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THE (p,q)–ELLIPTIC SYSTEMS WITH

CONCAVE–CONVEX NONLINEARITIES
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(Communicated by Chun-Lei Tang)

Abstract. Multiple positive solutions for the (p,q) -elliptic systems with the concave-convex
nonlinearities are obtained by using the Nehari manifold and the fibering method.

1. Introduction and Main Result

In this paper, we consider the existence of weak solutions for the following (p,q)-
elliptic systems⎧⎪⎪⎨

⎪⎪⎩
−Δpu = λ αa(x)|u|α−2u|v|β + γb(x)|u|γ−2u|v|δ in Ω,

−Δqv = λ βa(x)|u|α |v|β−2v+ δb(x)|u|γ |v|δ−2v in Ω,

u = v = 0 on ∂Ω,

(1.1)

where Ω ⊂ R
N(N � 3) is a bounded open domain with a smooth boundary ∂Ω , 1 <

p,q < N,α � 0,β � 0,γ � 0,δ � 0 satisfy that 1 < α +β < min{p,q} , max{p,q} <
γ +δ < min{p∗,q∗} , where p∗ = Np

N−p and q∗ = Nq
N−q are the critical Sobolev exponents

of p,q , respectively. The functions a(x),b(x) ∈C(Ω) are somewhere positive and may
change sign on Ω .

The Nehari manifold and the fibering method were introduced by Pohozaev in [7]
and were widely used to study the existence of multiple solutions for elliptic equations
(see [1], [2], [5], [8] and references therein) and elliptic systems (see [3], [4], [6], [9],
[10], [11], [12] and references therein). Especially, Brown and Wu in [5] discussed
the existence of at least two positive solutions for the semilinear elliptic equation with
the concave-convex nonlinearities. Ramos Quoirin in [8] investigated the existence
and multiplicity of non-negative solutions for the the following concave-convex type
equation

−Δpu+V(x)up−1 = λa(x)|u|r−1 +b(x)|u|q−1 u ∈W 1,p
0 (Ω),
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where 1 < r < p < q < p∗ . Bozhkov and Mitidieri in [4] proved the existence of
multiple solutions for the following (p,q)-Laplacian system⎧⎪⎪⎨

⎪⎪⎩
−Δpu = λa(x)|u|p−2u+(α +1)c(x)|u|α−1u|v|β+1 in Ω,

−Δqv = μb(x)|v|q−2v+(β +1)c(x)|u|α+1|v|β−1v in Ω,

u = v = 0 on ∂Ω,

where α,β satisfy the following conditions:

α +1
p∗

+
β +1

q∗
< 1,

α +1
p

+
β +1

q
> 1. (1.2)

Adriouch and El Hamidi in [1] considered the existence and multiplicity results of
positive solutions for the following system⎧⎪⎪⎨

⎪⎪⎩
−Δpu = λ |u|p1−2u+(α +1)|u|α−1u|v|β+1 in Ω,

−Δqv = μ |v|q−2v+(β +1)|u|α+1|v|β−1v in Ω,

u = v = 0 on ∂Ω,

where 1 < p1 < p < N , and α,β satisfy (1.2) and β+1
q < 1. For the following quasi-

linear elliptic boundary value problem⎧⎪⎪⎨
⎪⎪⎩

−Δpu = λa(x)|u|p−2u+ λb(x)|u|α−1u|v|β+1 + μ(x)
(α+1)(δ+1) |u|γ−1u|v|δ+1 in Ω,

−Δqv = λa(x)|v|q−2v+ λb(x)|u|α+1|v|β−1v+ μ(x)
(β+1)(γ+1) |u|γ+1|v|δ−1v in Ω,

u = v = 0 on ∂Ω,

where α,β � 0 satisfy α+1
p + β+1

q = 1, and p < γ +1( or q < δ +1) and γ+1
p∗ + δ+1

q∗ <
1, applying the Nehari manifold, Zhang, Liu and Liu in [12] proved that there is at
least a nonnegative nonsemitrivial solution for every λ ∈ (0,λ1) , where λ1 is principal
eigenvalue for the unperturbed system.

Influenced by these finds, in this paper, we will study the existence of multiple
positive solutions for system (1.1) with the concave-convex nonlinearities by using the
Nehari manifold and the fibering maps.

