inequality [12] is key in order to follow a
variational approach for our problem (1.1).

Proof. Let t,r > 1 and 0 < μ < N with 1
t + μ

N + 1
r = 2, f ∈ Lt(RN and h ∈

Lr(RN . There exists a sharp a constant C(t,N,μ ,r), independent of f ,h, such that∫
RN

∫
RN

f (x)h(y)
|x− y|μ dxdy � C(t,N,μ ,r)| f |t |h|r.

If t = r = 2N
2N−μ , then

C(t,N,μ ,r) = C(N,μ) = π
μ
2

Γ(N
2 − μ

2 )
Γ(N− μ

2 )

(
Γ( N

2 )
Γ(N)

)−1+ μ
N

In this case there is equality in (6) if and only if f = Ch and

h(x) = A(γ2 + |x−a|2)− 2N−μ
2

for some A ∈ C, 0 �= γ ∈ R and a ∈ R
N . Notice that, by Hardy-Littlewood-Sobolev

inequality, the integral ∫
RN

∫
RN

|u(x)|q|u(y)|q
|x− y|μ dxdy

is well defined if
2N− μ

N
� q � 2N− μ

N−2

We say 2N−μ
N is the lower critical exponent and 2∗μ = 2N−μ

N−2 is the upper critical ex-
ponent in the sense of Hardy-Littlewood-Sobolev inequality. From this inequality, for
each u ∈ D1,2(RN), we have(∫

RN
∫
RN

|u(x)|2∗μ |u(y)|2∗μ
|x−y|μ dxdy

) 1
2∗μ � C(N,μ)

1
2∗μ |u|22∗
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where C(N,μ) is a suitable constant defined in Proposition 2 and 2∗ = 2N
N−2 . �

We use SH,L to denote the best constant defined by

SH,L = inf
u∈D1,2(RN)\{0}

∫
RN |∇u|2dx(∫

RN
∫
RN

|u(x)|2∗μ |u(y)|2∗μ
|x−y|μ dxdy

) 1
2∗μ

. (2.1)

The constant SH,L defined in (2.1) is achieved if and only if

u(x) = C(
t

t2 + |x−a|2 )
N−2

2

where C > 0 is a fixed constant, a ∈ RN and t > 0 are parameters (refer Lemma 1.2 of
[9]). Moreover,

SH,L =
S

C(N,μ)
N−2

2N−μ
,

where S is the best Sobolev constant. Let

U(x) =
[N(N −2)]

N−2
4

(1+ |x|2)N−2
2

(2.2)

be a minimizer for S, see [18], then

Ũ(x) = S
(N−μ)(2−N)
4(N−μ+2) C(N,μ)

2−N
2(N−μ+2)

[N(N−2)]
N−2

4

(1+ |x|2)N−2
2

is the unique minimizer for SH,L that satisfies

−Δu =
(∫

Ω

|u(y)|2∗μ
|x− y|μ dy

)
|u|2∗μ−2u in R

N

with ∫
RN

|∇Ũ |2dx =
∫

RN

∫
RN

|Ũ(x)|2∗μ |Ũ(y)|2∗μ
|x− y|μ dxdy = S

2N−μ
N−μ+2
H,L .

Moreover, Let N � 3, for every open subset Ω of RN ,

SH,L(Ω) = inf
u∈D1,2(Ω)\{0}

∫
Ω |∇u|2dx(∫

Ω
∫

Ω
|u(x)|2∗μ |u(y)|2∗μ

|x−y|μ dxdy
) 1

2∗μ
= SH,L, (2.3)

SH,L(Ω) is never achieved except Ω = RN , (see [9]).
The energy functional associated to equation (1.1) is defined by

Iλ (u) :=
1
2
‖u‖2− 1

22∗μ
D(u)− λ

q+1
|u|q+1

q+1, (2.4)

where

D(u) :=
∫

Ω

∫
Ω

|u(x)|2∗μ |v(y)|2∗μ
|x− y|μ dxdy, and |u|q+1

q+1 =
∫

Ω
uq+1dx.

