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Abstract. In [15], Wei solved a delay differential equation on the half-line. The current paper
is an extension of these results to the set-valued case. The results involve measurable selections
and the contraction mapping theorem for set-valued functions.

1. Introduction

In [15], Wei solved a delay differential equation on the half-line. It is always a
useful challenge to extend single valued results to the set-valued case and that is what
we do here. There have been a number of papers involving the generalization of single-
valued results to the differential inclusion case. See for example, [4] and [13]. We will
need a fixed point theorem and some results concerning selections of set-valued maps
and will determine the existence of solutions to a particular differential inclusion with
boundary values.

The use of fixed point theorems and measurable selections for such problems with
boundary values other than those here is quite common. For example in [7] and [10] the
Covitz-Nadler theorem (see below) is used to obtain existence of solutions for a second-
order differential inclusion while in [6] a measurable selection theorem is employed for
such a problem. In [17] a fixed point result for upper semicontinuous maps is applied
and in [14] fixed point index theory is applied. General results for set-valued analysis
can be obtained in many places. See for example [1] and [2].

In this article the following delay boundary value inclusion, (DBVI), will be con-
sidered:

[p(t)x′(t)]′ ∈ F(t,xt , p(t)x′(t))

a.e. where xt(s) = x(t + s) for s ∈ [−r,0], t ∈ [0,∞). and x(t) = ϕ(t), t ∈ [−r,0], x is
continuously differentiable on (0,∞) as is p(t)x′(t), and lim

t→∞
p(t)x′(t) = L.

Further we assume the following conditions which are similar to those found in
[15]:

1. Let ϕ(t) ∈C[−r,0] and L be given with ϕ(0) = 0.
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2. Let p(t) > 0 be continuous on [0,∞) and satisfy
∫ ∞
0

dt
p(t) < ∞ and let P(t) =∫ t

0
dt
p(t) for t > 0.

3. Let F map (0,∞)×C[−r,0]×R to nonempty, closed and convex valued subsets
of R.

4. There exists a nonnegative real-valued function h defined on (0,∞)×C([−r,0],
[0,∞))× [0,∞) such that supy∈F(t,u,v) | y |� h(t, | u |, | v |) for almost all t whenever
u ∈C[−r,0] and v ∈ R. Furthermore h is increasing in its second and third variables
in the sense that if u1 and u2 are elements of C([−r,0], [0,∞)) with u1(w) � u2(w) for
all w∈ [−r,0] and 0 � y1 � y2, then for almost all t ∈ (0,∞), h(t,u1,y1) � h(t,u2,y2).

5. Assume that for all (u,v) ∈ C[−r,0]×C1(0,∞), the functions defined by
F1(u,v)(s) ≡ infF(s,us,v(s)) and F2(u,v)(s) ≡ supF(s,us,v(s)) for almost all s are
measurable functions and finite a.e. Note that conditions 3 and 4 imply that F is com-
pact valued a.e. and thus F1(u,v)(s) and F2(u,v)(s) are selections of F(s,us,v(s)) for
almost all s .

6. There exists c >| L | such that if we define η(t) by: η(t) = {| ϕ(t) |, −r � t �
0, cP(t), t > 0} , then

∫ ∞
0 h(t,ηt ,c)dt � c− | L | .

7. There exists k(s) : [0,∞) → [0,∞) measurable such that for all x1,x2 ∈C[−r,0]
and v1,v2 ∈ R we have Hd(F(s,x1,v1),F(s,x2,v2)) � k(s)×max{‖ x1 − x2 ‖[−r,0], |
v1 − v2 |} a.e. and

∫ ∞
0 k(s)×max{1,P(s)}ds = L1 < 1 where Hd is the Hausdorff

metric.

NOTE. Many of these conditions are set-valued versions of conditions found in
[15], though in that paper all functions were single-valued and f which takes the place
of our F was continuous there. f had a single-valued integral boundedness condition
which has been generalized in condition 4 here. Condition 5 specifies the existence
of a particular measurable selection. A more general measurable selection would be
guaranteed when F is £×ß(C[−r,0]×R) measurable. See [5], [8], and [9] for details.
Condition 7 is a generalized set-valued Lipschitz condition.

