
D ifferential
Equations

& Applications

Volume 10, Number 1 (2018), 47–74 doi:10.7153/dea-2018-10-04

EXISTENCE AND UNIQUENESS OF SOLUTIONS OF
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Abstract. Motivated mainly by the localization over an open bounded set Ω of Rn of solutions
of the Schrödinger equations, we consider the Schrödinger equation over Ω with a very singular
potential V (x) � Cd(x,∂Ω)−r with r � 2 and a convective flow �U . We prove the existence
and uniqueness of a very weak solution of the equation, when the right hand side datum f (x)
is in L1(Ω,d(·,∂Ω)) , even if no boundary condition is a priori prescribed. We prove that, in
fact, the solution necessarily satisfies (in a suitable way) the Dirichlet condition u = 0 on ∂Ω .
These results improve some of the results of the previous paper by the authors in collaboration
with Roger Temam. In addition, we prove some new results dealing with the m -accretivity
in L1(Ω,d(·,∂Ω)α ) , where α ∈ [0,1] , of the associated operator, the corresponding parabolic
problem and the study of the complex evolution Schrödinger equation in Rn .

1. Introduction

The main goal of this paper is to improve some of the results of a previous paper
by the authors in collaboration with R. Temam [15], as well as some of the recent
researches presented in [25], concerning the Schrödinger type stationary equations with
a very singular potentials and/or a possibly unbounded convective flow

−Δu+�U(x) ·∇u+V(x)u = f (x) in Ω, (1)

where Ω is an open subset of Rn and f ∈ L1(Ω,δ ) , with

δ (x) := d(x,∂Ω). (2)
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We assume given a convective flow �U ∈ Ln(Ω)n such that{
div�U = 0 Ω,
�U ·�ν = 0 ∂Ω,

(3)

with �ν the unit exterior normal vector to ∂Ω and a potential V (x) in the general class
of functions satisfying V ∈ L1

loc(Ω),V � 0 a.e. on Ω . Our main motivation is to deal
with “very singular potentials” in the sense that they satisfy

V (x) � C
δ (x)r for some r � 2, near ∂Ω. (4)

but many results are obtained merely for V � 0 when f behaves suitably near ∂Ω .
We send the reader to [15] for considerations and references concerning the case of
“moderate singular” potentials corresponding to r ∈ (0,2). Notice that our purpose, as
already indicated in the title of the paper, is to prove the existence and uniqueness of
a suitable class of solutions of (1) without prescribing any boundary condition in an
explicit way. Nevertheless, we shall demand the solutions to have a certain integrability
condition which implicitly assumes some behaviour on ∂Ω : we shall enter into details
later.

In our previous paper [15] we offered a set of relevant applications leading to the
consideration of problem (1). In the special case of �U =�0 some of those motivations
where: linearization of singular and /or degenerate nonlinear equations, shape opti-
mization in Chemical Engineering and, very specially, the study of ground solutions
ψψψ(t,x) = e−iEtu(x) of the Schrödinger equation⎧⎨⎩i

∂ψψψ
∂ t

= −Δψψψ +V(x)ψψψ in (0,∞)×R
n

ψψψ(0,x) = ψψψ0(x) on R
n

(5)

for very singular potentials (i.e., satisfying (4)) which try to confine the wave function
ψψψ of the particle in the domain Ω of Rn. A very interesting source of concrete singular
potentials examples was described in the long paper [11] where only asymptotic tech-
nics were sketched for the treatment of the problems. We recall that the confinement
takes place once that we prove that the solutions of (1) are, in fact, “flat solutions” (in
the sense that u = ∂u

∂n = 0 on ∂Ω).

Concerning the case �U �=�0 the main motivation mentioned in [15] was the study
of the vorticity equation in Fluid Mechanics. Schrödinger equations involving also a
flux term, motivated by some questions in Control Theory, were already considered also
by several authors when proving the “unique continuation property” (see, e.g. [20] and
its references). Notice that the existence of flat solutions to this equation implies the
failure of the “unique continuation property” for such very singular class of potentials.

So, roughly speaking, the aim of this paper is to study the problem

Au = f in Ω, (6a)

u = 0 on ∂Ω, (6b)
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where
Au = −Δu+�U ·∇u+Vu. (7)

The content of this paper is organized as follows: after a short presentation of nota-
tions, definitions and previous results (in Section 2), we list in Section 3 some of the
main new results in this paper. The equivalence between two different notions of very
weak solutions of the equation under considerating is proved in Section 4 by means
of a sharper approximation argument applied to the test functions. Section 5 contains
the proof of the new existence and regularity regularity results, while the uniqueness of
such solutions is considered in Section 6. Here the main tool is a new “local type Kato
inequality” in which no use is made on possible boundary conditions (in the standard
sense). The analysis of the solution when the right hand side datum f is in L1(Ω;δ α )
with α ∈ [0,1] is made in Section 7. Finally, Section 8 collects several applications. In
Section 8.1 we prove the m-accretiveness of the operator in L1(Ω,d(·,∂Ω)α ) (and in
Lp(Ω,d(·,∂Ω)α) when �U = 0 or α = 0). Some consequences in terms of the associ-
ated parabolic problem are presented. Section 8.2 deals with the evolution (complex)
Schrödinger problem in Rn associated to the very singular potential. We prove the lo-
calization of the solution in the sense that if suppψ0 ⊂ Ω then suppψ(t, ·)⊂ Ω , for all
t � 0.

2. Notations, definitions and previous results

We shall adopt the same notations as in our previous paper [15]. We set

L0(Ω) =
{

v : Ω → R Lebesgue measurable
}

and we denote by Lp(Ω) the usual Lebesgue space 1 � p � +∞ . Although it is not too
often used, we shall use the notation

W 1,p(Ω) = W 1Lp(Ω)

for the associated Sobolev space. We need the following definitions:

DEFINITION 2.1. (of the distribution function and monotone rearrangement) Let
u ∈ L0(Ω) . The distribution function of u is the decreasing function

m = mu : R → [0, |Ω|]
t �→ measure

{
x : u(x) > t

}
= |{u > t

}|.
The generalized inverse u∗ of m is defined by, for s ∈ [0, |Ω|[ ,

u∗(s) = inf
{
t : |{u > t

}| � s
}

,

and is called the decreasing rearrangement of u . We shall set Ω∗ =]0, |Ω| [.

DEFINITION 2.2. Let 1 � p � +∞, 0 < q � +∞ :
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• If q < +∞ , one defines the following norm for u ∈ L0(Ω)

‖u‖p,q = ‖u‖Lp,q :=
[∫

Ω∗

[
t

1
p |u|∗∗(t)

]q dt
t

] 1
q

where |u|∗∗(t) =
1
t

∫ t

0
|u|∗(σ)dσ .

• If q = +∞ ,

‖u‖p,∞ = sup
0<t�|Ω|

t
1
p |u|∗∗(t).

The space

Lp,q(Ω) =
{

u ∈ L0(Ω) : ‖u‖p,q < +∞
}

(8)

is called a Lorentz space.

• If p = q = +∞, L∞,∞(Ω) = L∞(Ω).

• The dual of L1,1(Ω) is called Lexp (Ω)

REMARK 1. We recall that Lp,q(Ω) ⊂ Lp,p(Ω) = Lp(Ω) for any p > 1, q � 1.

DEFINITION 2.3. If X is a Banach space in L0(Ω) , we shall denote the Sobolev
space associated to X by

W 1X =
{

ϕ ∈ L1(Ω) : ∇ϕ ∈ Xn
}

or more generally for m � 1,

WmX =
{

ϕ ∈W 1X , ∀α = (α1, . . . ,αn) ∈ N
n, |α| = α1 + . . .+ αn � m, D|α |ϕ ∈ X

}
.