The Hardy-Littlewood-Sobolev inequality implies that Iλ is well defined on H1
0 (Ω)

and belong to C 1(H1
0 (Ω),R) with its derivative given by

〈I′λ (u),ϕ〉 =
∫

Ω
∇u∇ϕdx−

∫
Ω

∫
Ω

|u(x)|2∗μ |u(y)|2∗μ−2u(y)ϕ(y)
|x− y|μ |dxdy−λ

∫
Ω

uqϕdx,
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for all u,ϕ in H1
0 (Ω).

Therefore, the solutions of (1.1) correspond to critical points of the energy Iλ . let
us denote by Nλ the N ehari manifold related to Iλ , given by

Nλ := {u ∈ H1
0 (Ω),u �= 0 : 〈I ′λ (u),u〉 = 0},

namely

Nλ := {u ∈ H1
0 (Ω),u �= 0 : ‖u‖2 = D(u)+ λ |u|q+1

q+1}.
For t > 0, we define the fibering maps

φu(t) := Iλ (u) =
t2

2
‖u‖2− t22∗μ

22∗μ
D(u)−λ

tq+1

q+1
|u|q+1

q+1.

Then we have
φ ′

u(t) = t‖u‖2− t22∗μ−1
D(u)−λ tq|u|q+1

q+1.

and
φ ′′

u (t) = ‖u‖2− (22∗μ −1)t22∗μ−2
D(u)−qλ tq−1|u|q+1

q+1.

It is easy to see that tu ∈ Nλ if and only if φ ′
u(t) = 0, and in particulary for t = 1

we have u ∈ Nλ . The elements in Nλ correspond to stationary of fibering maps φ(t).
Thus, for u ∈ Nλ , we have

φ ′′
u (1) = (1−q)‖u‖2− (22∗μ −1−q)D(u),

= (2−22∗μ)‖u‖2− (q+1−22∗μ)λ |u|q+1
q+1.

Therefore, we can split the N ehari manifold Nλ into three parts. Namely:

N +
λ := {u ∈ Nλ : φ ′′

u (1) > 0}
N −

λ := {u ∈ Nλ : φ ′′
u (1) < 0}

N 0
λ := {u ∈ Nλ : φ ′′

u (1) = 0}

LEMMA 1. If u0 is a local minimizer of Iλ on Nλ and u0 /∈ N 0
λ . Then u0 is a

critical point of Iλ .

Proof. The proof is the same as that in [10], we give it here for completeness. Set
Jλ (u) = 〈I′λ (u),u〉. Since u0 is a local minimizer of Iλ under the constraint Iλ (u0) = 0,
by the theory of Lagrange multipliers, there exists σ ∈ R such that

I′λ (u0) = σJλ (u0)

Thus implies
〈I′λ (u0),u0〉 = σ〈I′λ (u0),u0〉 = σφ ′′

u0
(1).

Since u0 /∈ N 0
λ , so φ ′′

u0
(1) �= 0. Hence σ = 0. We complete the proof. �

LEMMA 2. There exists Λ∗ > 0 such that λ
2

1−q ∈ (0,Λ∗), such that N 0
λ = /0.
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Proof. We suppose that there exists λ ∈ (0,Λ∗), such that N 0
λ �= /0 Let u ∈ N 0

λ ,
we have

φ ′′
u (1) = (1−q)‖u‖2 +(22∗μ −1−q)D(u) = 0,

then

‖u‖2 =
(22∗μ −1−q)

(1−q)
D(u). (2.5)

And by definition of SH,L given in (2.3), we have

‖u‖2 � SH,LD

1
2∗μ (u), (2.6)

so with (2.5) and (2.6), we have

‖u‖ � S

2∗μ
2(2∗μ−1)

H,L

(
1−q

22∗μ−1−q

) 1
2(2∗μ−1)

. (2.7)

Since,

φ ′′
u (1) = (2−22∗μ)‖u‖2− (q+1−22∗μ)λ |u|q+1

q+1 = 0,

and by using the above equality and the Sobolev inequality, we have

‖u‖ �
(
(22∗μ −1−q)S−

q+1
2 |Ω| 2∗−1−q

2

) 1
1−q λ

1
1−q (2.8)

by (2.6) and (2.8), we can deduce that

λ
2

1−q �
[
S

2∗μ
H,L

(
1−q

22∗μ−1−q

)] 1
2(2∗μ−1)

[
(22∗μ −1−q)S−

q+1
2 |Ω| 2∗−1−q

2

] −2
1−q = Λ∗.