Let W 1,p
0 (Ω) be the usual Banach space endowed with the norm

‖u‖1,p =
(∫

Ω
|∇u|pdx

)1/p

for any u ∈W 1,p
0 (Ω).

Since the embedding W 1,p
0 (Ω) ↪→ Lθ (Ω) is continuous and compact for any θ ∈ [1, p∗) ,

we define

S1 = inf
u∈W1,p

0 (Ω)\{0}

‖u‖γ+δ
1,p

|u|γ+δ
γ+δ

, s1 = inf
u∈W1,p

0 (Ω)\{0}

‖u‖α+β
1,p

|u|α+β
α+β

,
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S2 = inf
v∈W 1,q

0 (Ω)\{0}

‖v‖γ+δ
1,q

|v|γ+δ
γ+δ

, s2 = inf
v∈W 1,q

0 (Ω)\{0}

‖v‖α+β
1,q

|v|α+β
α+β

,

where | · |p denotes the norm of Lp(Ω) , and s1,s2,S1,S2 > 0. Let W = W 1,p
0 (Ω)×

W 1,q
0 (Ω) be the product space with the norm

‖(u,v)‖ = ‖u‖1,p +‖v‖1,q for any (u,v) ∈W.

DEFINITION 1. (weak solution) We say that (u,v) ∈ W is the weak solution of
system (1.1), if (u,v) ∈W , one has∫

Ω
|∇u|p−2∇u ·∇zdx = λ α

∫
Ω

a(x)|u|α−2u|v|β · zdx+ γ
∫

Ω
b(x)|u|γ−2u|v|δ · zdx,∫

Ω
|∇v|q−2∇v ·∇wdx = λ β

∫
Ω

a(x)|u|α |v|β−2v ·wdx+ δ
∫

Ω
b(x)|u|γ |v|δ−2v ·wdx

for any (z,w) ∈W .

REMARK 1. We call a solution (u,v) of system (1.1) is nontrivial, if u �= 0 and
v �= 0, a solution (u,v) is positive if u > 0 and v > 0, and semitrivial if it is of the form
(u,0) with u �= 0 or (0,v) with v �= 0. It is easy to prove that if (u,v) �= (0,0) is a
solution of system (1.1), then it is nontrivial.

The main result can be described as follows:

THEOREM 1. If 1 < α +β < min{p,q} , max{p,q}< γ +δ < min{p∗,q∗} , then
there exists Λ0 > 0 such that when 0 < λ < Λ0 , system (1.1) has at least two nontrivial
solutions.

REMARK 2. (1) From α + β < min{p,q} , we have

α
p

+
β
q

� α
min{p,q} +

β
min{p,q} < 1,

which implies that the nonlinearity |u|α |v|β is the concave term. As far as we know,
there is no paper to consider the existence of weak solution for the (p,q)-elliptic
systems with the concave nonlinearity |u|α |v|β , hence our result is new. And from
max{p,q} < γ + δ < min{p∗,q∗} , we obtain

γ
p∗

+
δ
q∗

� γ
min{p∗,q∗} +

δ
min{p∗,q∗} < 1,

and
γ
p

+
δ
q

� γ
max{p,q} +

δ
max{p,q} > 1,

which implies that the nonlinearity |u|γ |v|δ is subcritical and convex.
(2) Theorem 1 extends the results of [5, 12] from the semilinear elliptic equation

to the (p,q)-elliptic systems and is complement for the ones of [1, 4, 12].
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2. Proof of the Theorem

From a variational point of view, the weak solutions of system (1.1) correspond to
the critical points of the functional Jλ : W → R given by

Jλ (u,v) =
1
p
‖u‖p

1,p +
1
q
‖v‖q

1,q−λ
∫

Ω
a(x)|u|α |v|β dx−

∫
Ω

b(x)|u|γ |v|δ dx. (2.1)

It is not difficult to prove that Jλ is unbounded below on W . In order to get rid of the
unboundedness of the functional Jλ , we will consider the functional Jλ on the Nehari
manifold:

Mλ (Ω) = {(u,v) ∈W \ {(0,0)}|〈J ′
λ(u,v),(u,v)〉 = 0}.

