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Abstract. This article is devoted to study the fractional Neumann elliptic problem⎧⎪⎨
⎪⎩

ε2s(−Δ)su+u = up in Ω,

∂νu = 0 on ∂Ω,

u > 0 in Ω,

where Ω is a smooth bounded domain of R
N , N > 2s , 0 < s � s0 < 1 , 1 < p < (N +2s)/(N−

2s) , ε > 0 and ν is the outer normal to ∂Ω . We show that there exists at least one nonconstant
solution uε to this problem provided ε is small. Moreover, we prove that uε ∈ L∞(Ω) by using
Moser-Nash iteration.

1. Introduction

In this paper, we study the following Neumann elliptic problem involving frac-
tional Laplacian: ⎧⎪⎨

⎪⎩
ε2s(−Δ)su+u = up in Ω,

∂νu = 0 on ∂Ω,

u > 0 in Ω,

(1.1)

where Ω is a smooth bounded domain of R
N , N > 2s , 0 < s < 1, 1 < p < (N +

2s)/(N−2s) , ε is a positive parameter and ν is the outer normal to ∂Ω . The operator
(−ε2Δ)s is understood as the fractional Laplacian in the bounded domain Ω encod-
ing the homogeneous Neumann boundary condition, that is, the fractional Neumann
Laplacian which is defined as follows.

Let φk (k ∈ N0) be an eigenfunction of −Δ given by{
−Δφk = μkφk in Ω,

∂νφk = 0 on ∂Ω,
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where μk is the corresponding eigenvalue of φk . The ε -Neumann Laplacian is the
operator that acts on an L2 function

u =
∞

∑
k=1

ukφk where uk =
∫

Ω
uφkdx,

as

−ε2ΔNu =
∞

∑
k=1

(ε2μk)ukφk

in a suitable sense. Then the fractional (ε−)Neumann Laplacian is given by

(−ε2ΔN)su =
∞

∑
k=1

(ε2μk)sukφk.

This operator can be extended by density for u in the Hilbert space

H s
ε (Ω) ≡ Dom

(
(−ε2ΔN)s) =

{
u ∈ L2(Ω) :

∞

∑
k=1

(ε2μk)s|uk|2 < ∞
}

under the scalar product

〈u,v〉H s
ε (Ω) := 〈u,v〉L2(Ω) +

∞

∑
k=1

(ε2μk)sukvk,

so that the norm in H s
ε (Ω) is given by

‖u‖2
H s

ε (Ω) = ‖u‖2
L2(Ω) +

∞

∑
k=1

(ε2μk)s|uk|2.

We refer readers to [28, 23, 22] and references therein for more details.
When s = 1, the problem (1.1) reduces to the Laplace case which is considered in

the famous paper [19]. In [19], Lin-Ni-Takagi studied the existence of solutions to the
one-parameter semilinear Neumann boundary problem{

−ε2Δu+u = g(u) in Ω,

∂νu = 0 on ∂Ω,
(1.2)

where g(t) is a suitable nonnegative nonlinearity on R vanishing for t � 0, growing
superlinearly at infinity. They showed that if ε is small enough, there exists a posi-
tive smooth solution uε that satisfies Jε(u) � CεN/2 where C is a positive constant
independent of ε with Jε is the energy functional of problem (1.2), that is,

Jε(u) =
1
2

∫
Ω

(
ε2|∇u|2 +u2)dx−

∫
Ω

G(u)dx,

where G is an primitive of g .
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Recently, Stinga-Volzone [22] extended the results in [19] to the square root of
Laplacian case, that is, they considered the following Neumann problem:{

(−ε2Δ)1/2u+u = g(u) in Ω,

∂νu = 0 on ∂Ω,
(1.3)

where

g(t) =

{
t p if t � 0,

0 if t � 0,
(1.4)

for 1 < p < (N+1)/(N−1) . Notice that (N +1)/(N−1) is the critical Sobolev expo-
nent. By applying the Mountain Pass Lemma of Ambrosetti and Rabinowitz [2], they
proved the existence of nonconstant solutions of (1.3) provided ε is small. They also
studied the regularity and Harnack inequality in the same paper. Moreover, there are
some works related to concentration phenomena for Schrödinger equations involving
the integral fractional Laplacian, see for example [13, 14, 17, 7].

In the present paper, we aim to study the fractional case for s ∈ (0,s0) with s0 �
1/2. Our main result is

THEOREM 1. Suppose 0 < s � s0 with some 1/2 � s0 < 1 , then there exists at
least one nonconstant solution uε to problem (1.1) provided ε > 0 is small. Moreover,
uε ∈ L∞(Ω) .