Which is a contradiction. �
Then, we can write Nλ = N −

λ ∪N +
λ and define

cλ = inf
u∈Nλ

Iλ (u), c+
λ = inf

u∈N +
λ

Iλ (u), c−λ = inf
u∈N −

λ

Iλ (u).

LEMMA 3. There exists Λ∗ > 0 such that λ
2

1−q ∈ (0,Λ∗), then

i) c+
λ < 0

ii) there exist ρ0 > 0 such that Iλ (u) � ρ0 for all u ∈ N −
λ .

Proof. i) Let u ∈ N +
λ ⊂ Nλ , we have

Iλ (u) =
(1

2
− 1

q+1

)
‖u‖2−

( 1
22∗μ

− 1
q+1

)
D(u),

and
(1−q)‖u‖2− (22∗μ −1−q)D(u) > 0,

this implies

Iλ (u) < (q−1)
2∗μ −1

22∗μ(q+1)
‖u‖2 < 0.
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Then c+
λ < 0.

ii) Let u ∈ N −
λ ⊂ Nλ , we have

(1−q)‖u‖2 < (22∗μ −1−q)D(u), (2.9)

and by definition of SH,L given in (2.3), we have

SH,LD

1
2∗μ (u) � ‖u‖2. (2.10)

By (2.9) and (2.10), we deduce that

‖u‖ >
[
S

2∗μ
H,L

(
1−q

22∗μ−1−q

)] 1
2(2∗μ−1)

. (2.11)

Then

Iλ (u) =
(1

2
− 1

22∗μ

)
‖u‖2−λ

( 1
q+1

− 1
22∗μ

)
|u|q+1

q+1

�
(1

2
− 1

22∗μ

)
‖u‖2−λ

( 1
q+1

− 1
22∗μ

)
S−

q+1
2 |Ω| 2∗−1−q

2 ‖u‖q+1

� ‖u‖q+1
[(

1
2 − 1

22∗μ

)
‖u‖1−q−λ

(
1

q+1 − 1
22∗μ

)
S−

q+1
2 |Ω| 2∗−1−q

2

]
�

[
S

2∗μ
H,L

(
1−q

22∗μ−1−q

)] q+1
2(2∗μ−1)

{(1
2
− 1

22∗μ

)[
S

2∗μ
H,L

(
1−q

22∗μ−1−q

)] 1−q
2(2∗μ−1)

−
( 1

q+1
− 1

22∗μ

)
S−

q+1
2 |Ω| 2∗−1−q

2

}
.

So, there exists Λ∗ > 0 small enough and ρ0 > 0 such that if λ ∈ (0,Λ∗), c+
λ � ρ0 > 0

for all u ∈ N −
λ . This completes this proof. �

For each u ∈ H1
0 (Ω), with D(u) > 0, set

tmax(u) =
( ‖u‖2

(22∗μ−1)D(u)

)2(2∗μ−1)
> 0.

Then the following lemma holds. Its proof is similar to the lemma [10] (or see Taran-
tello [17]).

LEMMA 4. For each u ∈ H1
0 (Ω) with D(u) > 0, then there are unique 0 < t+ <

tmax(u) < t− such that t+u ∈ N +
λ , t−u ∈ N −

λ and

Iλ (t+u) = inf
0�t�tmax(u)

Iλ (tu), Iλ (t−u) = sup
t�0

Iλ (tu).

We have the following Lemma.

LEMMA 5. There exists a C0 > 0 (depending only on N,μ and |Ω|) such that

Iλ (u) � C0λ
2

1−q , for all u ∈ Nλ .
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Proof. Let u∈Nλ , by the Sobolev embedding theorem and Young inequality, we
have

Iλ (u) =
(1

2
− 1

22∗μ

)
‖u‖2−λ (

1
q+1

− 1
22∗μ

)|u|q+1
q+1

�
(1

2
− 1

22∗μ

)
‖u‖2−λC

( 1
q+1

− 1
22∗μ

)
‖u‖q+1

�
(1

2
− 1

22∗μ
− N− μ +2

4(2N− μ)

)
‖u‖2−C0λ

2
1−q

� −C0λ
2

1−q ,

for some constant C0 > 0, depending only on N,μ and |Ω| such that(
1
2 − 1

22∗μ − N−μ+2
4(2N−μ) > 0

)
. �

Next we establish that Iλ satisfies the (PS)c (Palais-Smale condition) under some
restriction on the level of (PS)c -sequence in the following.