The Nehari manifold Mλ (Ω) is closely linked to the behavior of the functions of the
form ψ(u,v) : t → Jλ (tu,tv) for t � 0 defined by

ψ(u,v)(t) =
t p

p
‖u‖p

1,p +
tq

q
‖v‖q

1,q−λ tα+β
∫

Ω
a(x)|u|α |v|β dx− tγ+δ

∫
Ω

b(x)|u|γ |v|δ dx.

By a simple computation, we have

ψ
′
(u,v)(t) = t p−1||u‖p

1,p + tq−1||v‖q
1,q−λ (α + β )tα+β−1

∫
Ω

a(x)|u|α |v|β dx

−(γ + δ )tγ+δ−1
∫

Ω
b(x)|u|γ |v|δ dx,

ψ
′′
(u,v)(t) = (p−1)t p−2||u‖p

1,p +(q−1)tq−2||v‖q
1,q−λ (α + β )(α + β −1)

×tα+β−2
∫

Ω
a(x)|u|α |v|β dx− (γ + δ )(γ + δ −1)tγ+δ−2

∫
Ω

b(x)|u|γ |v|δ dx.

It is easy to see that (u,v) ∈ Mλ (Ω) if and only if ψ ′
(u,v)(1) = 0, i.e., the elements

in Mλ (Ω) are stationary points of the fibering maps ψ(u,v)(t) . Naturally, Mλ (Ω) can
be subdivided into three parts: local minima, local maxima and points of inflection
respectively, that is

M+
λ (Ω) = {(u,v) ∈ Mλ (Ω)| ψ

′′
(u,v)(1) > 0},

M−
λ (Ω) = {(u,v) ∈ Mλ (Ω)| ψ

′′
(u,v)(1) < 0},

M0
λ (Ω) = {(u,v) ∈ Mλ (Ω)| ψ

′′
(u,v)(1) = 0}.

Next, we describe the nature of the fibering map which is determined by the signs
of the functions

∫
Ω a(x)|u|α |v|β dx and

∫
Ω b(x)|u|γ |v|δ dx .

Case 1. If
∫

Ω a(x)|u|α |v|β dx � 0 and
∫

Ω b(x)|u|γ |v|δ dx � 0, ψ(u,v)(t) increases
strictly for t > 0 and no multiple of (u,v) lies in Mλ (Ω) .

Case 2. If
∫

Ω a(x)|u|α |v|β dx � 0 and
∫

Ω b(x)|u|γ |v|δ dx � 0, ψ(u,v)(t) decreases
firstly and then increases. In this case, ψ(u,v)(t) has a local minimum at t = t(u,v) and
t(u,v)(u,v) ∈ M+

λ (Ω) .
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Case 3. If
∫

Ω a(x)|u|α |v|β dx < 0 and
∫

Ω b(x)|u|γ |v|δ dx > 0, ψ(u,v)(t) increases
and then decreases and there is a maximum of ψ(u,v)(t) at t = t(u,v) and t(u,v)(u,v)∈
M−

λ (Ω) .
Case 4. If

∫
Ω a(x)|u|α |v|β dx > 0 and

∫
Ω b(x)|u|γ |v|δ dx > 0, ψ(u,v)(t) decreases

and then increases and finally decreases. Hence, ψ(u,v)(t) has a local maximum at t =
t1(u,v) and a local minimum at t = t2(u,v) with t1(u,v)(u,v)∈M−

λ (Ω) and t2(u,v)(u,v)
∈ M+

λ (Ω) .
In the following, we will prove a series of lemmas to finish the proof of Theorem

1.

LEMMA 1. Jλ is coercive and bounded below on Mλ (Ω) .

Proof. If (u,v) ∈ Mλ (Ω) , we have ψ ′
(u,v)(1) = 0, that is

‖u‖p
1,p +‖v‖q

1,q−λ (α + β )
∫

Ω
a(x)|u|α |v|β dx− (γ + δ )

∫
Ω

b(x)|u|γ |v|δ dx = 0. (2.2)

Hence, from (2.1), (2.2) and the Young’s inequality, we obtain

Jλ (u,v) =
(

1
p
− 1

γ + δ

)
‖u‖p

1,p +
(

1
q
− 1

γ + δ

)
‖v‖q

1,q

−λ
(

1− α + β
γ + δ

)∫
Ω

a(x)|u|α |v|β dx

�
(

1
p
− 1

γ + δ

)
‖u‖p

1,p +
(

1
q
− 1

γ + δ

)
‖v‖q

1,q

−λ
(

1− α + β
γ + δ

)
‖a‖∞

(
α

α + β

∫
Ω
|u|α+β dx+

β
α + β

∫
Ω
|v|α+β dx

)

