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Abstract. The main goal of this article is to establish an existence result for the following multi-
point boundary value problem:

(φp(u′))′ +q(t) f (t,u(t),u′(t)) = 0, t ∈ (0,1),

u(0) = Σm−2
i=1 aiu(ξi), φp(u′(1)) = Σm−2

i=1 biφp(u′(ξi)),

where φp(s) = |s|p−2s , p > 1 , and 0 < ξ1 < ξ2 < · · · < ξm−2 < 1 . By means of fixed point
theorem due to Avery and Peterson, we study the existence of at least three positive solutions
to our problem and get some information about these solutions under some sufficient conditions
posed.

1. Introduction

In this paper, we consider the existence of multiple positive solutions to the fol-
lowing nonlinear boundary value problem

(φp(u′(t)))′ +q(t) f (t,u(t),u′(t)) = 0, t ∈ (0,1), (1.1)

u(0) = Σm−2
i=1 aiu(ξi), φp(u′(1)) = Σm−2

i=1 biφp(u′(ξi)), (1.2)

where φp(s) = |s|p−2s , p > 1, 0 < ξ1 < ξ2 < · · · < ξm−2 < 1, and ai , bi , f , q satisfy

(H1) ai,bi ∈ [0,1) satisfies Σm−2
i=1 ai < 1 and Σm−2

i=1 bi < 1;

(H2) f ∈C([0,1]× [0,∞)×R, [0,∞)) , q∈ L1[0,1] is nonnegative on (0,1) and q
is not identically to zero on any subinterval of (0,1) .

Multi-point boundary value problems of ordinary differential equations arise in a
variety of areas of applied mathematics and physics. For example, the vibrations of
a guy wire of a uniform cross-section and composed of N parts of different densities
can be set up as a multi-point boundary value problem (see [1]). As the linear case
initiated by Il’in and Moiseev [2], this interesting topic recently still engages many
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researchers and has been studied extensively. Karakostas [3] proved the existence of
positive solutions for

x′′(t)− sign(1−α)q(t) f (x,x′)x′ = 0, t ∈ (0,1),

with one of the following sets of boundary conditions:

x(0) = 0, x′(1) = αx′(0),

or
x(1) = 0, x′(1) = αx′(0),

where α > 0, α �= 1. By using indices of convergence of the nonlinearities at 0 and
at 1, the author provide a priori upper and lower bounds for the slope of the solutions.
Ma [4] proved the existence of positive solutions for the multi-point boundary value
problem

x′′(t)+q(t) f (x,x′)x′ = 0, t ∈ (0,1),

x(0) = Σn−2
i=1 bix(ξi), x′(1) = αx′(0),

where 0 < ξ1 < ξ2 < · · · < ξm−2 < 1, and bi ∈ (0,1) , α > 1. They provided sufficient
conditions for the existence of multiple positive solutions to the above boundary value
problem by applying the fixed point theorem in cones. We refer the readers to several
excellent works, for example, [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], even with the
so-called p -Laplicain operator (see [16, 17, 18, 19, 20, 21]). However, to the best
knowledge of the authors, no work has been done for (1.1), (1.2). The aim of this paper
is to fill this gap in the relevant literature.

Motivated by these results, our purpose of this paper is to show the existence of at
least three positive solutions to multi-point BVP (1.1) and (1.2). Other organization of
this article contains, in section 3, to establish an existence theorem of multiple positive
solutions for the problem (1.1), (1.2), that is, Theorem 2, under some sufficient condi-
tions provided. An example is offered for the application of our main theorem in the
last section.

2. Preliminaries

Before starting this section, we probably describe the challenges when consider-
ing (1.1), (1.2). In fact, there are lots of schemes to deal with the existence of vari-
ous boundary value problems, such as different fixed point theorems, iteration method,
Leray-Schauder continuation theorem, barrier method. This paper uses the fixes point
theorems in cones due to Avery and Peterson [22, 23]. The difficulty may occur on
finding suitable cone. Another key point is that the nonlinear boundary condition (1.2)
will result in finding corresponding operator. We try to overcome them and obtain the
desired results as follows.