LEMMA 6. Iλ satisfies the (PS)c -condition for

c ∈
(
−∞,cλ :=

N +2− μ
4N−2μ

S
2N−μ

N+2−μ
H,L −Kλ

2
1−q

)
,

where K > 0 is independent on λ .

Proof. The first step for the (PS)c -sequence to hold is bounded.

Iλ (un) = c+on(1) and I
′
λ (un) = on(1) in H−1, (2.12)

so, there exists C1 > 0 such that

|Iλ (un)| � C1 and |〈I ′λ (un),
un

‖un‖〉| � C1 (2.13)

Let θ ∈ ( 1
22∗μ , 1

2 ). For n large enough, we have

C1(1+‖un‖) � Iλ (un)−θ 〈I ′λ (un),un〉
=

(1
2
−θ

)
‖un‖2 + λ (θ − 1

q+1
)|un|q+1

q+1 +
(

θ − 1
22∗μ

)
D(un)

�
(1

2
−θ

)
‖un‖2 + λ

(
θ − 1

q+1

)
S−

q+1
2 |Ω| 2∗−1−q

2 ‖u‖q+1

+
(

θ − 1
22∗μ

)
D(un)

Since (θ − 1
22∗μ ) > 0, ( 1

2 −θ ) > 0 and 0 < q < 1, we know that (un)n�1 is bounded in

H1
0 (Ω). Hence, we may extract a subsequence denoted again by (un) such that

un ⇀ u0 in H1
0 (Ω),

un ⇀ u0 in L2∗(Ω),

|un|2∗μ ⇀ |u0|2∗μ in L2∗μ (Ω),

λ |un|q+1
q+1 = λ |u0|q+1

q+1 +o(1),
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as n → +∞. By the Hardy-Littlewood-Sobolev inequality, the Riesz potential defines a

linear continuous map from L
2N

N−μ (Ω) to L
2N
μ (Ω), so we have

|x|−μ ∗ |un|2∗μ ⇀ |x|−μ ∗ |u0|2∗μ in L
2N
μ (Ω)

as n → +∞, Combining with the fact that

|un|2∗μ−2un ⇀ |u0|2∗μ−2u0 in L
2N

N−μ+2 (Ω)
as n → +∞, we have

|x|−μ ∗ |un|2∗μ |un|2∗μ−2un ⇀ |x|−μ ∗ |u0|2∗μ |u0|2∗μ−2u0 in L
2N

N+2 (Ω)
as n → +∞, Since, for all ϕ ∈ H1

0 (Ω),

〈I ′λ (un),ϕ〉 → 0

we obtain by passing to the limit as n → +∞
〈I ′λ (u0),ϕ〉 = 0.

So that, we may apply Brézis-Lieb’s Lemma[7], we obtain that

‖un−u0‖2 = ‖un‖2−‖u0‖2 +o(1),
and

D(un−u0) = D(un)−D(u0)+o(1).
Then, we have

c− Iλ(un)+o(1) =
1
2
‖un−u0‖2− 1

22∗μ
D(un−u0), (2.14)

and

0 = 〈I ′λ (un),(un −u0)〉 = ‖un−u0‖2−D(un−u0)+o(1)
Without loss of generality, we suppose that

‖un−u‖2 = a+o(1).
So

D(un−u0) = a+o(1).