� γ + δ − p
(γ + δ )p

‖u‖p
1,p +

γ + δ −q
(γ + δ )q

‖v‖q
1,q

−λ‖a‖∞
γ + δ −α −β
(γ + δ )(α + β )

(αs−1
1 ‖u‖α+β

1,p + β s−1
2 ‖v‖α+β

1,q ),

which shows that the functional Jλ is coercive from 1 < α + β < min{p,q} . �

LEMMA 2. Assume that (u,v) is a local maximizer or local minimizer for Jλ on
Mλ (Ω)\M0

λ (Ω) , then (u,v) is a critical point of Jλ .

Proof. Suppose that (u,v) is a local minimizer for Jλ on Mλ (Ω) \M0
λ (Ω) (if

(u,v) is a local maximizer for Jλ on Mλ (Ω)\M0
λ (Ω) , we can consider the functional

−Jλ ), by the theory of Lagrange multipliers, there exists μ ∈ R such that J′λ (u,v) =
μI′(u,v) , where

I(u,v) = ‖u‖p
1,p +‖v‖q

1,q−λ (α + β )
∫

Ω
a(x)|u|α |v|β dx− (γ + δ )

∫
Ω

b(x)|u|γ |v|δ dx.
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Hence, we obtain
〈J′λ (u,v),(u,v)〉 = μ〈I′(u,v),(u,v)〉.

From (u,v) ∈ Mλ (Ω) , it follows that 〈J′λ (u,v),(u,v)〉 = ψ ′
(u,v)(1) = 0, and moreover

from (u,v) �∈ M0
λ (Ω) , we have

〈I′(u,v),(u,v)〉
= p‖u‖p

1,p +q‖v‖q
1,q−λ (α + β )2

∫
Ω

a(x)|u|α |v|β dx− (γ + δ )2
∫

Ω
b(x)|u|γ |v|δ dx.

= ψ
′′
(u,v)(1)+ ψ

′
(u,v)(1)

= ψ
′′
(u,v)(1) �= 0.

Therefore, we obtain μ = 0. Thus, the proof is completed. �

LEMMA 3. There is Λ1 > 0 such that for any λ ∈ (0,Λ1) , M0
λ (Ω) = Ø .

Proof. Suppose by contradiction that for any Λ1 > 0, there is λ ∈ (0,Λ1) such
that M0

λ (Ω) �= Ø. Let (u,v) ∈ M0
λ (Ω) , we have ψ ′

(u,v)(1) = 0 and ψ ′′
(u,v)(1) = 0, i.e.,

(2.2) and the following equality hold:

(p−1)‖u‖p
1,p +(q−1)‖v‖q

1,q−λ (α + β )(α + β −1)
∫

Ω
a(x)|u|α |v|β dx

−(γ + δ )(γ + δ −1)
∫

Ω
b(x)|u|γ |v|δ dx = 0. (2.3)

By (2.2), (2.3) and the Young’s inequality, we have

(min{p,q}−α −β )(‖u‖p
1,p +‖v‖q

1,q)

� [p− (α + β )]‖u‖p
1,p +[q− (α + β )]‖v‖q

1,q

= (γ + δ )[(γ + δ )− (α + β )]
∫

Ω
b(x)|u|γ |v|δ dx

� [(γ + δ )− (α + β )]‖b‖∞

(
γ

∫
Ω
|u|γ+δ dx+ δ

∫
Ω
|v|γ+δ dx

)
� [(γ + δ )− (α + β )]‖b‖∞ max{γS−1

1 ,δS−1
2 }(‖u‖γ+δ

1,p +‖v‖γ+δ
1,q ),

let C1 = (min{p,q}−α −β )−1(γ + δ −α −β )‖b‖∞max{γS−1
1 ,δS−1

2 } , hence we get

‖u‖p
1,p +‖v‖q

1,q � C1(‖u‖γ+δ
1,p +‖v‖γ+δ

1,q ). (2.4)

Similarly, we obtain

‖u‖p
1,p +‖v‖q

1,q � λC2(‖u‖α+β
1,p +‖v‖α+β

1,q ), (2.5)

where C2 = (γ + δ −max{p,q})−1(γ + δ −α −β )‖a‖∞ max{αs−1
1 ,β s−1

2 }.
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From (2.4), at least one of the following two inequalities holds:

‖u‖p
1,p � C1‖u‖γ+δ

1,p or ‖v‖q
1,q � C1‖v‖γ+δ

1,q .