By a solution to the above boundary value inclusion we mean that there exists
x ∈C[−r,∞)∩AC1(0,∞) and p(t)x′(t) ∈ AC(0,∞) where AC1(0,∞) is the set of func-
tions which have an absolutely continuous derivative on (0,∞), and [p(t)x′(t)]′ ∈
F(t,xt , p(t)x′(t)) a.e. on (0,∞), where x(t) = ϕ(t), t ∈ [−r,0], and lim

t→∞
p(t)x′(t) = L.

In order to demonstrate the existence of a solution to the above DBVI we will use
a set-valued version of the contraction mapping theorem. The definition and theorem
below can be found in a number of places. See [3].

DEFINITION. M : X → Pcl(X) is a contraction if and only if ∃k1 such that 0 �
k1 < 1 and M is Lipschitz with constant k1 with respect to the Hausdorff metric. By
Pcl(X) we mean the closed subsets of X .

COVITZ-NADLER CONTRACTION MAPPING THEOREM. [3] Let (X ,d) be a
complete metric space. If M : X → Pcl(X) is a contraction, then Fix(M) 	= φ where
Fix(M) = {x ∈ X | x ∈ Mx}.

We will also use the fact that L1(0,∞) is a Banach Lattice. See [12] for details.
As in [15] we define the spaces E and Ω by E = {x ∈ C[−r,∞) | x is continuously
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differentiable on (0,∞) and p(t)x′(t) is bounded on (0,∞)} and Ω = {x ∈ E | x(t) =
ϕ(t) for t ∈ [−r,0] and p(t) | x′(t) |� c for t > 0}. E is a Banach space with norm
‖ · ‖E defined by ‖ u ‖E= max{max−r�t�0 | u(t) |, supt>0 p(t) | u′(t) |} for u ∈ E.

NOTE. In what follows for all x ∈ Ω we define Mx by Mx = {m(t) ∈C[−r,∞)∩
AC(0,∞) | ∃ f measurable on (0,∞) such that f (s) ∈ F(s,xs, p(s)x′(s)) a.e. with
m(t) = ϕ(t) for t ∈ [−r,0] and m(t) =

∫ t
0

1
p(τ)

∫ ∞
τ f (s)dsdτ +LP(t), for t > 0}. Con-

dition 5 guarantees that there are indeed some selections of F(s,xs, p(s)x′(s)), namely
F1(x,px′)(s) and F2(x,px′)(s).

2. Preliminary results

We will require a number of lemmas and theorems in order to establish the main
result.

LEMMA 1. Mx ⊆ Ω for all x ∈ Ω.

Proof. Let x∈ Ω and let m∈Mx with associated measurable function f (s) which
is a selection of F(s,xs, p(s)x′(s)) a.e. Clearly m(t) = ϕ(t) for t ∈ [−r,0].

Now let t > 0. It can be easily shown that m′(t) = 1
p(t)

∫ ∞
t f (s)ds + L

p(t) . Thus

m′ ∈C(0,∞) and m ∈C[−r,∞).
Following the argument in [14] we note that for x ∈ Ω and s ∈ (t,∞) it is clear

that p(s) | x′(s) |� c and for t1 > 0 since x(0) = ϕ(0) = 0 we have:

| x(t1) | =
∣∣∣∫ t1

0
x′(τ)dτ

∣∣∣ =
∣∣∣∫ t1

0

p(τ)
p(τ)

x′(τ)dτ
∣∣∣

�
∫ t1

0

p(τ)
p(τ)

| x′(τ) | dτ � cP(t1) = η(t1).

Thus | xs(t) |� ηs(t) if s+ t > 0 and if s+ t � 0, then | xs(t) |= ηs(t) = ϕ(s+ t) ,
so we have that | xs |� ηs for all s � 0.

Thus we have

| p(t)m′(t) | =
∣∣∣∫ ∞

t
f (s)ds+L

∣∣∣
� | L | +

∫ ∞

t
| f (s) | ds

� | L | +
∫ ∞

t
h(s, | xs |, p(s) | x′(s) |)ds

� | L | +
∫ ∞

t
h(s,ηs,c)ds

� | L | +c− | L |= c

since h(s,ηs,c) ∈ L1(0,∞) and h is increasing in its second and third arguments.
Thus m ∈ Ω so the lemma is proven.
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LEMMA 2. Let x∈Ω and hn ∈Mx ∀n∈N. If hn → h̃ in E, then lim
b→∞

p(b)h̃′(b) =

L.