We first provide some background material from the theory of cones in Banach
spaces.
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DEFINITION 1. Let E be a real Banach space. A nonempty closed set P ⊂ E is
said to be a cone if

1. au+bv∈ P for all u,v ∈ P and all a � 0, b � 0;

2. u,−u ∈ P implies u = 0.

DEFINITION 2. A map α is said to be a nonnegative continuous concave func-
tional on a cone P of a real Banach space E provided that α : P → [0,∞) is continuous
and for all x,y ∈ P and 0 � t � 1,

α(tx+(1− t)y) � tα(x)+ (1− t)α(y).

Similarly, we say a map γ is a nonnegative continuous convex functional on a cone P
of a real Banach space E provided that γ : P → [0,∞) is continuous and for all x,y ∈ P
and 0 � t � 1,

γ(tx+(1− t)y) � tγ(x)+ (1− t)γ(y).

Let γ and θ be nonnegative continuous convex functionals on a cone P , α be
a nonnegative continuous concave functional on a cone P , and ψ be a nonnegative
continuous functional on a cone P . For given positive real numbers a,b,c,d , we define
the following sets:

P(γ,d) = {u ∈ P | γ(u) < d}, (2.1)

P(γ,α,b,d) = {u ∈ P | b � α(u),γ(u) � d}, (2.2)

P(γ,θ ,α,b,c,d) = {u ∈ P | b � α(u),θ (u) � c,γ(u) � d}, (2.3)

R(γ,ψ ,a,d) = {u ∈ P | a � ψ(u),γ(u) � d}. (2.4)

In order to obtain our main result, the following fixed point theorem due to Avery and
Peterson [22, 23] is essential.

THEOREM 1. Let P be a cone in a real Banach space E . Let γ and θ be non-
negative continuous convex functionals on P, α be a nonnegative continuous con-
cave functional on P, and ψ be a nonnegative continuous functional on P satisfying
ψ(λu) � λ ψ(u) for 0 � λ � 1 , such that for some positive numbers K and d ,

α(u) � ψ(u) and ||u|| � Kγ(u)

for all u ∈ P(γ,d) . Suppose T : P(γ,d) → P(γ,d) is completely continuous and there
exist positive numbers a, b and c with a < b such that

(S1) {u ∈ P(γ,θ ,α,b,c,d) | α(u) > b} �= /0 and α(Tu) > b for u ∈ P(γ,θ ,α,b,c,d);
(S2) α(Tu) > b for u ∈ P(γ,α,b,d) with θ (Tu) > c;
(S3) 0 /∈ R(γ,ψ ,a,d) and ψ(Tu) < a for u ∈ R(γ,ψ ,a,d) with ψ(u) = a.

Then T has at least three fixed points u1 , u2 u3 ∈ P(γ,d) such that γ(ui) � d for
i = 1,2,3 , b < α(u1) , a < ψ(u2) , with α(u2) < b, ψ(u3) < a.
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Next, we consider the Banach space E := C1[0,1] equipped with the norm

||u|| = max{max
t∈[0,1]

|u(t)|, max
t∈[0,1]

|u′(t)|}.

Define the cone P ⊂ E by

P = {u ∈ E | u(t) is nonnegative, concave and nondecreasing on [0,1]}. (2.5)

One can immediately obtain some important lemmas which will be applied to conclude
our main result in next section.

LEMMA 1. Assume that (H1) , (H2) hold. For any x ∈C+[0,1] := {x ∈C1[0,1]|
x(t) � 0} , the problem

(φp(u′(t)))′ +q(t) f (t,x(t),x′(t)) = 0, t ∈ (0,1), (2.6)

u(0) = Σm−2
i=1 aiu(ξi), φp(u′(1)) = Σm−2

i=1 biφp(u′(ξi)), (2.7)

has the unique solution

u(t) =
∫ t

0
φ−1

p

( 1

1−Σm−2
i=1 bi

Σm−2
i=1 bi

∫ 1

ξi

q(τ) f (τ,x(τ),x′(τ))dτ

+
∫ 1

s
q(τ) f (τ,x(τ),x′(τ))dτ

)
ds+

1

1−Σm−2
i=1 ai

Σm−2
i=1 ai

∫ ξi

0
φ−1

p

×
( 1

1−Σm−2
i=1 bi

Σm−2
i=1 bi

∫ 1

ξi

q(τ) f (τ,x(τ),x′(τ))dτ

+
∫ 1

s
q(τ) f (τ,x(τ),x′(τ))dτ

)
ds.