Without loss of generality, we assume that ‖u‖p
1,p � C1‖u‖γ+δ

1,p , therefore we obtain

‖u‖1,p � C−1/(γ+δ−p)
1 . From (2.5), it follows that

C−p/(γ+δ−p)
1 � ‖u‖p

1,p +‖v‖q
1,q � λC2(‖u‖α+β

1,p +‖v‖α+β
1,q ),

which is a contradiction for λ sufficiently small. Hence, the conclusion is proved. �

LEMMA 4. There exists Λ2 > 0 such that, when 0 < λ < Λ2 , ψ(u,v)(t) can get
positive values for any (u,v) ∈W \ {(0,0)} .

Proof. If
∫

Ω b(x)|u|γ |v|δ dx � 0, it is easy to see that ψ(u,v)(t) > 0 for t large

enough. Assume that
∫

Ω b(x)|u|γ |v|δ dx > 0, from (2.1) and the Young’s inequality, it
follows that

ψ(u,v)(t) =
t p

p
‖u‖p

1,p +
tq

q
‖v‖q

1,q−λ
∫

Ω
a(x)|tu|α |tv|β dx−

∫
Ω

b(x)|tu|γ |tv|δ dx

� t p

p
‖u‖p

1,p−λ
α‖a‖∞

α + β
tα+β

∫
Ω
|u|α+βdx− γ‖b‖∞

γ + δ
tγ+δ

∫
Ω
|u|γ+δ dx

+
tq

q
‖v‖q

1,q−λ
β‖a‖∞

α + β
tα+β

∫
Ω
|v|α+β dx− δ‖b‖∞

γ + δ
tγ+δ

∫
Ω
|v|γ+δ dx

� t p

p
‖u‖p

1,p−λ
α‖a‖∞

α + β
‖u‖α+β

1,p

s1
tα+β − γ‖b‖∞

γ + δ
‖u‖γ+δ

1,p

S1
tγ+δ

+
tq

q
‖v‖q

1,q−λ
β‖a‖∞

α + β
‖v‖α+β

1,q

s2
tα+β − δ‖b‖∞

γ + δ
‖v‖γ+δ

1,q

S2
tγ+δ . (2.6)

Let

f (t) =
‖u‖p

1,p

p
t p−λ

α‖a‖∞

α + β
‖u‖α+β

1,p

s1
tα+β − γ‖b‖∞

γ + δ
‖u‖γ+δ

1,p

S1
tγ+δ ,

g(t) =
‖v‖q

1,q

q
tq−λ

β‖a‖∞

α + β
‖v‖α+β

1,q

s2
tα+β − δ‖b‖∞

γ + δ
‖v‖γ+δ

1,q

S2
tγ+δ ,

f1(t) =
‖u‖p

1,p

p
t p− γ‖b‖∞

γ + δ
‖u‖γ+δ

1,p

S1
tγ+δ , g1(t) =

‖v‖q
1,q

q
tq− δ‖b‖∞

γ + δ
‖v‖γ+δ

1,q

S2
tγ+δ .

By a simple calculation, we know that f1(t) takes on a maximum value of

γ + δ − p
(γ + δ )p

(
S1

γ‖b‖∞

)p/(γ+δ−p)

at tmax =
(

S1

γ‖b‖∞

)1/(γ+δ−p) 1
‖u‖1,p

,
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and g1(t) obtains a maximum value at t̃max = (S2/δ‖b‖∞)1/(γ+δ−q)/‖v‖1,q.
Without loss of generality, we assume tmax � t̃max . Then, we have

f (tmax) = f1(tmax)−λ
α‖a‖∞

α + β
‖u‖α+β

1,p

s1
tα+β
max

=
γ + δ − p
(γ + δ )p

(
S1

γ‖b‖∞

) p
γ+δ−p −λ

α‖a‖∞

(α + β )s1

(
S1

γ‖b‖∞

) α+β
γ+δ−p

. (2.7)

From (2.7), it is obvious that there exist λ1 > 0 and c1 > 0, independent of u , such
that f (tmax) � c1 for any 0 < λ < λ1 .