REMARK 1. We should remark that we just consider the case s ∈ (0,s0) in our
article since we study the existence of nonconstant solutions. In fact, we can prove the
existence of nontrivial solutions for s ∈ (0,1) .

As we know, by using the language of semigroups (see for example [23, 10]), one
can check that (−εΔN)s is indeed a nonlocal operator. In fact,

(−ε2ΔN)su(x) =
1

Γ(−s)

∫ +∞

0
(etε2ΔNu(x)−u(x))

dt
t1+s , (1.5)

where etΔN u(x) is the heat diffusion semigroup generated by the Neumann Laplacian
acting on u . Then, as in [23, 10], one can check that for a smooth function u we have
the pointwise integro-differential formula

(−ε2ΔN)su(x) = C(N,s,Ω)P.V.

∫
Ω
(u(x)−u(y))K(x,y)dy, x ∈ Ω,

where C(N,s,Ω) is a positive constant and the kernel K(x,y) satisfies the estimate
K(x,y) ∼ ε2s|x− y|−(N+2s) for x,y ∈ Ω .

REMARK 2. (1) We remark that Dipierro-Ros-Oton-Valdinoci in [15] introduced
a Neumann type condition for integral fractional elliptic problem, that is,∫

Ω

u(x)−u(y)
|x− y|N+2s dy = 0 for x ∈ R

N \Ω.
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Recently, Chen in [7] studied perturbed problem involving the integral fractional Lapla-
cian with the above Neumann type condition. In our article, we consider the spec-
tral fractional Laplacian which is different from the integral fractional Laplacian, see
[27, 20].
(2) We also refer that Dipierro, Soave and Valdinoci consider the stable solutions of
fractional Neumann equations in [16].

It is already known that the fractional operator (1.5) can be described as Dirichlet-
to-Neumann maps for an extension problem in the spirit of the extension problem for
the fractional Laplacian on R

N of [9], see [23, 28]. Indeed, let us define

C = Ω× (0,+∞), ∂LC = ∂Ω× [0,+∞).

We write points in the cylinder C by (x,y) ∈ C = Ω× (0,+∞) . Consider the space

H 1(C ,y1−2s) =
{

w ∈ H1(C ,y1−2s) :
1
|Ω|

∫
Ω

w(x,y)dx = 0,∀y � 0

}
,

where H1(C ,y1−2s) is the weighted Sobolev space with respect to the weight y1−2s .
By Lemma 2.2 in [21], the space H 1(C ,y1−2s) can be equipped with the norm

‖w‖ =
(∫

C
y1−2s|∇w|2dxdy

) 1
2

.

Hence, we can study problem (1.1) by variational methods for a local problem. More
precisely, problem (1.1) can be reduced to the problem⎧⎪⎪⎪⎨

⎪⎪⎪⎩
ε2sΔxw+

1−2s
y

∂w
∂y

+
∂ 2w
∂y2 = 0 in C ,

∂νw = 0 on ∂LC ,

− limy→0+ y1−2s ∂w
∂y = g(w(x,0))−w(x,0) in Ω,

(1.6)

where g(t) is defined as (1.4). If positive function w satisfies (1.6), then the trace w
on Ω×{0} will be a solution of problem (1.1). We look for a positive nonconstant
weak solution w to (1.6) as a positive nonconstant critical point over H ε(C ,y1−2s)
(see Section 2) of the functional

Iε(w) =
1
2

∫
C

y1−2s (ε2s|∇xw|2 +w2
y

)
dxdy+

1
2

∫
Ω

w2(x,0)dx−
∫

Ω
G(w(x,0))dx,

(1.7)

where

G(t) =
∫ t

0
g(s)ds =

⎧⎨
⎩

1
p+1

t p+1, if t � 0,

0, if t � 0.

Using the local formulation established above, then Theorem 1 will follow as a
corollary of the following result for the degenerated equation (1.6).
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THEOREM 2. Suppose 0 < s � s0 with some 1/2 � s0 < 1 , then there exists at
least one positive nonconstant weak solution wε to problem (1.6) provided ε > 0 is
small. In this case there exists a positive constant C , depending only on p,s and Ω ,
such that

Iε (wε ) � CεsN .