Proof. For any x ∈ C+[0,1] , suppose u is a solution of (2.6), (2.7). By direct
integration of (2.6) and the boundary condition (2.7), we can find out the explicit form
as above. Conversely, it is easy to verify that if u is of the above form, then u is a
solution of (2.6), (2.7). �

LEMMA 2. Suppose that (H1) , (H2) hold. If x ∈C+[0,1] , then the unique solu-
tion u(t) of (2.6) , (2.7) is concave and u(t) � 0 , u′(t) � 0 , for t ∈ [0,1] .

Proof. Since u is the solution of (2.6), (2.7), it follows from that (φp(u′(t)))′ =
−q(t) f (t,x(t),x′(t)) that u′(t) is nonincreasing on (0,1) , which implies that u(t) is
concave. Moreover, the other conclusions of this lemma can be obtained via direct
computation of the explicit form of u(t) stated in Lemma 1. �

LEMMA 3. Set M = 1+ Σm−2
i=1 aiξi

Σm−2
i=1 ai

. If u ∈ P, then

max
t∈[0,1]

|u(t)| � M max
t∈[0,1]

|u′(t)|. (2.8)
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Proof. For u ∈ P , since u is concave and nondecreasing, one have

u(1)−u(0) � u′(0) = max
t∈[0,1]

|u′(t)|.

Moreover, it follows from

(1−Σm−2
i=1 ai)u(0) = u(0)−Σm−2

i=1 aiu(0) = Σm−2
i=1 aiu(ξi)−Σm−2

i=1 aiu(0)

= Σm−2
i=1 ai(u(ξi)−u(0)) = Σm−2

i=1 aiξiu
′(ηi),

where ηi ∈ (0,ξi) , that

u(0) =
Σm−2

i=1 aiξiu′(ηi)
1−Σm−2

i=1 ai
� Σm−2

i=1 aiξi

1−Σm−2
i=1 ai

max
t∈[0,1]

|u′(t)|. (2.9)

Combining (2.8) and (2.9) implies that

max
t∈[0,1]

|u(t)| = u(1) �
(
1+

Σm−2
i=1 aiξi

Σm−2
i=1 ai

)
max
t∈[0,1]

|u′(t)| = M max
t∈[0,1]

|u′(t)|. �

LEMMA 4. Define an operator T : P →C1[0,1] by

(Tu)(t) =
∫ t

0
φ−1

p

( 1

1−Σm−2
i=1 bi

Σm−2
i=1 bi

∫ 1

ξi

q(τ) f (τ,u(τ),u′(τ))dτ

+
∫ 1

s
q(τ) f (τ,u(τ),u′(τ))dτ

)
ds+

1

1−Σm−2
i=1 ai

Σm−2
i=1 ai

×
∫ ξi

0
φ−1

p

( 1

1−Σm−2
i=1 bi

Σm−2
i=1 bi

∫ 1

ξi

q(τ) f (τ,u(τ),u′(τ))dτ

+
∫ 1

s
q(τ) f (τ,u(τ),u′(τ))dτ

)
ds.

Then T : P → P is completely continuous.