If a = 0, we complete the proof. On the contrary, we suppose that a > 0. Then by the
definition of SH,L, we have

a � SH,La
1

2∗μ ,

this implies

a � S
2N−μ

N+2−μ
H,L . (2.15)

By (2.14), (2.15) and u0 ∈ Nλ such that u0 �= 0, we have

c = Iλ (u0)+
a
2
− a

22∗μ
= Iλ (u0)+

a(2∗μ −1)
22∗μ

� N +2− μ
4N−2μ

S
2N−μ

N+2−μ
H,L −C0λ

2
1−q ,

which contradicts c < N+2−μ
4N−2μ S

2N−μ
N+2−μ
H,L −C0λ

2
1−q . So, we have a = 0, that is un →

u strongly in H1
0 (Ω). �

Then we have the following lemma
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LEMMA 7. There exists Λ∗ > 0 such that if λ ∈ (0,Λ∗), then Iλ has a minimizer
u+

λ ∈ N +
λ and its satisfies

i) Iλ (u+
λ ) = c+

λ

ii) u+
λ is a positive solution of (1.1).

iii) Iλ (u+
λ ) → 0 and ‖u+

λ ‖2 → 0 as λ → 0.

Proof. The proof is almost the same as that [[11] Lemma 2.5] and is omitted
here. �

LEMMA 8. There exists Λ∗, ε0 > 0 and σ0 > 0 such that for all ε ∈ (0,ε0),

λ
2

1−q ∈ (0,Λ∗), we have
sup
t�0

Iλ (tuε) < cλ −σ0,

where cλ = N−μ+2
4N−2μ S

2N−μ
N+2−μ
H,L −Kλ

2
1−q .

Proof. Let us consider ρ0 > 0 such that B(0,2ρ0) ⊂ Ω and define a cut function
η ∈ C ∞

0 (Ω) such that 0 � η � 1, |∇η | � C, η(x) = 1 for |x| � ρ0 and η(x) = 0 for

|x| � 2ρ0. For ε > 0 Uε = ε
2−N

2 U( x
ε ) and uε(x) = ηUε(x) where U(x) given in (2.2)

is minimizer for S, the best Sobolev constant and also for SH,L. From [9], we know
that

‖uε‖2 = C(N,μ)
N−2

2N−μ
N
2 S

N
2
H,L +O(εN−2), (2.16)

and

D(uε) � C(N,μ)
N
2 S

2N−μ
2

H,L −O(εN− μ
2 ). (2.17)

Moreover

|uε |q+1
q+1 =

∫
Ω
|uε(x)|q+1dx = ε

(2−N)
2 (q+1)

∫
B(0,ρ0)

Uq+1(
x
ε
)dx

� ε
(2−N)

2 (q+1)+N
∫ ρ0

0
Uq+1(r)rN−1dr

� Cε
(2−N)

2 (q+1)+N
∫ ρ0ε−1

0
r2(q+1)−qN−1dr

Now, since 2
N−2 � q < 1, by suitable choice of R0 > 0, it follows that

|uε |q+1
q+1 � Cε

(2−N)
2 (q+1)+N

∫ ρ0ε−1

R0

r2(q+1)−qN−1dx

�

⎧⎨⎩Cε
(2−N)

2 (q+1)+N if 2
N−2 < q < 1,

Cε
(2−N)

2 (q+1)+N ln(ε) if q = 2
N−2 < 1,

(2.18)

where C is a positive constant.
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Let

g(t) = Iλ (tuε) =
t2

2
‖uε‖2−λ

tq+1

q+1
|uε |q+1

q+1−
t22

∗
μ

22∗
μ

D(uε)

Since g(0) = 0 and limt→+∞ g(t) = −∞, so there exists tε such that supt�0 g(t)
is attained at tε . This implies that tε satisfies

‖uε‖2 = t
22

∗
μ−1−q

ε D(uε)+ λ |uε |q+1
q+1

then we deduce

tε �
(
‖uε‖2

D(uε )

) 1
22

∗
μ−1−q

this implies that tε is bounded above for ε small enough. And by lemma 4 we have

tε � tmax(uε) > 0,

then, we can also suppose that tε is bounded below. So we conclude that there exist the
positive constants Ci (i = 1,2) independent of ε, such that

0 < C1 < tε < C2 < ∞. (2.19)

Consider

h(t) =
t2

2

(
(C(N,μ))

N−2
2N−μ

N
2 S

N
2
H,L +O(εN−2)

)
− t22

∗
μ

22∗
μ

(
(C(N,μ))

N
2 S

2N−μ
2

H,L −O(εN− μ
2 )