We use variational methods (cf. [24, 25]) to find positive solutions of equation
(1.6). We will prove Theorem 2 by using the Mountain Pass Lemma of Ambrosetti
and Rabinowitz to energy functional Iε of problem (1.6). However, there are some
difficulties appear compare our article with [22]. The main difficulties are two points:
the operator in (1.6) is degenerated and the nonlinearity is on the boundary. By adapting
Moser-Nash iteration (see [18]) to the problem (1.6), we can obtain the uniform bound
in Theorem 1. Although the weighted function y1−2s is possibly singular or degenerates
at y = 0, we still may establish an inverse Hölder inequality for w(·,0) = u(·) , and we
may iterate the inequality for u . The Moser-Nash iteration method has been used to
study the uniformly bounds for fractional elliptic problem, see for example [1, 3, 4, 5,
6, 8, 11, 21, 26, 30] and references therein.

The paper is organized as follows. In section 2, we give some notations, prelimi-
naries and prove some estimate lemmas. Section 3 is devoted to prove Theorems 1 and
2.

2. Variational setting and preliminaries

We start this section by recalling the following important extension result proved
in [28].

THEOREM 3. Let u ∈ H s
ε (Ω) such that (1/|Ω|)∫

Ω udx = 0 . Define

w(x,y) :=
∞

∑
k=1

ρ(ε2sλ
1
2
k y)ukϕk(x).

where the function ρ(t) solves the problem⎧⎪⎨
⎪⎩

ρ ′′(t)+ 1−2s
t ρ ′(t) = ρ(t) t > 0,

− limt→0+ t1−2sρ ′(t) = ks,

ρ(0) = 1,

where

ks :=
21−2sΓ(1− s)

Γ(s)
.

Then w ∈ H 1(C ,y1−2s) is the unique weak solution to the extension problem⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ε2sΔxw+
1−2s

y
∂w
∂y

+
∂ 2w
∂y2 = 0, in C := Ω× (0,∞),

∂νw = 0, on ∂LC := ∂Ω× [0,∞),
w(x,0) = u(x), on Ω,
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where ν is the outward normal to the lateral boundary ∂LC of C . More precisely,∫
C

y1−2s(ε2s∇xw ·∇xψ +wyψy
)
dxdy = 0,

for all test functions ψ ∈ H 1(C ,y1−2s) with zero trace over Ω, that is trΩψ = 0, and

lim
y→0+

w(x,y) = u(x) in L2(Ω).

Moreover, the function w is the unique minimizer of the energy functional

F (w) =
1
2

∫
C

y1−2s(ε2s|∇xw|2 + |wy|2
)
dxdy,

over the set
U = {w ∈ H 1(C ,y1−2s) : trΩw = u}.

What’s more,

− 1
ks

lim
y→0+

y1−2swy = (−ε2ΔN)su, in H −s
ε (Ω).

Let us define the space H ε(C ,y1−2s) as the completion of H 1(C ,y1−2s) under
the scalar product

〈v,w〉ε =
∫

C
y1−2s(ε2s∇xv∇xw+ vywy

)
dxdy+

∫
Ω

v(x,0)w(x,0)dx.

We denote by ‖ · ‖ε the associated norm:

‖w‖2
ε =

∫
C

y1−2s(ε2s|∇xw|2 +w2
y

)
dxdy+

∫
Ω

w2(x,0)dx.

For ε > 0, we notice that

H 1(C ,y1−2s) ⊂ H ε (C ,y1−2s),

as Hilbert spaces, where the inclusion is strict, since constant functions belong to
H ε(C ,y1−2s) but not to H 1(C ,y1−2s) .

By a similar argument as Lemma 2.4 and Corollary 2.7 in [22], then we have the
following proposition.

PROPOSTION 1. Fix ε > 0 . Then the embedding

H ε(C ,y1−2s) ⊂ Lq(Ω)

for all 1 � q � 2N/(N − 2s) , is continuous. Moreover, the embedding is compact
provided 1 � q < 2N/(N−2s) .

We will use the Mountain Pass Lemma to obtain the existence result in Theorem
2. Thus, by multiplying equation (1.6) by a test function and integrating by parts, we
can give the following suitable definition of weak solution.
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DEFINITION 1. Let φ ∈H ε(C ,y1−2s) . We say that a function w∈H ε (C ,y1−2s)
is a weak solution to (1.6) if∫

C
y1−2s(ε2s∇xw∇xφ +wyφy

)
dxdy+

∫
Ω

w(x,0)φ(x,0)dx =
∫

Ω
g(w(x,0))φ(x,0)dx.