We also set
W 1

0 X = W 1X ∩W 1,1
0 (Ω).

We shall often use the principal eigenvalue ϕ1 ∈ W2 of the homogeneous Dirichlet
problem {

−Δϕ1 = λ1ϕ1 in Ω,

ϕ1 = 0 on ∂Ω,
(9)

where
W2 =

{
ϕ ∈C2(Ω) : ϕ = 0 in ∂Ω

}
. (10)

We also need to recall the Hardy’s inequality in Ln′,∞ saying that∫
Ω

|u|
δ

� C‖∇u‖Ln′,∞ ∀u ∈W 1
0 Ln′,∞(Ω), (11)

with n′ = n
n−1 . This inequality can be obtained from the results of [23] (see also [16])

since W 1
0 Ln′,∞(Ω) ⊂W 1

0 (Ω;1+ | logδ |) .
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DEFINITION 2.4. In the weak setting, by (3) we will mean∫
Ω

ϕ∇φ ·�U = −
∫

Ω
φ∇ϕ ·�U ∀φ ,ϕ ∈W2. (12)

In fact we will consider one of the following general assumptions (independently of the
singularity of V ):{

V ∈ L1
loc(Ω),V � 0,

�U ∈ Lp,1(Ω)n, for some p > n, and such that (12) holds.
(H1)

or{
V ∈ L1

loc(Ω),V � 0,
�U ∈ Ln,1(Ω)n, with small norm (as in Theorem 4.1 in [15]), and such that (12) holds.

(H2)
Most frequently we will assume that

either (H1) or (H2) holds. (H)

DEFINITION 2.5. Under assumption (H), the local very weak formulation of (6a)
results ∫

Ω
u(−Δφ −�U ·∇φ +Vφ) =

∫
Ω

fφ ∀ϕ ∈ C 2
c (Ω). (13)

For V ∈ L1
loc(Ω) , we say that u is a ”very weak solution in the sense of Brezis” of (6)

if ⎧⎨⎩Vuδ ∈ L1(Ω) and∫
Ω

u(−Δφ −�U ·∇φ +Vφ) =
∫

Ω
fφ ∀ϕ ∈W2.

(14a)

We will say that u is a ”very weak distributional solution” of (6) if⎧⎨⎩Vuδ ∈ L1(Ω) and∫
Ω

u(−Δφ −�U ·∇φ +Vφ) =
∫

Ω
fφ ∀ϕ ∈ C 2

c (Ω).
(14b)

When f ∈ L1(Ω,δ ) the natural setting for both types of solutions is

u ∈ Ln′,∞(Ω). (15)

In our previous paper [15] we proved that:

THEOREM 2.1. ([15]) Let f ∈ L1(Ω,δ ) and (H) hold. Then, there exists u ∈
Ln′,∞(Ω) such that (14b) holds. Furthermore if V ∈ L1(Ω,δ ) then (14a) is satisfied.
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Moreover, even without “usual” boundary conditions (see Remark 9 in [15] for some
comments on problem of different nature leading to uniqueness without boundary con-
ditions), we also proved the following uniqueness result:

THEOREM 2.2. ([15]) There exists, at most, one solution u of (14b) such that
u

δ r ∈ L1(Ω) , for some r > 1 .

One of the main aims of this paper is to show that this exponent r > 1 is not opti-
mal in Theorem 2.2 because, in fact, r = 1 suffices. That improves a remark (following
different arguments) pointed out by H. Brezis to the second author concerning the case
�U =

−→
0 (see [19]). Moreover, we shall present here a numerous of other improvements

with respect to our previous paper [15], as, for instance, the study of the associated
eigenvalue problem, the consideration of flat solutions, the accretiveness in L1(Ω,δ α )
of the operator when α ∈ [0,1) , the consideration of the associated evolution problem,
the confinement for the solution of the complex Schrödinger problem, etc.

3. Statement of new existence, uniqueness and regularity results

First, we show the equivalence of the Brezis and distributional formulations, in the
space L1(Ω,δ−1) .

LEMMA 3.1. (equivalence of (14a) and (14b)) Assume that f ∈L1(Ω,δ ) , (H) and
let u ∈ Ln′,∞(Ω)∩L1(Ω,δ−1) . Then (14a) is equivalent to (14b).

First we prove an existence result in Ln′,∞ with additional estimates

THEOREM 3.1. (General existence result) Assume that f ∈L1(Ω,δ ) and (H). Then
there exists u∈ Ln′,∞(Ω) such that (14a) holds. Furthermore, if f � 0 , then u � 0 . Be-
sides ∫

Ω
V |u|δ � Cu

∫
Ω
| f |δ . (16)

where Cu does not depend on V and f .

Then we will extend our uniqueness result

THEOREM 3.2. (Uniqueness in L1(Ω,δ−1)) Assume that f ∈ L1(Ω,δ ) and (H).
Then, there exists at most one u ∈ Ln′,∞(Ω)∩L1(Ω,δ−1) such that (14a) holds.

From this, several existence and uniqueness results follow. If the potential is “very
singular”, the condition Vuδ ∈ L1 acts as boundary condition.

THEOREM 3.3. Assume that f ∈ L1(Ω,δ ) , (H) and V � Cδ−2 for some C > 0 .
Then there exists a unique u ∈ Ln′,∞(Ω)∩L1(Ω,δ−1) such that (14a) holds.
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Better integrability of the data improves the differentiability of the solution and,
in particular, the (unique) solution satisfies the Dirichlet condition in the sense that
u ∈W 1

0 Ln′,∞(Ω) .

THEOREM 3.4. Assume that f ∈ L1(Ω) and (H). Then, there exists exactly one
u ∈ Ln′,∞(Ω)∩L1(Ω;δ−1) such that (14a). Furthermore, u ∈W 1

0 Ln′,∞(Ω) and∫
Ω

V |u| � C
∫

Ω
| f |, (17)∫

Ω
V |u|δ � cΩ(1+‖�U‖Ln,1)

∫
Ω
| f |δ , (18)

‖∇u‖Ln′,∞ � C
∫

Ω
| f |. (19)

The intermediate cases of integrability of the datum f given by the inclusions, for
α ∈ (0,1) ,

L1(Ω) ⊂ L1(Ω;δ α ) ⊂ L1(Ω;δ (1+ | logδ |)) ⊂ L1(Ω;δ ) (20)

can also be considered. In fact, in [23] it was shown that the condition u
δ ∈ L1(Ω) is

equivalent to the data been in L1(Ω;δ (1+ | logδ |)) .

THEOREM 3.5. Assume that f ∈ L1(Ω;δ (1+ | logδ |)) and (H1). Then there ex-
ists a unique u ∈ Ln′,∞(Ω) such that (14a). Furthermore, it is in L1(Ω;δ−1) .

When we improve the integrability of f near ∂Ω we can relax the conditions on
�U .

THEOREM 3.6. Let 0 < α < 1 . Assume that (H1), f ∈ L1(Ω,δ α) and �U ∈
L

n
1−α (Ω) . Then, there exists a unique solution u ∈ Ln′,∞(Ω) of (14a). Moreover, it

is in L1(Ω;δ−1) . Furthermore, u ∈W 1
0 L

n
n+1+α and∫

Ω
V |u|δ α �

∫
Ω
| f |δ α . (21)

4. Proof of the Lemma 3.1

The proof is based on the following lemma, which improves [15]. The idea is
how well we can approximate a test function φ ∈ W2 by functions φ j ∈ C ∞

c . In [15]
our approximation was that, for r > 1, we can have the convergence of derivatives:
δ rDα φ j → δ rDα φ in L∞ for |α| � 2 (although this idea is older, see, e.g., Theorem
9.17 in [4]). Our improvement here is that, for r = 1, we can obtain the same approxi-
mation in L∞ -weak-� .

LEMMA 4.1. (Approximation of test functions in W2 ) Let φ ∈ W2 . Then, there
exists a sequence φ j ∈C∞

c (Ω) such that
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1. There exists C > 0 such that ‖∇φ j‖L∞ � C for all j � 1 .

2. ‖φ j −φ‖L∞ +‖∇φ j −∇φ‖L1 → 0 .