)
An easy computation implies that

sup
t�0

h(t) =
N− μ +2
4N−2μ

⎛⎝ (C(N,μ))
N−2

2N−μ
N
2 S

N
2
H,L+O(εN−2)(

(C(N,μ))
N
2 S

2N−μ
2

H,L −O(εN− μ
2 )

) N−2
2N−μ

⎞⎠
2N−μ

N−μ+2

(2.20)

=
N− μ +2
4N−2μ

S
2N−μ

N+2−μ
H,L +O(εmin(N−2,N− μ

2 )). (2.21)

We have, by (2.16), (2.17), (2.18) and (2.19)

g(tε) = Iλ (tεuε) � h(tε)−λ

⎧⎨⎩Cε
(2−N)

2 (q+1)+N if 2
N−2 < q < 1,

Cε
(2−N)

2 (q+1)+N ln(ε) if q = 2
N−2 < 1,

Then, by (2.20)

Iλ (tεuε) � N− μ +2
4N−2μ

S
2N−μ

N+2−μ
H,L +O(εmin(N−2,N− μ

2 ))

−λ

⎧⎨⎩Cε
(2−N)

2 (q+1)+N if 2
N−2 < q < 1,

Cε
(2−N)

2 (q+1)+N ln(ε) if q = 2
N−2 < 1,

In the case of 2
N−2 < q < 1, and N > 4, we have

0 <
(2−N)

2
(q+1)+N < min

(
N−2,N− μ

2

)
.
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Then, there exists ε0 > 0 small enough,Λ∗ and σ(ε) > 0 such that for ε ∈ (0,ε0),

λ
2

1−q ∈ (0,Λ∗) and σ ∈ (0,σ(ε))

0 < O(ε
(2−N)

2 (q+1)+N)−λO(εmin(N−2,N− μ
2 )) < −Cλ

2
1−q −σ ,

and then,

sup
t�0

Iλ (tuε) <
N− μ +2
4N−2μ

S
2N−μ

N+2−μ
H,L −Cλ

2
1−q −σ = cλ −σ .

If 2
N−2 = q, we can verify that

1
2

(
N− (q+1)

N−2
2

)
<

N−2
2

,

then it is easy to see that
sup
t�0

Iλ (tuε) < cλ −σ . �

Let the set
N−

λ (cλ −σ) = {u ∈ N−
λ : Iλ (u) � cλ −σ}.

COROLLARY 1. By lemmas 8 and 7, the functional Iλ has a local minimizer in
N−

λ (cλ −σ), that is, there exists uλ ∈ N−
λ (cλ −σ) satisfying

Iλ (uλ ) = cλ −σ .

3. Some technical results

In this section, we shall introduce some useful results which are crucial for the
proof of theorem 1

LEMMA 9. Let(un) ⊂ H1
0 (Ω) be a non-negative function sequence with

D(un) = 1 and ‖un‖2 → S
2N−μ

N+2−μ
H,L .

Then, there exists a sequences (yn,εn) ⊂ RN ×R+ such that vn(x) = ε
N−2

2
n un(εnx+ yn)

contains a convergent subsequence denoted again by (vn(x)) such that vn(x) → v(x)
in H1

0 (Ω) Moreover, we have εn → 0 and yn → y ∈ Ω as n → +∞.

Proof. the proof of this lemma is standard, we refer the readers [18] for similar
proofs. �

LEMMA 10. Suppose that X is a Hilbert manifold and F ∈ C 1(X ,R). Assume
that, for c0 ∈ R and k ∈ N :

1. F satisfies the (PS)c condition for c � c0,

2. cat({x ∈ X ,F(x) � c0}) � k.

Then F has at least k critical points in {x ∈ X ,F(x) � c0}.
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Proof. See section 5.3 in [18]. �
We consider

N −
λ (cλ ) := {u ∈ N −

λ : Iλ (u) � cλ}
Now, let us introduce the following map β : N −

λ → RN given by

β (u) :=
∫

Ω x|u|2dx∫
Ω |u|2dx

Then we have the following result.

LEMMA 11. There exists Λ∗ > 0 such that for each λ ∈ (0,Λ∗) we have

β (N −
λ (cλ )) ⊂ Ω+

r .

