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EXISTENCE OF POSITIVE SOLUTIONS FOR NONLINEAR

FRACTIONAL NEUMANN ELLIPTIC EQUATIONS
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Abstract. This article is devoted to study the fractional Neumann elliptic problem
⎧⎪⎨
⎪⎩

ε2s(−Δ)su+u = up in Ω,

∂νu = 0 on ∂Ω,

u > 0 in Ω,

where Ω is a smooth bounded domain of R
N , N > 2s , 0 < s � s0 < 1 , 1 < p < (N +2s)/(N−

2s) , ε > 0 and ν is the outer normal to ∂Ω . We show that there exists at least one nonconstant
solution uε to this problem provided ε is small. Moreover, we prove that uε ∈ L∞(Ω) by using
Moser-Nash iteration.
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