Proof. According to Lemma 2, it is easy to show that T (P) ⊂ P . By similar
arguments in Lemma 2.4 [19] associated with standard applications of Arzelà-Ascoli’s
theorem, the complete continuity of T can be obtained. �

3. Main result

Note that from (H2) , there exists k > max{ 1
ξ1

, 1
1−ξm−2

} such that

0 <

∫ 1− 1
k

1
k

q(t)dt < ∞. (3.1)
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Before constructing our main result, we must define other elements. Let the nonnegative
continuous concave functional α , the nonnegative continuous convex functionals θ , γ
and the nonnegative continuous functional ψ be defined on the cone P by

γ(u) = max
t∈[0,1]

|u′(t)|, u ∈ P, (3.2)

ψ(u) = θ (u) = max
t∈[0,1]

|u(t)|, u ∈ P, (3.3)

α(u) = min
t∈[ 1

k ,1− 1
k ]
|u(t)|, u ∈ P. (3.4)

REMARK 1. For u ∈ P ,

1. ψ(λ ) � λ ψ(u) , for 0 � λ � 1.

2. with Lemma 3 and the concavity, we have

1
k

θ (u) � α(u) � θ (u) = ψ(u)

and
||u|| = max{θ (u),γ(u)} � Mγ(u).

Set several constants appeared in the next theorem as follows:

L :=φ−1
p

( 1

1−Σm−2
i=1 bi

Σm−2
i=1 bi

∫ 1

ξi

q(τ)dτ +
∫ 1

0
q(τ)dτ

)
,

M :=
∫ 1− 1

k

1
k

φ−1
p

( 1

1−Σm−2
i=1 bi

Σm−2
i=1 bi

∫ 1− 1
k

ξi

q(τ)dτ +
∫ 1− 1

k

s
q(τ)dτ

)
ds

+
1

1−Σm−2
i=1 ai

Σm−2
i=1 ai

∫ ξi

1
k

φ−1
p

( 1

1−Σm−2
i=1 bi

Σm−2
i=1 bi

∫ 1− 1
k

ξi

q(τ)dτ+
∫ 1− 1

k

s
q(τ)dτ

)
ds,

and

N :=
∫ 1

0
φ−1

p

( 1

1−Σm−2
i=1 bi

Σm−2
i=1 bi

∫ 1

ξi

q(τ)dτ +
∫ 1

s
q(τ)dτ

)
ds

+
1

1−Σm−2
i=1 ai

Σm−2
i=1 ai

∫ ξi

0
φ−1

p

( 1

1−Σm−2
i=1 bi

Σm−2
i=1 bi

∫ 1

ξi

q(τ)dτ +
∫ 1

s
q(τ)dτ

)
ds.

We now are ready to study our main result as follows.

THEOREM 2. Let M be defined as in Lemma 3. Suppose (H1) , (H2) hold and
there exist positive constants a,b,d such that 0 < a < b � 2

k d . Moreover, assume that
f satisfies

(A1) f (t,u,v) � φp( d
L ), (t,u,v) ∈ [0,1]× [0,Md]× [0,d];
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(A2) f (t,u,v) � φp( kb
M ), (t,u,v) ∈ [ 1

k ,1− 1
k ]× [b,kb]× [0,d];

(A3) f (t,u,v) < φp( a
N ), (t,u,v) ∈ [0,1]× [0,a]× [0,d] .

Then the problem (1.1) , (1.2) has at least three positive solutions u1 , u2 , u3 such
that max0�t�1 |u′i(t)| � d, for i = 1,2,3 , min1

k �t�1− 1
k
|u1(t)| > b, max0�t�1 |u1(t)| �

Md , max0�t�1 |u2(t)| > a with min1
k �t�1− 1

k
|u2(t)| < b, and max0�t�1 |u3(t)| < a.

Proof. We know that the problem (1.1), (1.2) has a solution u if and only if u
solves u = Tu , where T is defined as in Lemma 4. Thus, we will verify that T satisfies
the Avery-Peterson theorem, that is, Theorem 1, which shows the existence of three
fixed points of T . The proof is separated as four parts.

Part (I) – T : P(γ,d) → P(γ,d) , where P(γ,d) is defined as (2.1) . For u ∈
P(γ,d) , γ(u) = maxt∈[0,1] |u′(t)| � d . By Lemma 3, we have max0�t�1 |u(t)| � Md .