Proof. Since h̃ is in E , p(t)h̃′(t) is bounded for t ∈ (0,∞). Since hn → h̃ in E we
have that ph′n converges to ph̃′ uniformly on (0,∞). By the definition of Mx there are
selections, fn(s) of F(s,xs, p(s)x′(s)) a.e. such that ∀n∈N, hn(t)=

∫ t
0

1
p(τ)

∫ ∞
τ fn(s)dsdτ

+LP(t). Thus: p(t)h′n(t) = p(t)[ 1
p(t)

∫ ∞
t fn(s)ds+ L

p(t) ] =
∫ ∞
t fn(s)ds+L. As before:

| fn(s) |� h(s,ηs,c) ∈ L1(0,∞) which implies that fn ∈ L1(0,∞) and so lim
t→∞

∫ ∞
t fn(s)ds

= 0. This means that: lim
t→∞

p(t)h′n(t) = L ∀n ∈ N.

Now consider | p(t)h̃′(t)−L | . Let ε > 0. Using the uniform convergence of ph′n
select N′ such that n > N′ implies that ∀t > 0, | p(t)h′n(t)− p(t)h̃′(t) |< ε

2 . Fix n0 > N′

and choose t0 ∈ (0,∞) such that t > t0 implies that | p(t)h̃n0

′
(t)−L |< ε

2 .

Now for t > t0 we have that | p(t)h̃′(t)−L |�| p(t)h′n0
(t)− p(t)h̃′(t) |+ | p(t)h′n0

(t)
−L |< ε

2 + ε
2 = ε.

This proves the lemma. �

The next lemma is similar to many found in basic measure theory texts. See for
example [11] and [16].

LEMMA 3. Let f ,g ∈ L1(0,∞) . If ∀a,b ∈ (0,∞),
∫ b
a f (τ)dτ �

∫ b
a g(τ)dτ then

f � g a.e. on (0,∞).

Proof. First assume that z ∈ L1(0,∞) and ∀a,b ∈ (0,∞),
∫ b
a z(τ)dτ � 0. We will

prove by contradiction that z(τ) � 0 a.e. The lemma follows by applying this result to
the function z(τ) = f (τ)−g(τ).

B = {s ∈ (0,∞) | z(s) < 0} and assume B has positive measure. Choose a,b ∈
(0,∞) with a < b such that B∗ ≡ B∩ (a,b) has positive measure. ∀n ∈ N one can find
an open set On ⊇ B∗ such that On ⊆ [a,b] and meas(On \B∗) < 1

n . The sequence of
sets {On}n∈N may be chosen to be decreasing.

For each n ∈ N, On is a countable union of open intervals which are its compo-
nents and since by hypothesis the integral of z over such intervals is nonnegative we
know that

∫
On

z � 0.
Also 0 �

∫
On

z =
∫
B∗ z+

∫
(On\B∗) z. Thus

∫
(On\B∗) z � −∫

B∗ z. Note that z < 0 on
B∗, z is integrable, and B∗ has positive measure so we know that −∫

B∗ z > 0. Since
the integral is an absolutely continuous set function lim

n→∞
meas(On \B∗) � lim

n→∞
1
n = 0

implies that lim
n→∞

∫
(On\B∗) z = 0. This is impossible since ∀n ∈ N,

∫
(On\B∗) z � −∫

B∗ z ,

which is a fixed positive value. This is the contradiction that we seek so the lemma is
proven. �

In order to apply the contraction mapping theorem we will need to establish certain
properties of the operator M.

THEOREM 1. The operator ∀x ∈ Ω, Mx is closed, i.e. M : Ω → Pcl(Ω).
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Proof. Let x ∈ Ω and suppose hn → h̃ in E where hn ∈ Mx ∀n ∈ N . We will
show that h̃ ∈ Mx.