3. δΔφ j ⇀ δΔφ in L∞ -weak-� .

4.
φ j
δ ⇀ φ

δ in L∞ -weak-� .

Proof. Following [15], we shall consider h ∈C∞(R) such that

h(t) =

{
1 if t � 2,

0 if t � 1,

for j ∈ N∗ set ε = 1
j and let h j(x) = h

(
δ (x)−ε

ε

)
, x ∈ Ω . Setting

Ej =
{

x ∈ Ω :
2
j

� δ (x) � 3
j

}
, Ec

j = Ω\Ej.

One has the following properties of h j :

1. Δh j(x) = |∇h j(x)| = 0 for x ∈ Ec
j ,

2. h j(x) → 1 as j → +∞ , for any x ∈ Ω (since h j(x) = 1 if δ (x) � 3
j ),

3. ‖δh j − δ‖∞ = maxx∈Ω |δ (x)h j(x)− δ (x)| � 3(1+‖h′‖∞)ε,

4. δ (x)|∇h j(x)| � 3‖h′‖∞ and δ 2(x)|Δh j(x)| � ch on Ω , where ch is constant (de-
pending only on h and Ω).

Let φ ∈W2 , the sequence ϕ j = h jφ is in C2
c (Ω) and enjoy the following property,

there is a constant c > 0 such ‖∇ϕ j‖∞ � c‖∇φ‖∞. (22)

Indeed
|∇ϕ j(x)| � 3‖h′‖∞‖∇φ‖∞ +‖h‖∞‖∇φ‖∞.

Moreover, one has

‖h jφ −φ‖∞ � cε‖∇φ‖∞, (23)∫
Ω
|∇ϕ j(x)−∇φ(x)|dx � cmeas

{
x ∈ Ω : δ (x) � 3

j

}
−−−−→
j→+∞

0, (24)

|δ (x)Δϕ j(x)− δ (x)Δφ(x)| � ‖δh j − δ‖∞|Δφ(x)| for x ∈ Ec
j . (25)

For x ∈ Ej , we have

|δ (x)Δϕ j(x)− δΔφ(x)| � ‖δh j − δ‖∞|Δφ(x)|+ δ 2(x)‖∇φ‖∞|Δh j(x)|
+2δ (x)|∇h j(x)‖|∇φ‖∞. (26)
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The statements (25) and (26) are obtained with a straightforward computation. From
those statements, we deduce that there is a constant cφ > 0 such that

‖δΔϕ j − δΔφ‖∞ � cφ . (27)

Since

meas(Ej) −−−−→
j→+∞

0 and ‖δh j − δ‖∞ −−−−→
j→+∞

0

we have∫
Ω
|δ (x)Δϕ j(x)− δ (x)Δφ(x)|dx �

∫
Ec

j

|δ (x)Δϕ j(x)− δ (x)Δφ(x)|dx+ cφmeas(Ej)

� ‖δh j − δ‖∞‖Δφ‖∞ + cφmeas(Ej) −−−−→
j→+∞

0. (28)

One deduces from relations (27) and (28) that

δΔϕ j ⇀ δΔφ weakly-� in L∞(Ω) .

Since C∞
c (Ω) is dense in C2

c (Ω) , we obtain the desired result.
With this technique we can now move the proof of the equivalence.

Proof. [Proof of Lemma 3.1] Let φ be in W2 . Then, we have a sequence φ j ∈
C∞

c (Ω) with the convergence stated in Theorem 4.1 such that∫
Ω

u
[
−Δφ j +�U ·∇φ j +V φ j

]
dx =

∫
Ω

f φ jdx. (29)

Therefore, we have

lim
j→+∞

∫
Ω

uΔφ jdx = lim
j

∫
Ω

u
δ

(δΔφ j)dx =
∫

Ω
uΔφ dx, (30)

since
u
δ
∈ L1(Ω) and δΔφ j⇀δΔφ in L∞(Ω)-weak-� as j → ∞ .

For the same reason, one has:

lim
j

∫
Ω

u�U ·∇φ jdx =
∫

Ω
u�U ·∇φdx

since u�U ∈ L1 and ∇φ j ⇀ ∇φ in L∞ -weak-� . Moreover,

lim
∫

Ω
uVφ jdx =

∫
Ω

uVφdx

(since V uδ ∈ L1(Ω) and
φ j
δ ⇀ φ

δ in L∞(Ω)-weak-� ). We easily pass to the limit in
equation (29) and thus u satisfies (14a).
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5. Proof of the existence and regularity results

We will consider the approximating sequence{
−Δu j +�Uj ·∇u j +Vju j = f j

u j ∈W 1,1
0 (Ω)∩W 2Lp,1(Ω)

(31)

i.e. ∫
Ω

u j(−Δϕ −�Uj ·∇ϕ +Vjϕ) =
∫

Ω
f jϕ ∀ϕ ∈W2. (32)

where

Vj(x) = min(V (x), j), (33)

f j(x) = sign( f (x))min(| f (x)|, j) (34)

and �Uj ∈ C ∞
c (Ω)n , such that (3) and

�Uj → �U in Lp,1(Ω)n. (35)

First we recall our result in [15] about the approximation of solutions

THEOREM 5.1. (existence and approximation of solutions when f ∈ L1(Ω;δ )
Assume f ∈ L1(Ω,δ ) and (H). Then, there is a unique solution u j ∈ W 1,1

0 (Ω) ∩
W 2Lp,1(Ω) of (32) and there exists u such that:

1. u is a solution of (14b) ,

2. u j → u a.e. in Ω ,

3. u j ⇀ u in Ln′,∞ -weak-� and W 1,q(Ω,δ )-weak, for q < n′ ,

4. u j → u in Lr(Ω) for r < n′ ,

5. u j�Uj → u�U in L1(Ω)n ,

6.
∫

ΩVj|u j|δdx � c(1+‖�Uj‖Ln,1)
∫

Ω | f j|δdx ,

7. Vju jδ ⇀ V uδ weakly in L1
loc(Ω) .

We can make some additional estimates if we restrict the set of datum f to L1(Ω) :

PROPOSITION 5.2. existence of solutions when f ∈L1(Ω) Assume that f ∈L1(Ω)
and (H). Then, the sequence u j satisfies

‖∇u j‖Ln′,∞ � C
∫

Ω
| f j|, (36)∫

Ω
Vj|u j| � C

∫
Ω
| f j|. (37)

Hence
u j ⇀ u in W 1

0 Ln′,∞(Ω), (38)

and the equations (36) and (37) hold for u,V and f .
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Proof. Let k > 0. Then the sequence given in Theorem 5.1 satisfies∫
Ω

�Uj ·∇u jTk(u j)dx = 0 and
∫

Ω
Vju jTk(u j)dx � 0. (39)

Therefore, we can use Tk(u j) as a test function in equation (31) and derive∫
Ω
|∇Tk(u j)|2dx � k

∫
Ω
| f j|dx � k

∫
Ω
| f (x)|dx. (40)

From relation (40), we deduce (see [3] or [21]) that

‖∇u j‖Ln′ ,∞ � c| f |L1(Ω). (41)

While to obtain relation (37), we choose as a test function for t > 0,

Φ(t;u j) = (|u j|− t)+ sign(u j).

