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VERY WEAK SOLUTIONS OF LINEAR ELLIPTIC PDES

WITH SINGULAR DATA AND IRREGULAR COEFFICIENTS

JOCHEN MERKER

Abstract. In this article it is shown that linear elliptic PDEs admit very weak solutions for rather
singular data – like non-integrable right hand sides or singular Neumann boundary conditions –
not only in case of continuous coefficients, but even for general bounded measurable coefficients.
This is rather astonishing, as under such weak assumptions on the coefficients generally strong
solutions do not exist, thus the duality between very weak solutions and strong solutions seems
to indicate that very weak solutions do not exist either. We circumvent this problem by using
an appropriate functional analytic setting and particularly Hölder continuity of weak solutions
established by de Giorgi - Nash - Moser to obtain existence of very weak solutions to singular
data for irregular coefficients.
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