∀n ∈ N let fn(s) be the selection of F(s,xs, p(s)x′(s)) for almost all s associated
with hn.

a) hn → h̃ in E and hn = ϕ on [−r,0] ∀n ∈ N. Thus clearly h̃ = ϕ on [−r,0]. In
particular note that h̃(0) = 0.

b) ∀t > 0,

lim
n→∞

(p(t)h′n(t)−L) = p(t)h̃(t)−L. (1)

and

p(t)h′n(t) = p(t)
d
dt

[∫ t

0

1
p(τ)

∫ ∞

τ
fn(s)dsdτ +LP(t)

]

= p(t)
[ 1

p(t)

∫ ∞

t
fn(s)ds+LP′(t)

]

= p(t)
[ 1

p(t)

∫ ∞

t
fn(s)ds+

L
p(t)

]
=

∫ ∞

t
fn(s)ds+L.

Thus from (1) above we have

p(t)h̃′(t) = lim
n→∞

p(t)h′n(t) = lim
n→∞

∫ ∞

t
fn(s)ds+L. (2)

and this implies that

lim
n→∞

∫ ∞

t
fn(s)ds = p(t)h̃′(t)−L.

Now let A be the set of full measure in (0,∞) which satisfies the following con-
ditions.

∀s ∈ A :
i) fn(s) ∈ F(s,xs, p(s)x′(s)) ∀n ∈ N. To accomplish this for each n find a set of

full measure which satisfies the condition and then intersect them.
ii) supy∈F(s,xs,p(s)x′(s)) | y |� h(s,ηs,c) and

iii) h(s,ηs,c) < ∞. Note that since h(s,ηs,c) ∈ L1(0,∞) it is finite almost every-
where.

Now let s ∈ A .

=⇒ ∀n ∈ N, | fn(s) |� h(s,ηs,c) < ∞
=⇒ −h(s,ηs,c) � inf

n∈N
fn(s) � sup

n∈N
fn(s) � h(s,ηs,c).

Recall that ∀s , F(s,xs, p(s)x′(s)) is a closed and convex set.
Thus [infn∈N fn(s) , supn∈N fn(s)] ⊆ F(s,xs, p(s)x′(s)).
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For a,b ∈ (0,∞) we have

lim
n→∞

∫ b

a
fn(τ)dτ = lim

n→∞

[∫ ∞

a
fn(τ)dτ −

∫ ∞

b
fn(τ)dτ

]
= p(a)h̃′(a)− p(b)h̃′(b) by (2).

Now ∀n ∈ N,
∫ b
a infm∈N fm(τ)dτ �

∫ b
a fn(τ)dτ �

∫ b
a supm∈N fm(τ)dτ. which implies

that ∫ b

a
inf
m∈N

fm(τ)dτ � lim
n∈N

∫ b

a
fn(τ)dτ �

∫ b

a
sup
m∈N

fm(τ)dτ,

so ∫ b

a
inf
m∈N

fm(τ)dτ � p(a)h̃′(a)− p(b)h̃′(b) �
∫ b

a
sup
m∈N

fm(τ)dτ.

Thus
∫ b
a infm∈N fm(τ)dτ �

∫ b
a −[p(τ)h̃′(τ)]′dτ �

∫ b
a supm∈N fm(τ)dτ. Since −h(s,ηs,c)

� infn∈N fn(s) � supn∈N fn(s) � h(s,ηs,c) and h(s,ηs,c)∈L1(0,∞) , Lemma 3 implies:

inf
n∈N

fn(τ) � −[p(τ)h̃′(τ)]′ � sup
n∈N

fn(τ) a.e. (3)

Now let A1 be the intersection of the set A with the set of full measure obtained in
(3) and let s ∈ A1. Since [infn∈N fn(s),supn∈N fn(s)] ⊆ F(s,xs, p(s)x′(s)) we have that
f (s) ≡ [−p(s)h̃′(s)]′ is a selection of F(s,xs, p(s)x′(s)).

As in the note at the end of the introduction we will define m(t) for t > 0 by

m(t) =
∫ t

0

1
p(τ)

∫ ∞

τ
[−p(s)h̃′(s)]′dsdτ +LP(t)

=
∫ t

0

1
p(τ)

lim
b→∞

∫ b

τ
[−p(s)h̃′(s)]′dsdτ +LP(t)

=
∫ t

0

1
p(τ)

lim
b→∞

−[p(b)h̃′(b)− p(τ)h̃′(τ)]dτ +LP(t)

=
∫ t

0

1
p(τ)

lim
b→∞

[p(τ)h̃′(τ)− p(b)h̃′(b)]dτ +LP(t)

=
∫ t

0

1
p(τ)

[p(τ)h̃′(τ)−L+L]dτ

=
∫ t

0
h̃′(τ)dτ = h̃(t)− h̃(0) = h̃(t).