Knowing as before that ∫
Ω

�Uj ·∇u jΦ(t;u j)dx = 0 (42)

one obtains from equation (31) that∫
|u j |>t

|∇u j|2dx+
∫

Ω
Vju jΦ(t;u j)dx =

∫
Ω

f jΦ(t,u j)dx. (43)

We derive with respect to t this equation

− d
dt

∫
|u j |>t

|∇u j|2dx+
∫
|u j |>t

Vj|u j|dx =
∫
|u j |>t

f (x)sign(u j)dx. (44)

Since the first term is non negative, we conclude from relation (44) that, for all t > 0,∫
|u j |>t

Vj|u j|dx �
∫
|u j |>t

| f (x)|dx. (45)

Letting t → 0, we get the desired relation (37). Since Vju j → Vu a.e. in Ω , Fatou’s
lemma yields ∫

Ω
V |u|dx �

∫
Ω
| f (x)|dx. (46)

Given that ∇u j ⇀ ∇u in Ln′,∞ -weak-� , we derive

‖∇u‖Ln′,∞ � c| f |L1(Ω). (47)

That (14a) is satisfied is a consequence of Lemma 3.1, since, by the Hardy’s inequality,
we have ∣∣∣ uδ ∣∣∣L1(Ω)

� c‖∇u‖Ln′,∞ < +∞. (48)

This concludes the proof.
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With this we proceed

Proof. [Proof of Theorem 3.4] According to Theorem 5.2, the sequence u j be-
longs to a bounded set of W 1

0 Ln′,∞(Ω) and since the sequence converges to a solution
u of the equation (14b) given in Theorem 2.1, we deduce that this solution u is in
W 1

0 Ln′,∞(Ω) and satisfies the same kind of estimates as u j . Moreover, u
δ ∈ L1(Ω) ac-

cording to relation (48). Now we may appeal Theorem 3.2 to conclude that u is unique.
Finally we can prove

Proof. [Proof of Theorem 3.1] Let f be in L1(Ω;δ ) and consider

f j = sign
(
f (·))min

(| f |; j
)
, j � 0.

Then according to the above result Theorem 3.4, there exists a unique ũ j ∈W 1
0 Ln′,∞(Ω)

satisfying ∫
Ω

ũ j
[−Δφ −�U ·∇φ +V φ

]
dx =

∫
Ω

f jφdx, ∀φ ∈W2. (14a) j

Since f j − fk ∈ L1(Ω) for k and j in N , by the same corollary 1 of Theorem 3.2 and
Theorem 5.2, we deduce that ũ j − ũk is the unique solution of∫

Ω
(ũ j − ũk)

[−Δφ −�U ·∇φ +V φ
]
dx =

∫
Ω
( f j − fk)φdx, ∀φ ∈W2,

then it satisfies ∫
Ω

V |ũ j − ũk|δ dx � cu

∫
Ω
| f j − fk|δ dx

and

‖ũ j − ũk‖Ln′ ,∞ � cu

∫
Ω
| f j − fk|δ dx. (49)

Thus (ũ j) j is a Cauchy sequence in Ln′,∞(Ω) and (V ũ j) j is also a Cauchy one in
L1(Ω;δ ) . Therefore one has easily ũ ∈ Ln′,∞(Ω) with V ũ ∈ L1(Ω;δ ) such that ũ
satisfies equation (14a). Moreover,

∫
ΩV |ũ|δ dx � c

∫
Ω fδ dx and if f � 0 then f j � 0

therefore ũ j � 0 which yields that ũ � 0.

6. Proof of the uniqueness results

To complete the proof of the results above we only need to prove the uniqueness
of the solutions of the equations. Once we complete the proof of Theorem 3.2 the rest
of the proofs will follow as a corollary. The main tool in this proof will be a Kato type
inequality up to the boundary.
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6.1. Kato’s inequality

Notice that, in the following result no Sobolev space is included, and hence no
trace is involved. We do not consider boundary conditions in the usual way.

THEOREM 6.1. (Variant of Kato’s inequality) Let u be in W 1,1
loc (Ω)∩Ln′,∞(Ω) with

u
δ ∈ L1(Ω) and �U ∈ Ln,1(Ω)n with div(�U) = 0 in D ′(Ω), �U ·�ν = 0 on ∂Ω . Assume

that Lu = −Δu+div(�U u) ∈ L1(Ω;δ ). Then, for all φ ∈W2 , φ � 0 one has

1.
∫

Ω
u+L∗ φ dx �

∫
Ω

φ sign+(u)Ludx ,

2.
∫

Ω
|u|L∗ φ dx �

∫
Ω

φ sign(u)Ludx,

where L∗φ = −Δφ −�U ·∇φ = −Δφ −div(�U φ),

sign+(σ) =

{
1 if σ > 0,

0 otherwise,
and sign(σ) =

⎧⎪⎨⎪⎩
1 if σ > 0,

0 if σ = 0,

−1 if σ < 0.

The proofs of both theorem (Theorem 3.2 above and Theorem 6.1 below) follow the
same argument as we did in [15] (Corollary 4 Theorem 10, Theorem 8). The only
difference is the use of the new approximation Theorem 4.1. For the convenience of the
reader we sketch here those proofs :

Proof. [Sketch of the proof of Theorem 6.1] Let φ � 0, φ ∈W2 . Then according
to Theorem 4.1 one has a sequence φ j ∈ C∞

c (Ω) such that δΔφ j ⇀ δΔφ in L∞(Ω)-
weak-� . This implies, together with the hypothesis that u+

δ ∈ L1(Ω) , that

lim
j→+∞

∫
Ω

u+Δφ jdx =
∫

Ω
u+Δφdx. (50)

For the same reason

lim
j→+∞

∫
Ω

�U ·∇φ ju+dx =
∫

Ω
�U ·∇φu+dx. (51)

We conclude as in [15], knowing that the local Kato’s inequality (Theorem 10 in [15])
holds true.

One of the consequence of the Kato’s inequality is the following maximum prin-
ciple.

COROLLARY 6.2. (of Theorem 6.1) Under the same hypothesis as for Theorem
6.1, assume that Lu = f (x)−G(x;u) ∈ L1(Ω;δ ) , with G : Ω×R → R a Caratheodory
function (i.e for a.e x , σ → G(x;σ) is continuous, and x → G(x;σ) is measurable
∀x), satisfying the sign-function condition

sign(σ)G(x;σ) � 0 ∀σ ∈ R a.e x ∈ Ω.

Then, if f � 0 one has u � 0 .
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Proof. Let φ ∈W2 be such that φ � 0. Then∫
Ω

u+L∗φ dx �
∫

Ω
φ sign+(u) f (x)dx−

∫
Ω

φG(x;u+)dx, (52)

since G(x;0) = 0 and sign+(σ)G(x;σ) = G(x;σ+) � 0. Therefore, from this last
inequality (52), knowing that

−φG(x;u+) � 0, f (x)sign+(u) � 0,

we deduce that
∀φ � 0, φ ∈W2 :

∫
Ω

u+L∗φdx � 0. (53)

Since u ∈ Ln′,∞(Ω) and L∗φ = −Δφ − �U · ∇φ is in Ln,1(Ω) for φ ∈ W 2Ln,1(Ω) ∩
H1

0 (Ω) , thus a density argument leads from equation (53) to∫
Ω

u+L∗φdx � 0 ∀φ ∈W 2Ln,1(Ω)∩H1
0 (Ω), φ � 0. (54)

Thus, we get:
u+ = 0.

This completes the proof.

6.2. Proof of the uniqueness results

Proof. [Proof of Theorem 3.2] Let u = u1−u2 where ui are in Ln′,∞(Ω)∩L1(Ω;δ−1)
and are two solutions of equation (14a) (or (14b), these formulations are equivalent due
to Lemma 3.1 since ui ∈ L1(Ω;δ−1)). Then

Lu = −Vu ∈ L1(Ω;δ ).

From Theorem 6.1 one has, for a test function φ ∈W2 such that φ � 0,∫
Ω
|u|L∗φdx � −

∫
Ω

φ sign(u)Vu = −
∫

Ω
φV |u|dx � 0. (55)

As before one has:∫
Ω
|u|L∗φdx � 0 ∀φ ∈W 2Ln,1(Ω)∩H1

0 (Ω), φ � 0. (56)

Considering φ0 ∈W 2Ln,1(Ω)∩H1
0 (Ω), φ0 � 0 solution of L�φ 0 = 1, we deduce∫

Ω
|u|dx � 0

thus u = 0.