On the other hand, from tmax � t̃max , g1(0) = 0 and g1(t) is increasing in t ∈
[0,tmax] , g1(tmax) > 0. Noting that

0 � λ
β‖a‖∞

α + β
‖v‖α+β

1,q

s2
tα+β
max � λ

β‖a‖∞

α + β
‖v‖α+β

1,q

s2
t̃α+β
max

= λ
β‖a‖∞

(α + β )s2

(
S2

δ‖b‖∞

) α+β
γ+δ−q → 0+

as λ → 0+ , then there exists λ2 > 0 sufficiently small, independent of u,v , such that

g(tmax) � g1(tmax)−λ
β‖a‖∞

α + β
‖v‖α+β

1,q

s2
t̃α+β
max � −c1

2
for any 0 < λ < λ2. (2.8)

From (2.6), (2.7) and (2.8), for any 0 < λ < Λ2 = min{λ1,λ2} , we have

ψ(u,v)(tmax) � f (tmax)+g(tmax) � c1

2
> 0. �

COROLLARY 1. Assume that 0 < λ < Λ2 , there exists ν1 > 0 such that Jλ (u,v)�
ν1 for all (u,v) ∈ M−

λ (Ω) .

LEMMA 5. Assume that 0 < λ < Λ0 = min{Λ1,Λ2} , there is a minimum of Jλ (u,v)
on M+

λ (Ω) .

Proof. If (u,v) ∈ Mλ (Ω) , Jλ (u,v) is bounded below and so on M+
λ (Ω) . Hence

there exists a minimizing sequence {(un,vn)} ⊂ M+
λ (Ω) such that

lim
n→∞

Jλ (un,vn) = inf
(u,v)∈M+

λ (Ω)
Jλ (u,v).

As Jλ (u,v) is coercive, (un,vn) is bounded in W . Therefore there exists a subsequence,
still denoted by (un,vn) , and (u0,v0) ∈W such that

(un,vn) ⇀ (u0,v0) in W, and

un → u0 in Lτ (Ω) for any 1 < τ < p∗, vn → v0 in Lθ (Ω) for any 1 < θ < q∗.
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If (u,v) ∈W satisfies
∫

Ω a(x)|u|α |v|β dx > 0, ψ(u,v)(t) can only be shown in the
case 2 or 4, and there is t1 = t1(u,v) > 0 such that (t1u,t1v)∈M+

λ (Ω) and Jλ (t1u, t1v) <

0, hence we get inf(u,v)∈M+
λ (Ω) Jλ (u,v) < 0. From ((2.1)) and {(un,vn)} ⊂ M+

λ (Ω) , we

have

λ
(

1− α + β
γ + δ

)∫
Ω

a(x)|un|α |vn|β dx

= −Jλ (un,vn)+
(

1
p
− 1

γ + δ

)
‖un‖p

1,p +
(

1
q
− 1

γ + δ

)
‖vn‖q

1,q.

Therefore, let n → ∞ , we have
∫

Ω a(x)|u0|α |v0|β dx > 0, which implies that there ex-
ists t0 = t0(u0,v0) > 0 such that (t0u0,t0v0) ∈ M+

λ (Ω) and ψ(u0,v0)(t) is decreasing on
(0,t0) and ψ ′

(u0,v0)(t0) = 0.
Suppose that (un,vn) → (u0,v0) in W does not hold, we get∫

Ω
|∇u0|pdx < liminf

n→∞

∫
Ω
|∇un|pdx or

∫
Ω
|∇v0|qdx < liminf

n→∞

∫
Ω
|∇vn|qdx.

Moreover, noting that

ψ
′
(un,vn)(t0) = t p−1

0 ‖un‖p
1,p + tq−1

0 ‖vn‖q
1,q−λ (α + β )tα+β−1

0

∫
Ω

a(x)|un|α |vn|β dx

−(γ + δ )tγ+δ−1
0

∫
Ω

b(x)|un|γ |vn|δ dx,

and

ψ
′
(u0,v0)(t0) = t p−1

0 ‖u0‖p
1,p + tq−1

0 ‖v0‖q
1,q−λ (α + β )tα+β−1

0

∫
Ω

a(x)|u0|α |v0|β dx

−(γ + δ )tγ+δ−1
0

∫
Ω

b(x)|u0|γ |v0|δ dx,

and from liminfn→∞ ψ ′
(un,vn)(t0) > ψ ′

(u0,v0)
(t0) = 0, we have that ψ ′

(un,vn)
(t0) > 0 for n

large enough.
Since {(un,vn)} ⊂ M+

λ (Ω) , from the case 2 or 4, it follows that ψ ′
(un,vn)