Proof. We argue by contradiction and suppose that there exist (tn)⊂ [0,1], λn → 0
and (un) ⊂ N−

λ (cλ ) such that

β (un) /∈ Ω+
r for all n ∈ N.

We can assume that, up to a subsequence, tn → t0 ∈ [0,1]. As in the proof of Lemma 6,
it is easy to verify that the sequence (un) is bounded in H1

0 (Ω) and by this we obtain

λn|u+
n |q+1

q+1 → 0 as n → +∞. Then,

Iλn(un) =
(1

2
− 1

22∗μ

)
‖un‖2 +o(1) � cλn +o(1)

and
1
2

(N− μ +2
2N− μ

)
‖un‖2 � cλn +o(1) � 1

2

(N− μ +2
2N− μ

)
(SH,L)

2N−μ
N+2−μ +o(1).

Since(un) ⊂ N −
λn

(cλn) ⊂ N −
λn

, we have

‖un‖2 = D(un)+o(1),

and by definition of SH,L, we obtain

SH,L � ‖(un)‖2

D

1
2∗μ (un)

� ‖un‖2( N−μ+2
2N−μ ) � SH,L +o(1).

Thus
‖un‖2 → (SH,L)

2N−μ
N−μ+2 and D(un) → (SH,L)

2N−μ
N−μ+2 .

Now, it is easy to see that the sequence (ũn) given by

ũn =
un

(SH,L)
2N−μ

2(N+2−μ)

verifies
D(ũn) = 1 and ‖ũn‖2 → SH,L.

Then, by using lemma 9, there exists a sequences (yn) ⊂ RN and (εn) ⊂ R+ such that

εn → 0, yn → y ∈ Ω and vn = ε
N−2

2
n ũn(εnx+ yn) → v1 with v1 > 0 in R

N as n → +∞.
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Considering χ ∈ C ∞
0 (RN) such that χ(x) = x in Ω, we infer

β (un) =
∫

Ω x|un|2dx∫
Ω |un|2dx

=
∫

Ω x|ũn|2dx∫
Ω |ũn|2dx

=
∫

Ω χ(εnx+ yn)|ũn(εnx+ yn)|2dx∫
Ω |ũn(εnx+ yn)|2dx

=
∫

Ω χ(εnx+ yn)|vn|2dx∫
Ω |vn|2dx

.

Moreover, by the Lebesgue theorem, we have∫
Ω χ(εnx+ yn)|vn|2dx∫

Ω |vn|2dx
→ y ∈ Ω

as n → +∞, so that limn→+∞ β (un) = y ∈ Ω, in contradiction with β (un) /∈ Ω+
r . �

Note that Ω−
r is compact, then by lemma 6 and corollary 1 we can easily get there

exists t− > 0 such that
t−uε(x− y) ∈ N −

λ (cλ −σ)

uniformly in y ∈ Ω−
r . Moreover, by lemma 11,

β (t−uε(x− y)) ∈ Ω+
r .

Then, we can define the map η : Ω−
r → N −

λ (cλ −σ) given by

η(y)(x) :=

{
t−uε(x− y) if x ∈ Br(y),

0 if x /∈ Br(y).

Below we denote by βλ the restriction of β on N −
λ (cλ −σ). Taking into account that

uε is radial, we have for each y ∈ Ω−
r

(βλ ◦η)(y) =
∫

Ω x|t−uε(x− y)|2dx∫
Ω |t−uε(x− y)|2dx

=
∫

Ω(z+ y)|uε(z)|2|dz∫
Ω |uε(z)|2dz

= y.

Next, we define the map Hλ : [0,1]×N −
λ (cλ −σ) → RN by

Hλ (t,u) := tβλ (u)+ (1− t)βλ(u).

LEMMA 12. There exists Λ∗ > 0 such that for each λ
2

1−q ∈ (0,Λ∗) we have

Hλ
(
[0,1]×N −

λ (cλ −σ)
) ⊂ Ω+

r .

Proof. We argue by contradiction and suppose that there exist (tn)⊂ [0,1], λn → 0
and (un) ⊂ N −

λ (cλ −σ) such that

Hλn(tn,un) /∈ Ω+
r for all n ∈ N.