Proof. [Proof of Theorem 3.5] First let us assume that f � 0. Since f is a non-
negative function in L1(Ω;δ ) , the existence of a solution u � 0 is a consequence of
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Theorem 3.1. To prove the uniqueness result, let us show that exists a c > 0 indepen-
dent of u, f and V such that∫

Ω

u
δ

dx+
∫

Ω
V uδ (1+ |logδ |)dx � c

∫
Ω

f (x)(1+ |logδ |)δdx. (57)

For this, we use the argument introduced in [23] by choosing as a test function

φ = ϕ1log(ϕ1 + ε), ε > 0,

where ϕ1 the first eigenfunction of −Δ with homogeneous Dirichlet boundary condi-
tion.
One obtains

−
∫

Ω
uΔ(ϕ1log(ϕ1 + ε))dx−

∫
Ω
�U u ·∇(ϕ1log(ϕ1 + ε))dx

+
∫

Ω
Vuϕ1log(ϕ1 + ε)dx =

∫
Ω

fϕ1log(ϕ1 + ε)dx. (58)

We develop each term in relation (58) as we did in [23] knowing that ϕ1 is equivalent
to the distance function (say ∃c0 > 0, c1 > 0, c0δ � ϕ1 � c1δ ). We derive∫

Ω
|∇ϕ1|2 u

ϕ1 + ε
dx−

∫
Ω

V uϕ1log(ϕ1 + ε)dx (59)

� c

[∫
Ω

u(x)dx+
∫

Ω
f (x)(1+ |logδ |)δdx

]
+ c

∫
Ω
‖�U‖|logδ |udx+ c

∫
Ω
‖�U‖(x)u(x)dx.

Since �U ∈ Lp,1(Ω), p > 1 then ‖�U‖logδ ∈ Ln,1(Ω) and there exists a constant c > 0.∥∥∥ |�U |logδ
∥∥∥

Ln,1
� c‖�U‖Lp,1(Ω).

Therefore, we have

c
∫

Ω
‖�U‖|logδ |udx+ c

∫
Ω
‖�U‖(x)u(x)dx � cU‖u‖Ln′,∞ � c

∫
Ω

f (x)δ (x)dx. (60)

From relations (59) and (60), we deduce∫
Ω
|∇ϕ1|2 u

ϕ1 + ε
dx−

∫
Ω

V uϕ1log(ϕ1 + ε)dx � c
∫

Ω
f (x)(1+ |logδ |)δdx. (61)

As in [23] we write∫
Ω

V uϕ1|log(ϕ1 + ε)|dx = −
∫

Ω
V uϕ1log(ϕ1 + ε)dx+2

∫
ϕ1+ε>1

V uϕ1log(ϕ1 + ε)dx.

(62)
Combining these two last relations, we get
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Ω
|∇ϕ1|2 u

ϕ1 + ε
dx+

∫
Ω

V uϕ1|log(ϕ1 + ε)|dx

� c
∫

Ω
f (x)(1+ |logδ |)δdx+ c

∫
Ω

V uδdx. (63)

Noticing that in a neighborhood of the boundary ∂Ω ⊂U ⊂Ω one has inf
x∈U

|∇ϕ1|2(x) >

0, we derive from relation (63) the inequality (57).

Let f be in L1
(
Ω;δ (1+ |logδ |)) , we decompose f = f+− f− where f+, f− � 0.

Due to the first part of the proof, we have u1 (resp. u2 ) a nonnegative solution of (14a)
associated to f+ (resp. f− ). One has according to relation (57) for i = 1,2∫

Ω

ui

δ
dx+

∫
Ω

V uiδ (1+ |logδ |)dx � c
∫

Ω
| f |(1+ |logδ |)δdx. (64)

By linearity we deduce that ũ = u1 − u2 is a solution of equation (14b) and satisfies
ũ
δ ∈ L1(Ω) . We conclude with Theorem 3.2 to obtain the result.

7. Estimates when the datum f is L1(Ω;δ α), 0 � α � 1

LEMMA 7.1. Under the same assumptions as for Theorem 3.5, if furthermore f ∈
L1(Ω;δ α ) , 0 � α < 1 then the function ũ solution of equation (14a) verifies∫

Ω
(V |ũ|δ α)(x)dx � cα

∫
Ω
| f (x)|δ α (x)dx.

Proof. For k � 0, let us consider Vk = min(V ;k) and define the linear operator Tk

on L1(Ω;δ ) by setting Tk f = Vkũk f , where ũk f is the unique solution of∫
Ω

ũk f

[
−Δφ +�U ·∇φ +Vkφ

]
dx =

∫
Ω

fφdx ∀φ ∈W2. (65)

The existence and uniqueness follows from Theorem 7 in [15].
According to Corollary 3.4 of Theorem 3.2 and Theorem 5.2. Tk maps L1(Ω) into

itself with
‖Tk f‖L1(Ω) =

∫
Ω

Vk|ũk f |dx � ‖ f‖L1(Ω), (66)

and Tk maps L1(Ω;δ ) into itself with

‖Tk f‖L1(Ω;δ ) � c(1+‖�U‖Ln,1)‖ f‖L1(Ω;δ ). (67)

Since L1(Ω;δ α ) is the interpolation space in the sense of Peetre between L1(Ω;δ ) and
L1(Ω) , that is

L1(Ω,δ α) =
(
L1(Ω;δ ),L1(Ω)

)
α ,1

,

we derive from Marcinkewicz’s interpolation theorem (see [2, 21]) that Tk maps L1(Ω;δ α )
into itself and

‖Tk f‖L1(Ω;δ α ) � cα(1+‖�U‖Ln,1)α‖ f‖L1(Ω,δ α ), ∀ f ∈ L1(Ω;δ α).
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Considering the unique solution ũk j for j fixed in N , of the equation∫
Ω

ũk j

[
−Δφ −�U ·∇φ +Vkφ

]
dx =

∫
Ω

f jφdx, ∀ϕ ∈W2, (14a)k j

where f j = sign( f )min(| f |, j) , applying Theorem 5.1 with the sequence (ũk j)k , and
due to the uniqueness result we deduce that, when k → +∞, ũk j → ũ j in Ln′,∞(Ω) and
ũ j is the solution of (14a) j . Therefore, one has∫

Ω
V |ũ j|δ αdx � lim

k→+∞
|Tk f j|L1(Ω;δ α ) � cα | f j|L1(Ω;δ α ). (68)

As we have shown in the proof of Theorem 3.1, ũ j converges to ũ as j → +∞ ; we
deduce the desired inequality.

The proof of Theorem 3.6 needs the following lemma given in Theorem 13 of [15].

LEMMA 7.2. Let 0 < α < 1, g ∈ L1(Ω;δ α ), �U in L
n

1+α (Ω)n , (3). Then, there
exists a unique solution u ∈ Ln′,∞(Ω) satisfying∫

Ω
u
[
−Δφ −�U ·∇φ

]
dx =

∫
Ω

gφdx ∀φ ∈W2. (69)

Moreover, there exists a constant K(α;Ω) > 0 such that

‖u‖
W1

0 L
n

n−1+α (Ω)
� K(α;Ω)

(
1+‖�U‖

L
n

1−α

)
|g|L1(Ω;δ α ). (70)

Proof. [Proof of Theorem 3.6] Let u be the unique solution (2) given by Theorem
3.5 when f ∈ L1(Ω;δ α) , 0 < α < 1. We set g =V u− f . Then following Lemma 7.1,
one has g ∈ L1(Ω;δ α ) and u satisfies the same type equation (69). Therefore, we can
apply Lemma 7.2 to conclude.

8. Some consequences: principal eigenvalue and eigenfunction of −Δ +�U ·∇ and
of the operator A , the m -accretivity of A and the complex Schrödinger

problem in the whole space

8.1. Principal eigenvalue and eigenfunction for −Δ +�U ·∇ and the m-accretivity
of −Δ +�U ·∇+V

Let us start by recalling a well-known result (see, e.g., [12])

THEOREM 8.1. (Krein-Rutman’s theorem) Let X be an ordered Banach space,
the interior positive cone K of which K̊ is non void, T : X → X a compact linear
operator which is strongly positive, i.e T f > 0 if f > 0 . Then, the spectral radius of
T, r(T ) > 0 and is a simple eigenvalue with an eigenvector ψ1 ∈ K̊ .