(t) < 0 for

any 0 < t < 1 and ψ ′
(un,vn)

(1) = 0, Hence t0 > 1. But (t0u0,t0v0) ∈ M+
λ (Ω) , we have

Jλ (t0u0, t0v0) < Jλ (u0,v0) < lim
n→∞

Jλ (un,vn) = inf
(u,v)∈M+

λ (Ω)
Jλ (u,v),

which is a contradiction. Hence, we obtain (un,vn) → (u0,v0) in W , and

Jλ (u0,v0) = lim
n→∞

Jλ (un,vn) = inf
(u,v)∈M+

λ (Ω)
Jλ (u,v),

which implies that (u0,v0) is a minimum for Jλ (u,v) on M+
λ (Ω) . �

LEMMA 6. Suppose that 0 < λ < Λ0 , there is a minimum of Jλ (u,v) on M−
λ (Ω) .
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Proof. From Corollary 1, we get Jλ (u,v)� ν1 > 0 for any (u,v)∈M−
λ (Ω) . Hence

inf(u,v)∈M−
λ (Ω) Jλ (u,v) � ν1 , and there is a minimizing sequence {(un,vn)} ⊂ M−

λ (Ω)
such that

lim
n→∞

Jλ (un,vn) = inf
(u,v)∈M−

λ (Ω)
Jλ (u,v) > 0.

Since Jλ (u,v) is coercive, (un,vn) is bounded in W . Without loss of generality, we can
suppose that

un ⇀ ũ in W 1,p
0 (Ω), vn ⇀ ṽ in W 1,q

0 (Ω), and

un → ũ in Lτ(Ω) for any 1 < τ < p∗,vn → ṽ in Lθ (Ω) for any 1 < θ < q∗.

Similar to the proof of Lemma 5, we can get that there is t̃ > 0 such that (t̃ ũ, t̃ ṽ) ∈
M−

λ (Ω) . If (un,vn) → (ũ, ṽ) does not hold, we know

∫
Ω
|∇ũ|pdx < liminf

n→∞

∫
Ω
|∇un|pdx or

∫
Ω
|∇ṽ|qdx < liminf

n→∞

∫
Ω
|∇vn|qdx

and Jλ (un,vn) � Jλ (tun,tvn) for all t � 0. Then we get

ψ(ũ,ṽ)(t̃) =
t̃ p

p
‖ũ‖p

1,p +
t̃q

q
‖ṽ‖q

1,q−λ t̃α+β
∫

Ω
a(x)|ũ|α |ṽ|β dx− t̃γ+δ

∫
Ω

b(x)|ũ|γ |ṽ|δ dx

< lim
n→∞

(
t̃ p

p
‖un‖p

1,p +
t̃q

q
‖vn‖q

1,q−λ t̃α+β
∫

Ω
a(x)|ũn|α |ṽn|β dx

−t̃γ+δ
∫

Ω
b(x)|un|γ |vn|δ dx

)
= lim

n→∞
Jλ (t̃un, t̃vn)

� lim
n→∞

Jλ (un,vn)

= inf
(u,v)∈M−

λ (Ω)
Jλ (ũ, ṽ),

we obtain a contradiction. Then (un,vn) → (ũ, ṽ) as n → ∞ . Similar to Lemma 5, the
proof can be completed. �

Proof of Theorem 1. From Lemma 5 and Lemma 6, there are (u+,v+) ∈ M+
λ (Ω) ,

(u−,v−) ∈ M−
λ (Ω) such that

Jλ (u+,v+) = inf
(u,v)∈M+

λ (Ω)
Jλ (u,v), Jλ (u−,v−) = inf

(u,v)∈M−
λ (Ω)

Jλ (u,v).

Moreover, Jλ (u±,v±) = Jλ (|u±|, |v±|) , hence, we can assume u± � 0,v± � 0. From
Lemma 2, (u±,v±) are two critical points of the functional Jλ . Thus, the proof is
completed. �
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