The last two equations above come from Lemma 2 and the facts that P(t) =
∫ t
0

1
p(τ)dτ

and h̃(0) = 0.

Thus f (s) ≡ [−p(s)h̃′(s)]′ is the selection of F(s,xs, p(s)x′(s)) associated with h̃,
thus h̃ ∈ Mx, and Mx is closed. �
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THEOREM 2. M is a contraction.

Proof. Let x1,x2 ∈ Ω. Recall that Hd(Mx1,Mx2) = max{suph2∈Mx2
{infh1∈Mx1 ‖

h1−h2 ‖E},suph1∈Mx1
{infh2∈Mx2 ‖ h1−h2 ‖E}}.

In what follows the notation Fi(s) , i = 1,2, will be used to denote F(s,xis , p(s)x′i(s)) .
Fix h1 ∈ Mx1 and let f1 be the associated a.e. selection of F1.

For all h2 ∈Mx2 with associated selection f2 we have ‖ h1−h2 ‖E= supt>0 p(t) |
h′1(t)− h′2(t) | since h1(t) = h2(t) = ϕ(t) for t ∈ [−r,0]. Also recall that p(t)h′i(t) =∫ ∞
t fi(s)ds+L for i = 1,2 and that | f1(s)− f2(s) |� 2h(s,ηs,c) a.e. ∈ L1(0,∞).

Thus by the definition of Mx2 we have:

inf
h2∈Mx2

‖ h1−h2 ‖E = inf
h2∈Mx2

{sup
t>0

|
∫ ∞

t
( f1(s)− f2(s))ds |}

= inf
f2∈F2 a.e.

{sup
t>0

|
∫ ∞

t
( f1(s)− f2(s))ds |}

� inf
f2∈F2 a.e.

{sup
t>0

∫ ∞

t
| f1(s)− f2(s) | ds}

= inf
f2∈F2 a.e.

∫ ∞

0
| f1(s)− f2(s) | ds.

Claim inf f∈F2 a.e. | f1(s)− f (s) |∈ L1(0,∞).

Proof of claim. For all f ∈ F2 a.e., | f1(s)− f (s) |� 2h(s,ηs,c) ∈ L1(0,∞) and
since L1(0,∞) is a Banach lattice every nonempty order bounded subset of it is order
complete. Thus inf f∈F2 a.e. | f1(s)− f (s) | exists and is an element of the order bounded
set {g∈ L1(0,∞) | −2h(s,ηs,c) � g(s) � 2h(s,ηs,c) a.e.} proving the claim. Again see
[12] for details about Banach lattices. Note also that Y = {| f1(s)− f (s) |: f ∈F2 a.e.}⊆
{g ∈ L1(0,∞) | −2h(s,ηs,c) � g(s) � 2h(s,ηs,c) a.e.} so it is also order bounded and
its infimum must exist and be in L1(0.∞) .

Thus we have
∫ ∞
0 inf f∈F2 a.e. | f1(s)− f (s) | ds �

∫ ∞
0 | f1(s)− f2(s) | ds for any

f2 ∈ F2 a.e. which implies that
∫ ∞
0 inf f∈F2 a.e. | f1(s)− f (s) | ds � inf f∈F2 a.e. {

∫ ∞
0 |

f1(s)− f2(s) | ds}.
Claim inf f∈F2 a.e. | f1(s)− f (s) |∈ Y.

Proof of claim. We know that inf f∈F2 a.e. | f1(s)− f (s)| ∈ {g∈L1(0,∞) | −2h(s,ηs,c)
� g(s) � 2h(s,ηs,c) a.e.} Let us consider the following measurable function:

f̂ (s) =

⎧⎨
⎩

f1(s) if F1(x2,px′2)(s) � f1(s) � F2(x2,px′2)(s)
F2(x2,px′2)(s) if f1(s) � F2(x2,px′2)(s)
F1(x2,px′2)(s) if F1(x2,px′2)(s) � f1(s)

which is a measurable function by condition 5 and note that f̂ ∈ F2 a.e. because
F1(x2,px′2)(s) and F2(x2,px′2)(s) are measurable selections of F2 a.e. and the fact that
F2(s) is an interval. In fact F2(s) = [F1(x2,px′2)(s),F2(x2,px′2)(s)] a.e.
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Thus:

inf
f∈F2 a.e.