We recall the following definition of an m-accretive operator.
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DEFINITION 8.1. (m-accretive operator) Let X be a Banach space. A linear un-
bounded operator

A : D(A) ⊂ X → X

is called accretive if

1. ∀ ũ ∈ D(A) and ∀λ > 0 it holds that ‖ũ‖X � ‖ũ+ λAũ‖X .

The operator is called m-accretive if it is accretive and

2. ∀λ > 0 we have that D(A) ⊂ R(I + λA) .

Let us consider �U ∈ Lp,1(Ω)n, p > n (or in Ln,1(Ω)n but with a small norm as in
[15]), we define a compact operator

T : C(Ω) →W 1
0 Lp,1(Ω) ↪→C(Ω)

by setting

T f = u if and only if

{
−Δu−�U ·∇u = f

u ∈W 1
0 Lp,1(Ω), p > n

(the existence, uniqueness and regularity of u in given in [15]). Using the Bony’s
maximum principle or Stapamcchia’s argument, we have for f > 0 the solution u > 0.
Since the positive cone K =C+(Ω) = {ϕ ∈C(Ω) : ϕ � 0} has its interior K̊ non void,
we may apply the Krein-Rutman’s theorem (see Theorem 8.3) to derive the

THEOREM 8.2. There exist a real λ1 > 0 and a positive function ψ1 ∈W 2Lp,1(Ω)∩
H0

1 (Ω) such that

−Δψ1−�U ·∇ψ1 = λ1ψ1.

Moreover, L1(Ω;δ ) ↪→ L1(Ω;ψ1) and if �U ∈ L∞(Ω)n then ψ1 � cδ so that

L1(Ω;δ ) = L1(Ω;ψ1).

REMARK 2. The fact that L1(Ω;δ ) ↪→ L1(Ω;ψ1) comes from the fact

0 < ψ1(x) � δ (x)‖∇ψ1‖∞ � c‖ψ1‖W 2Lp,1δ (x) < +∞, x ∈ Ω.

Next, we want to prove Theorem 8.3 concerning the m-accretivity of A =−Δ+�U ·∇+
V in the Banach space L1(Ω;δ α), 0 � α � 1. The argument is similar to the one given
in [22].
First, we endow the space L1(Ω;δ α ) with the following equivalent norm

‖ f‖α =
∫

Ω
| f (x)|ψα

1 (x)dx,

with ψ1 given in Theorem 8.2. We shall introduce the following definition
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DEFINITION 8.2. Let u be in L1(Ω, ;δ α ) with Vu∈ L1(Ω;δ α ) . We will say that
Au ∈ L1(Ω;δ α ) if there exists a function f ∈ L1(Ω;δ α) such that Au = f and∫

Ω
φ f dx =

∫
Ω

u
[
−Δφ −�U ·∇φ +Vφ

]
dx, ∀φ ∈C2

c (Ω). (71)

Here, V � 0 locally integrable and �U is as in Theorem 2.1. When �U = 0 and 0 �
V ∈ L∞(Ω) then we choose D(A) ⊂ W 1,1

0 (Ω) . In this setting, in which traces exist,
previous results apply (see, e.g., [10]). However, when V � cδ−2 (our main case of in-
terest due to the Schrödinger equation) we can no longer expect that D(A) ⊂W 1,1

0 (Ω) .
Nonetheless, we have shown that D(A) ⊂ L1(Ω;δ−1) , a space which also acts as hav-
ing a Dirichlet boundary condition on ∂Ω .

We can define the operator A : D(A)⊂ L1(Ω;δ α )→ L1(Ω;δ α) , where the domain
of A is

D(A) =
{

u ∈ Ln′,∞(Ω)∩L1(Ω;δ−1)∩L1(Ω;Vδ ) : Au ∈ L1(Ω;δ α)
}

.

Therefore, we always have C2
c (Ω)⊂D(A)⊂ L1(Ω;δ α ) this implies that D(A) is dense

in L1(Ω;δ α), 0 � α � 1. Moreover, one has the :

LEMMA 8.1. Let V � 0 , locally integrable, �U ∈ L∞(Ω) be such that (3) and
0 � α < 1 . Then, for all λ > 0 and f ∈ L1(Ω;δ α ) , there exists a unique function
u ∈ D(A) such that

u+ λAu = f .

Proof. Indeed, since L1(Ω;δ α ) ⊂ L1
(
Ω;δ (1+ |logδ |)) , we may apply Theorem

3.5 to derive that for all λ > 0 all f ∈ L1(Ω;δ α ) we have a unique function u ∈
Ln′,∞(Ω) with

u
δ
∈ L1(Ω) , Vu∈ L1(Ω;δ α) and for all φ ∈W 2Ln,1(Ω) ∈ H1

0 (Ω) ,

∫
Ω

fφdx =
∫

Ω
u
[
φ + λ (−Δφ −�U ·∇φ +Vφ)

]
dx. (72)

This is equivalent to say that u+ λAu = f and u ∈ D(A) .
So for 0 � α < 1, it remains to show that for all u ∈ D(A), for all λ > 0

‖u‖α � ‖u+ λAu‖α . (73)

That is to say, setting f = u+ λAu ,∫
Ω
|u|ψα

1 dx �
∫

Ω
| f |ψα

1 dx. (74)

To prove such inequality, we introduce as in [22] the
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LEMMA 8.2. Let ε > 0 , 0 � α � 1 and let

ψ1ε = (ψ + ε)α − εα ∈W 2Ln,1(Ω)∩H1
0 (Ω). (75)

Then, for all u ∈ Ln′,∞(Ω), u � 0 , one has

Jε =
∫

Ω
u
[
−Δψ1ε −�U ·∇ψ1ε

]
dx � 0. (76)

Proof. We develop the term −Δψ1ε −�U ·ψ1ε to derive the

Jε = α
∫

Ω
u
[
−Δψ1−�U ·∇ψ1

]
(ψ1 + ε)α−1dx+ α(1−α)

∫
Ω
|∇ψ1|2(ψ1 + ε)α−2udx

= αλ1

∫
Ω

uψ1(ψ1 + ε)α−1dx+ α(1−α)
∫

Ω
|∇ψ1|2(ψ1 + ε)α−2udx � 0.

Let us decompose f = f+ − f− , f+ ∈ L1(Ω;δ α ), f− ∈ L1(Ω;δ α) . By Theorem 3.5,
we know that we have u1 ∈ D(A) (resp. u2 ∈ D(A) such that

u1 + λAu1 = f+ u2 + λAu2 = f−. (77)

So by linearity and uniqueness, one has

u = u1−u2. (78)

Therefore, it suffices to show that the inequality (74) holds for u1 (resp. u1 ). That is
to say that is sufficient to prove the inequality for f � 0. But in that case, the unique
solution of (72) is non negative : u � 0 and we can choose as a test function φ = ψ1ε
given in Lemma 8.2. We then have∫

Ω
fψ1εdx =

∫
Ω

uψ1εdx+ λ
∫

Ω
u
[
−Δψ1ε −�U ·∇ψ1ε ]dx+ λ

∫
Ω

V ψ1εudx. (79)

According to Lemma 8.2 and the fact that V uψ1ε � 0 the two last integrals in relation
(79) are non negative. Therefore,∫

Ω
fψ1εdx �

∫
Ω

uψ1εdx, ε > 0. (80)

Letting ε → 0 in (80), we obtain∫
Ω

uψα
1 dx �

∫
Ω

fψα
1 dx (81)

whenever f ∈ u+ λAu, u ∈ D(A) .