Hence, the condition (A1) implies f (t,u(t),u′(t)) � φp( d
L ) , for u ∈ P(γ,d) . Further-

more, for u ∈ P , we have Tu ∈ P by Lemma 4, which leads to Tu is concave and
maxt∈[0,1] |(Tu)′(t)| = (Tu)′(0) . Thus, one also have

γ(Tu) = max
t∈[0,1]

|(Tu)′(t)| = (Tu)′(0)

= φ−1
p

( 1

1−Σm−2
i=1 bi

Σm−2
i=1 bi

∫ 1

ξi

q(τ) f (τ,u(τ),u′(τ))dτ+
∫ 1

0
q(τ) f (τ,u(τ),u′(τ))dτ

)

� φ−1
p

( 1

1−Σm−2
i=1 bi

Σm−2
i=1 bi

∫ 1

ξi

q(τ)φp

(d
L

)
dτ +

∫ 1

0
q(τ)φp

(d
L

)
dτ

)

=
d
L

φ−1
p

( 1

1−Σm−2
i=1 bi

Σm−2
i=1 bi

∫ 1

ξi

q(τ)dτ +
∫ 1

0
q(τ)dτ

)

=
d
L

L = d.

Part (II) – The condition (S1) in Theorem 1 (Avery-Peterson’s) holds. We take that

u0(t) = −kb
4

t2 +
kb
2

t +
3
4
kb, t ∈ [0,1].

It is easy to see that u0(t) � 0 and is concave, nondecreasing on [0,1] , hence, u0 ∈ P .
Immediately, we get

α(u0) = min
t∈[ 1

k ,1− 1
k ]
|u0(t)| = u0

(1
k

)
= − b

4k
+

b
2

+
3
4
kb > b,

θ (u0) = max
t∈[0,1]

|u0(t)| = u0(1) = −kb
4

+
kb
2

+
3
4
kb = kb,

γ(u0) = max
t∈[0,1]

|u′0(t)| = u′0(0) =
kb
2

� d,

which imply that u0 ∈ P(γ,θ ,α,b,kb,d) , that is, {u ∈ P(γ,θ ,α,b,kb,d) | α(u) >
b} �= /0 , where P(γ,θ ,α,b,kb,d) is defined of the form (2.3) . Therefore, for u ∈
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P(γ,θ ,α,b,kb,d) , we conclude for t ∈ [ 1
k ,1− 1

k ] , b � u(t) � kb , 0 � u′(t) � d , and
according to (A2) , f (t,u(t),u′(t)) � φp( kb

M ) . By Lemma 2 and the above-mentioned
Remark, one arrives that

α(Tu) = min
t∈[ 1

k ,1− 1
k ]
|(Tu)(t)| � 1

k
max
t∈[0,1]

|(Tu)(t)| = 1
k
(Tu)(1)

>
1
k

∫ 1− 1
k

1
k

φ−1
p

( 1

1−Σm−2
i=1 bi

Σm−2
i=1 bi

∫ 1− 1
k

ξi

q(τ) f (τ,u(τ),u′(τ))dτ

+
∫ 1− 1

k

s
q(τ) f (τ,u(τ),u′(τ))dτ

)
ds+

1

k(1−Σm−2
i=1 ai)

Σm−2
i=1 ai

×
∫ ξi

1
k

φ−1
p

( 1

1−Σm−2
i=1 bi

Σm−2
i=1 bi

∫ 1− 1
k

ξi

q(τ) f (τ,u(τ),u′(τ))dτ

+
∫ 1− 1

k

s
q(τ) f (τ,u(τ),u′(τ))dτ

)
ds

� 1
k

∫ 1− 1
k

1
k

φ−1
p

( 1

1−Σm−2
i=1 bi

Σm−2
i=1 bi

∫ 1− 1
k

ξi

q(τ)φp

(kb
M

)
dτ

+
∫ 1− 1

k

s
q(τ)φp

(kb
M

)
dτ

)
ds+

1

k(1−Σm−2
i=1 ai)

Σm−2
i=1 ai

×
∫ ξi

1
k

φ−1
p

( 1

1−Σm−2
i=1 bi

Σm−2
i=1 bi

∫ 1− 1
k

ξi

q(τ)φp

(kb
M

)
dτ +

∫ 1− 1
k

s
q(τ)φp

(kb
M

)
dτ

)
ds

=
1
k

kb
M

M = b.