We can assume that, up to a subsequence, tn → t0 ∈ [0,1]. Then, by Lemma 3 and
argument as in the proof of Lemma 11, we have

Hλn(tn,un) → y ∈ Ω,

as n → +∞, which is a contradiction. �

LEMMA 13. There exists Λ∗ > 0 such that if λ
2

1−q ∈ (0,Λ∗), we have

cat(N −
λ (cλ −σ)) � cat(Ω).
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Proof. Suppose that cat(N −
λ (cλ −σ)) = n , this means that n is the least integer

such that
N −

λ (cλ −σ) = A1∪ . . .∪An,

where Aj, j = 1, . . . .,n, is closed and contractible in N −
λ (cλ −σ) that is; there exists

a continuous function h j : [0,1]×Aj → N −
λ (cλ −σ) such that for all u,v ∈ Aj

h j(0,z) = z and h j(1,z) = wj,

where ω ∈ Aj is fixed. Consider Bj := ψ−1(Aj), j = 1, . . . .,n. The sets Bj are closed
and

Ω−
r = B1∪ . . .∪Bn.

Noting Lemma 12, we define the deformation g j : [0,1]×Bj → Ω+
r by setting

g j(t,y) = Hλ (t,h j(t,θ (y))).

So, we have for all y ∈ Bj

g j(0,y) = Hλ (0,h j(0,η(y))) = y

and
g j(1,y) = Hλ (1,h j(1,η(y))) = βλ (ω) ∈ Ω+

r ,

Thus the sets Bj is contractible in Ω+
r . It follows that

catΩ+
r
(Ω−

r ) = cat(Ω) � n,

which completes the proof. �

4. The proof of Theorem 1

Denoting by IN −
λ

the restriction of Iλ on N −
λ .

LEMMA 14. There exists Λ∗ > 0 such that if λ
2

1−q ∈ (0,Λ∗), then IN −
λ

satisfies

the (PS)c condition for c ∈ (−∞,cλ ).

Proof. If (un) is a Palais-Smale sequence for IN −
λ

at level c, by [[18], Proposition

5.12], there exists a sequence θn ⊂ R such that

I′λ (un) = θnJ
′
λ (un)+o(1), (4.1)

where

Jλ (un) = 〈I′λ (un),un〉 = ‖un‖2−D(un)−λ |un|q+1
q+1

Recall that un ∈ N −
λ , so 〈J′λ (un),un〉 < 0.

If 〈J′λ (un),un〉 → 0, we see by the Sobolev embedding theorem that there are two
positive numbers C1,C2 independent of n and λ , such that

‖un‖2 � C1‖un‖22∗μ +o(1),

and

‖un‖2 � C2λ‖un‖q+1 +o(1),
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we conclude that

‖un‖ � C
− 1

2(2∗μ−1)

2 +o(1).

and

‖un‖ � C
1

1−q
1 λ

2
1−q +o(1),

if we choose Λ∗ is small enough. This is impossible.
Thus we may assume that 〈J′λ (un),un〉 → l, as n → +∞. Since 〈I′λ (un),un〉 =

0, we conclude that θn → 0 as n → +∞ and, consequently I′λ (un) → 0. Using this
information, we have

Iλ (un) → c ∈ (0,cλ ), and I′λ (un) → 0, (4.2)

so by Lemma 2.12 the proof is complete. �

LEMMA 15. There exists Λ∗ > 0 such that if λ
2

1−q ∈ (0,Λ∗), then a critical point
of IN −

λ
on N −

λ is a critical point of Iλ in H1
0 (Ω).

Proof. For the proof of this lemma, is similar to lemma 14. �
Proof of Theorem 1. Applying Lemmas 6 and 3, IN −

λ
satisfies (PS)c condition

for all c ∈ (0,cλ ). Then, by Lemmas 13 and 10, IN −
λ

admits at least cat(Ω) critical

points in N −
λ (cλ −σ). Hence, we deduce from Lemma 15 that Iλ has at least cat(Ω)

critical points in N −
λ . Moreover, N −

λ ∩N +
λ = /0, Iλ at least cat(Ω)+1 critical points

in H1
0 (Ω). �
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