We have shown that the Schrödinger operator A = −Δ+�U ·∇+V is m-accretive
in L1(Ω,δ α) , whenever 0 � α < 1, as in the first statement of Theorem 8.3. �
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We have a similar result in L1(Ω;δ ) provided that V (x) � cδ (x)−2 in a neighbor-
hood U of the boundary. The argument is similar to the preceding one but we need to
replace the use of Theorem 3.5 by Theorem 3.3. Indeed, if f = f+ − f− ∈ L1(Ω;δ )
and u ∈ D(A) satisfies u+λAu = f then, Theorem 3.3 allows us to spleet u = u2−u1

with ui ∈ D(A) and u1 + λAu1 = f+ (idem u2 + λAu2 = f− ). therefore, it suffices to
show the inequality ∫

Ω
uψ1dx �

∫
Ω

fψ1dx for f � 0, u � 0.

To do so, we choose φ = ψ1 in equation (72) and derive∫
Ω

fψ1dx = (1+ λ λ1)
∫

Ω
uψ1dx+

∫
Ω

Vuψ1dx. (82)

We drop the nonnegative term with V to derive∫
Ω

uψ1dx � 1
1+ λ λ1

∫
Ω

fψ1dx �
∫

Ω
fψ1dx. (83)

This show the desired inequality and implies that
∀λ > 0, ∀u ∈ D(A), u+ λAu = f ∈ L1(Ω;d)∫

Ω
|u|ψ1dx �

∫
Ω
|u+ λAu|ψ1dx. (84)

♦
Therefore, we have shown the following theorem :

THEOREM 8.3. Let �U ∈ L∞(Ω)n such that (3) and V � 0 locally integrable. Then
the Schrödinger operator

Au = −Δu+�U ·∇u+Vu, for u ∈ D(A)

is m-accretive in L1(Ω;δ α ) for any 0 � α < 1. If α = 1 and V (x) � cδ (x)−2 in a
neighborhood U of the boundary then the operator A is still m-accretive in L1(Ω;δ ) .

The operator A is also m-accretive in Lp(Ω;δ α ) when �U = 0 for p ∈ (1,+∞]
and α ∈ [0,1] . The result for the case α = 0 was already proved by Brezis and Strauss
[7] for bounded potentials.

THEOREM 8.4. Let p ∈ (1,+∞] . Assume that{
α ∈ [0,1],

and �U = 0
or

{
α = 0,

and (H1).
(85)

Let f ∈ Lp(Ω,δ α) , 0 � V ∈ L1
loc(Ω) and let u ∈ D(A) be the unique solution of the

equation
Au+u = f . (86)

Then
‖u‖Lp(Ω;δ α ) � ‖ f‖Lp(Ω;δ α ). (87)
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Proof. As in the proof of Theorem 8.3 we can assume without loss of generality
that f � 0 and thus u � 0. By regularity arguments it can be well-justified that we can
take as test function the one given up−1ψ1ε(x) with ψ1,ε as in Theorem 8.2 if �U = 0
and up−1 if α = 0. Then, from (14a), and since V � 0, we get that

∫
Ω
|u|pψ1,ε + I �

∫
Ω

f up−1ψ1ε �
(∫

Ω
f pψ1ε

) 1
p
(∫

Ω
upψ1ε

) p−1
p

,

where
I =

∫
Ω

u(−Δ(up−1ψ1ε))−
∫

Ω
u �U ·∇(up−1ψ1,ε).

We recall that in Lp(Ω,δ α ) we can use as an equivalent norm to the one given by(∫
Ω
|u|pψ1ε

) 1
p

.

Thus, it is enough to prove that I � 0. Assume now that �U = 0. Again, we can assume
that u is regular and so

I = −
∫

Ω
Δu(up−1ψ1,ε) = (p−1)

∫
Ω

up−2|∇u|2ψ1,ε +
∫

Ω
up−1∇u ·∇ψ1,ε .

The first integral is clearly nonnegative. Moreover∫
Ω

up−1∇u ·∇ψ1,ε =
∫

Ω

1
p

∇up ·∇ψ1,ε =
∫

Ω

up

p
(−Δψ1,ε),

and, from the definition of ψ1,ε , we get that I � 0. This concludes the proof for the
case �U = 0.
Assume now that α = 0. Then, by applying Lemma 2.6 in [15], we get that∫

Ω
u �U ·∇up−1 = 0

and again I � 0.
As a first application of Theorem 8.3 and Theorem 8.4 we get the solvability of

the associated parabolic problem⎧⎨⎩
∂u
∂ t

−Δu+�U ·∇u+V(x)u = f (x,t) in Ω× (0,T),

u(x,0) = u0(x) on ∂Ω,

(88)

for the class 0 �V ∈ L1
loc(Ω) and thus also for very singular potentials. Here is a simple

statement in term of “mild solutions” (see, e.g. [1], [9] or Proposition 1.5.14 in [5]).

THEOREM 8.5. Let T > 0 , α ∈ [0,1] , �U ∈ L∞(Ω)n such that (3) and V � 0 lo-
cally integrable (satisfying (4) if α = 1 ). Let u0 ∈L1(Ω;δ α) and f ∈L1(0,T ;L1(Ω;δ α )) .
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Then, there exists a unique u ∈C([0,T ] : L1(Ω;δ α)) mild solution of (88). Moreover
V (x)u ∈ L1(0,T ;L1(Ω,δ α )) and, if û denotes the solution to data û0 and f̂ under the
same assumptions, then, for any t ∈ [0,T ] ,

‖(u(t, ·)− û(t, ·))+‖L1(Ω;δ α ) � ‖(u0− û0)+‖L1(Ω,δ α ) +
∫ t

0
‖( f (t, ·)− f̂ (t, ·))+‖L1(Ω,δ α ).

(89)
In addition, if �U =�0 , u0 ∈ Lp(Ω,δ α ) and f ∈ L1(0,T ;Lp(Ω,δ α)) for some p ∈
(1,+∞] , then u∈C([0,T ];Lp(Ω,δ α )) and (89) holds replacing the norm of L1(Ω,δ α )
by the norm of Lp(Ω,δ α) .

The application of abstract semigroup theory results on the time differentiability of
solutions of (88) requires the reflexivity condition on the abstract Banach space. This
holds in the case of the second part of Theorem 8.5 when 1 < p < +∞ (and �U = 0
or α = 0). Nevertheless, a direct approach to this question for problem (88) can be
obtained as an application of Proposition 1.3.4 of [5] if f = 0 and Proposition 1.5.5 if
f �= 0. We have

THEOREM 8.6. Let T > 0, u0 ∈D(A) , f ∈C([0,T ];D(A))∪C1([0,T ];L1(Ω;δ α ))
for some α ∈ [0,1] . Then, there exists a (unique) function satisfying :⎧⎨⎩u ∈C

(
[0,T ];D(A)

)
∩C1

(
[0,T ];L1(Ω;δ α )

)
du
dt

(t)+Au(t) = f (t), ∀t ∈ [0,T ], u(0) = u0.

REMARK 3. It is possible to obtain several qualitative properties of solutions of
the parabolic problem (88). The smoothening effect for bounded potentials can be
found, e.g., in [5, 6, 10, 22]. If V (x) is a very singular potential then the Dirichlet
condition is verified in W 1

0 Ln′,∞(Ω) once we assume that α ∈ [0,1) . In fact, it is not
complicated to adapt the techniques of proof of the Section 8.2 of this paper to show
that if u0 and f (t, ·) are “flat” data near ∂Ω then the (unique) solution of (88) is also
a “flat solution” in the sense that not only u = 0 but ∂u

∂�ν = 0 on ∂Ω . Notice that this

is in contrast with the instantaneous blow-up of solutions which arises when �U = 0,
V (x) < 0, λ1(−Δ +(1− ε)V) = −∞ for some ε > 0 and V is very singular (see [8]
and the references therein).