| f1(s)− f (s) |=| f1(s)− f̂ (s) |

=

⎧⎨
⎩

0 if F1(x2,px′2)(s) � f1(s) � F2(x2,px′2)(s)
f1(s)−F2(x2,px′2)(s) if f1(s) � F2(x2,px′2)(s)
F1(x2,px′2)(s)− f1(s) if F1(x2,px′2)(s) � f1(s)

Clearly | f1(s)− f̂ (s) |= infY ∈ Y proving the claim. Note that this implies that
inf f∈F2 a.e. {

∫ ∞
0 | f1(s)− f2(s) | ds} =

∫ ∞
0 inf f∈F2 a.e. | f1(s)− f (s) | ds =

∫ ∞
0 | f1(s)−

f̂ (s) | ds.

The claim above will allow us to relate Y to Hd(F1,F2) as follows:

infY = | f1(s)− f̂ (s) | a.e. = inf
y2∈F2(s)

| f1(s)− y2 | a.e.

� sup
y1∈F1(s)

{ inf
y2∈F2(s)

| y1 − y2 |} a.e.

� Hd(F1(s),F2(s)) a.e.

Thus condition 7 implies:

∫ ∞

0
inf

f∈F2 a.e.
| f1(s)− f (s) | ds �

∫ ∞

0
k(s)max{‖ x1s−x2s ‖[−r,0], p(s) | x′1(s)−x′2(s) |}ds.

Now let us examine ‖ x1s − x2s ‖[−r,0]= supt∈[−r,0] | x1(t + s)− x2(t + s) | .
If t + s � 0, then x1(t + s) = x2(t + s) = φ(t + s) so x1(t + s)− x2(t + s) = 0.

If t + s � 0, then

sup
t∈[−r,0], s�−t

| x1(t + s)− x2(t + s) | = sup
t∈[−r,0], s�−t

|
∫ t+s

0
(x′1(u)− x′2(u))du |

� sup
t∈[−r,0], s�−t

∫ t+s

0
| x′1(u)− x′2(u) | du

= sup
t∈[−r,0], s�−t

∫ t+s

0

1
p(u)

p(u) | x′1(u)− x′2(u) | du

� ‖ x1 − x2 ‖E · sup
t∈[−r,0], s�−t

∫ t+s

0

1
p(u)

du

� ‖ x1 − x2 ‖E · sup
t∈[−r,0], s�−t

P(t + s)

� ‖ x1 − x2 ‖E P(s)

because t + s � s and p(s) � 0.

Thus the above calculation and the definition of the norm in the space E imply
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that

inf
h2∈Mx2

‖ h1−h2 ‖E �
∫ ∞

0
k(s)max{P(s) ‖ x1− x2 ‖E , p(s) | x′1(s)− x′2(s) |}ds

�
∫ ∞

0
k(s)max{P(s) ‖ x1− x2 ‖E , ‖ x1− x2 ‖E}ds

= ‖ x1− x2 ‖E

∫ ∞

0
k(s)max{P(s),1}ds

= L1 ‖ x1− x2 ‖E

where L1 < 1 by condition 7.
Therefore suph1∈Mx1

infh2∈Mx2 ‖ h1 − h2 ‖E� L1 ‖ x1 − x2 ‖E and by an identical
argument suph2∈Mx2

infh1∈Mx1 ‖ h1−h2 ‖E� L1 ‖ x1 − x2 ‖E which together imply that
Hd(Mx1,Mx2) � L1 ‖ x1 − x2 ‖E with L1 < 1. Thus M is a contraction from Ω to
Pcl(Ω). �

Now we are ready to establish the existence of solutions to our DBVI.

3. Main result

THEOREM 3. Let L and ϕ be given and let F , h, ϕ , η , k , and p satisfy the
conditions 1–7 above. Then our DBVI above has a solution.

Proof. Theorems 1 and 2 and the Contraction Mapping Theorem together imply
that our DBVI has a solution. �

The author wishes to thank the referees for their very useful comments and sug-
gestions.
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