Thus, α(Tu) > b for u ∈ P(γ,θ ,α,b,kb,d) .
Part (III) – The condition (S2) in Theorem 1 (Avery-Peterson’s) holds. By using

the Remark mentioned above, we obtain, for u ∈ P(γ,α,b,d) with θ (Tu) > kb ,

α(Tu) � 1
k

θ (Tu) >
1
k
kb = b,

where P(γ,α,b,d) is defined as (2.2) .
Part (IV) – The condition (S3) in Theorem 1 (Avery-Peterson’s) holds. Since

ψ(0) = 0 < a , 0 /∈ R(γ,ψ ,a,d) defined as (2.4) . Suppose u ∈ R(γ,ψ ,a,d) with
ψ(u) = a , then, by means of the condition (A3) ,

ψ(Tu) = max
t∈[0,1]

|(Tu)(t)| = (Tu)(1)

<

∫ 1

0
φ−1

p

( 1

1−Σm−2
i=1 bi

Σm−2
i=1 bi

∫ 1

ξi

q(τ)φp

( a
N

)
dτ +

∫ 1

s
q(τ)φp

( a
N

)
dτ

)
ds

+
1

1−Σm−2
i=1 ai

Σm−2
i=1 ai

∫ ξi

0
φ−1

p

( 1

1−Σm−2
i=1 bi

Σm−2
i=1 bi

∫ 1

ξi

q(τ)φp

( a
N

)
dτ
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+
∫ 1

s
q(τ)φp

( a
N

)
dτ

)
ds

=
a
N

N = a.

Combining Part (I)–Part (IV), Theorem 1 implies that (1.1), (1.2) has at least three
positive solutions satisfying the statement of Theorem 2. �

4. An example

Consider the nonlinear boundary value problem

(P)

{
(|u′(t)|u′(t))′ + f (t,u(t),u′(t)) = 0, t ∈ (0,1),

u(0) = 1
2u( 1

3)+ 1
4u( 2

3 ), |u′(1)|u′(1) = 1
2 |u′( 1

3 )|u′( 1
3 )+ 1

4 |u′( 2
3 )|u′( 2

3),

where f (t,u,v) =

⎧⎨
⎩

11u15 +
√

v
1000 , u � 1;

11
√

u+
√

v
1000 , u > 1.

Note that if we set p = 3, q(t) ≡ 1 in (1.1), m = 4, a1 = b1 = 1
2 , a2 = b2 = 1

4 ,
ξ1 = 1

3 , ξ2 = 2
3 in (1.2), the problem (1.1), (1.2) can be reduced as (P) .

Choose a = 2
3 , b = 1, k = 6, d = 30, we can compute L = 2

3

√
6, M

.= 1.8843,
N

.= 3.54 and M = 7
3 . Consequently, f (t,u,v) satisfies

1. f (t,u,v) < 92.04 < φ3( d
L ) = 337.5, for (t,u,v) ∈ [0,1]× [0,70]× [0,30] ,

2. f (t,u,v) > 11 > φ3( kb
M ) .= 10.138, for (t,u,v) ∈ [ 1

6 , 5
6 ]× [1,6]× [0,30] ,

3. f (t,u,v) < 0.0311 < φ3( a
N ) .= 0.0354, for (t,u,v) ∈ [0,1]× [0, 2

3 ]× [0,30] .

All conditions of our main result, that is, Theorem 2, hold. Hence, we can conclude
that the problem (P) has at least three positive solutions u1 , u2 and u3 , which satisfy

max
0�t�1

|u′i(t)| � 30 for i = 1,2,3,

min
1
6 �t� 5

6

|u1(t)| > 1, max
0�t�1

|u1(t)| � 70,

max
0�t�1

|u2(t)| > 2
3
, min

1
6 �t� 5

6

|u2(t)| < 1

and

max
0�t�1

|u3(t)| < 2
3
.
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