8.2. Complex Schrödinger problem

Let us apply our previous results to the mathematical treatment of problem (5). In
some sense, our main aim now is to show that the solution of this Schrödinger equation
is localized for any t > 0, in the sense that if we start with a localized initial wave
packet ψψψ0 ∈ H1(Rn : C) (here C denotes the complex numbers), i.e. such that

support ψψψ0 ⊂ Ω,

then the particle still remains permanently confined in Ω in the sense that

supportψψψ(t, ·) ⊂ Ω for any t > 0.
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As in [14] we start by considering the auxiliary eigenvalue problem

DP(V,λ ,Ω)

{
−Δu+�U ·∇u+V(x)u = λu in Ω,

u = 0 on ∂Ω.

PROPOSITION 8.7. Let 0 � V ∈ L1
loc(Ω) . Then there exists a sequence of eigen-

values λm →+∞ , λ1 > λ1,Ω (the first eigenvalue for the Dirichlet problem associated
to the operator −Δ +�U ·∇ on Ω), λ1 is isolated and u1 > 0 on Ω.

Proof. We start by arguing as in the proof of Proposition 3 of [15]. We introduce
the space

W =
{

ϕ ∈ H1
0 (Ω) : Vϕ2 ∈ L1(Ω)

}
.

For any h ∈ L2(Ω) we define the operator Th = z ∈W solution of the linear problem{
Az = h in Ω,

z = 0 on ∂Ω.
(90)

We recall that the existence and uniqueness of a solution was obtained in Proposition 3
in [15] when h ∈W ′ (the dual space of W ) and that, trivially, L2(Ω) ⊂W ′.Then the
composition with the (compact) embedding H1

0 (Ω) ⊂ L2(Ω) is a selfadjoint compact
linear operator T̃ = i ◦ T : L2(Ω) → L2(Ω) for which we obtain in the usual way a
sequence of eigenvalues λm → +∞ . By well-known results (see e.g. [24] or [4]) we
know that λ1 > 0 (notice that λ1 = 0 would imply that z = 0) . In fact, since V (x) �
0, by the comparison principle we know that λ1 > λ1,Ω . The positivity of the first
eigenfunction u1 is an easy modification of Proposition 3.2 of [14]. Moreover a variant
of the Krein-Rutman can be applied (see [12]) and so we know that λ1 is isolated.

REMARK 4. When r = 2 in (4) then, by the Hardy inequality, W = H1
0 (Ω) .

A different, and useful, consequence of Proposition 3 of [15] is the following:

PROPOSITION 8.8. Let 0 �V ∈L1
loc(Ω) . Then the operator A : D(A)(⊂ L2(Ω))→

L2(Ω) given by D(A) =W =
{

ϕ ∈ H1
0 (Ω) : Vϕ2 ∈ L1(Ω)

}
and Au = −Δu+�U ·∇u+

Vu if u ∈ D(A) is a maximal monotone operator in L2(Ω) .

Proof. Given h ∈ L2(Ω) , the existence and uniqueness of solution of the equation
Au+u = h was obtained in Proposition 3 of [15]. Moreover, thanks to the assumptions
on �U , by Lemmas 2.6 and 2.7 of [15] we get that

‖u‖L2(Ω) � ‖h‖L2(Ω)

which proves the monotonicity in L2(Ω) (i.e. the operator is m-accretive in L2(Ω)).
Let us prove now that the singularity of the potential implies that all the eigen-

functions um of operator A are flat solutions (in the sense that u = ∂u
∂n = 0 on ∂Ω).
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As usual in Quantum Mechanics we shall pay attention to the associate eigenfunctions
with normalized L2 -norm, i.e. such that

‖um‖L2(Ω) = 1. (91)

THEOREM 8.9. Assume (4) and let um be an eigenfunction associated to the
eigenvalue λm . Then um ∈ L∞(Ω) and um is a flat solution of DP(V,λm,Ω) . In fact,
there exists Km > 0 such that

|um(x)| � Kmd(x,∂Ω)2 a.e. x ∈ Ω. (92)

Proof. It suffices to repeat all the arguments of Theorem 2.1 of [14] (concerning
the case r = 2 and �U =�0) since the the main idea of the proof consists in the use of a
Moser-type iterative argument (as in [17]) and take as test functions

ϕ(x) = v2κ+1
m,M (x), with vm,M(x) := min{|um(x)| ,M}sign(um(x)), (93)

for any arbitrary M,κ > 0. Then, by using (4) and Lemmas 2.6 and 2.7 of [15] we
conclude that ϕ ∈ H1

0 (Ω) is an appropriate test function and

(2κ +1)
∫

Ω

∣∣v2κ
M (x)

∣∣ |∇um|2 dx+
∫

Ω

C
δ (x)2

∣∣v2κ+1
M (x)

∣∣ |um|dx

� (2κ +1)
∫

Ω

∣∣v2κ
M (x)

∣∣ |∇um|2 dx+
∫

Ω
V (x)

∣∣v2κ+1
M (x)

∣∣ |um|dx

= λn

∫
Ω

∣∣v2κ+1
M (x)

∣∣ |um|dx (94)

where we used the simplified notation vM = vm,M . This is exactly the same starting
energy estimate than the one used in the proof of Theorem 2.1 of [14] and thus the rest of
the proof (passing to the limit when M ↗ +∞) applies without any other modification.

REMARK 5. The flatness of the eigenfunctions um of operator A can be also
proved by using Proposition 2.7 of [25] nevertheless the statement given here supplies
some decay estimates on um near ∂Ω which are not given in the mentioned reference.

REMARK 6. The decay estimate (92) is not optimal if r > 2 in (4). It seems
possible to adapt the formal exposition made in [11] developing asymptotically some
Bessel functions to prove that in that case

|um(x)| � Kmδ (x)r/4exp

(
− K̂m

(r−2)
δ (x)−(r−2)/2

)
a.e. x ∈ Ω, (95)

for some positive constants Km and K̂m, but we shall not enter into the details here.
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REMARK 7. Arguing as in [14] it is easy to get several qualitative properties of
solutions of the complex evolution Schrödinger problem⎧⎨⎩i

∂ψψψ
∂ t

= −Δψψψ +�U ·∇ψψψ +V(x)ψψψ in (0,∞)×R
n

ψψψ(0,x) = ψψψ0(x) on R
n

(96)

for very singular potentials over Ω which are extended (for instance) in a finite way to
the whole space. So, we assume now that there exists q ∈ [0,+∞) such that

Vq,Ω(x) =

{
V (x) if x ∈ Ω,

q if x ∈ Rn \Ω
(97)

and that (4) holds. We can study the time evolution of a localized initial wave packet
ψ0 ∈ H1(Rn : C) such that support ψ0 ⊂ Ω.

Then we can prove that there exists a unique solution ψψψ ∈C([0,+∞) : L2(Rn : C))
with ψψψ ∈C([0,+∞) : H1(Rn : C)) and Vq,Ω(x)ψ ∈L2(0,T : L2(Rn : C))} for any T > 0,
and that the Galerkin decomposition

ψψψΩ(t,x) =
∞

∑
m=1

ame−iλmtum(x), (98)

holds with convergence at least in L2(Rn : C) where λm and um are the eigenvalues
and eigenfunctions given in Proposition 8.7 and

am =
∫

Ω
ψψψ0(x)um(x)dx.

For localizing purposes we assume that

∞

∑
m=1

|am|Km < +∞, (99)

where Km > 0 was given in Theorem 8.9. Thus, we conclude that

|ψψψ(t,x)| � Kd(x,∂Ω)2 for any t > 0 and a.e. x ∈ Ω, (100)

for some K > 0, and in consequence the unique solution of (96) satisfies that support
ψψψ(t, .) ⊂ Ω for any t > 0.

Concerning the existence of solutions, it is enough to apply the Hille-Yosida theo-
rem (see, e.g. [24, 4, 5]). For the Galerkin decomposition we can adapt the arguments
given in [5].
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Laboratoire de Mathématiques et Applications - UMR CNRS
7348 - SP2MI, France

Bd Marie et Pierre Curie, Téléport 2, F-86962 Chasseneuil
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