In order to use the Mountain Pass Lemma, we need the following lemmas related
to energy functional Iε which is defined as (1.7).

LEMMA 1. Iε satisfies Palais-Smale condition.

Proof. Let {wn} be a Palais-Smale sequence such that

|Iε(wn)| � c for all n ∈ N

and
I ′

ε (wn) → 0 as n → ∞.

Hence, for any δ > 0, there exists N = N(δ ) such that n � N ,

δ‖wn‖ε � |〈I ′
ε (wn),wn〉ε | =

∣∣∣∣‖wn‖2
ε −

∫
Ω

g(wn(x,0))wn(x,0)dx

∣∣∣∣.
Choosing δ = 1, we have that∣∣∣∣

∫
Ω

g(wn(x,0))wn(x,0)dx

∣∣∣∣ � ‖wn‖2
ε +‖wn‖ε .

On the other hand, since |Iε (wn)| � c and g(t) = t p for t > 0 and p > 1, we
have

c �
∣∣∣∣12‖wn‖2

ε −
∫

Ω
G(wn(x,0))dx

∣∣∣∣
� 1

2
‖wn‖2

ε −
1

p+1

(
‖wn‖2

ε +‖wn‖ε

)

=
(

1
2
− 1

p+1

)
‖wn‖2

ε −
1

p+1
‖wn‖ε .

Therefore, {wn} is bounded in H ε(C ,y1−2s) .
Up to a subsequence, we assume that

wn ⇀ w in H ε(C ,y1−2s). (2.1)

By Sobolev embedding (see Proposition 1), wn → w in Lp+1(Ω) . Notice that p+1 <
2N/(N−2s) , then we can find that g(wn) → g(w) in L(p+1)/p(Ω) . Observe that

‖wn−w‖2
ε = 〈I ′

ε (wn)−I ′
ε(w),wn −w〉ε +

∫
Ω

(g(wn)−g(w))(wn −w)dx.
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By (2.1), we have

〈I ′
ε (wn)−I ′

ε(w),wn −w〉ε → 0, n → ∞.

It follows from the Hölder inequality that∣∣∣∣
∫

Ω

(
g(wn)−g(w)

)
(wn −w)dx

∣∣∣∣ �
∥∥g(wn)−g(w)

∥∥
L(p+1)/p(Ω)‖wn−w‖Lp+1(Ω) → 0

as n → ∞ . Thus we have proved that

‖wn−w‖ε → 0, n → ∞.

�

LEMMA 2. There exists a ρ > 0 such that Iε (w) > 0 if 0 < ‖w‖ε < ρ and
Iε(w) � β > 0 for some β > 0 if ‖w‖ε = ρ .

Proof. By Sobolev embedding (see Proposition 1),∫
Ω

G(w(x,0))dx � C‖w‖p+1
ε .

Since p > 1, then we can get the conclusions by the definition of functional Iε . �

LEMMA 3. For a sufficiently small ε > 0 , there exists a nonnegative function
Φ ∈ H ε (C ,y1−2s) and positive constants t0,C0 such that

Iε (t0Φ) = 0,

and
Iε(tΦ) � C0εsN , f or all t ∈ [0,t0].

Proof. Choosing Φ as
Φ(x,y) = e−y/2ϕ(x),

where ϕ is

ϕ(x) =

{
ε−sN(1− ε−s|x|), if |x| < εs,

0, if |x| � εs.

We can also suppose that 0∈Ω and that ε is sufficiently small so that Φ∈H ε(C ,y1−2s) .
Indeed, we have that∫

C
y1−2s|∇xΦ|2dxdy =

∫
C

y1−2se−y|∇ϕ |2dxdy

=
∫ +∞

0
y1−2se−ydy

∫
Ω
|∇ϕ |2dx
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= Γ(2−2s)
∫

Ω
|∇ϕ |2dx,

∫
C

y1−2s|Φy|2dxdy =
1
4

∫
C

y1−2se−yϕ2dxdy

=
1
4

∫ +∞

0
y1−2se−ydy

∫
Ω

ϕ2dx

=
1
4

Γ(2−2s)
∫

Ω
ϕ2dx,

and ∫
Ω
|Φ|2dx =

∫
Ω

ϕ2dx.

Since 0 < s � s0 with some 1/2 � s0 < 1, then Γ(2− 2s) is finite. Moreover, by
straightforward computation, we have that, for p > 0,∫

Ω
|∇ϕ |2dx = Cε−sN−2s,∫

Ω
ϕ pdx = Cpε(1−p)sN,

for positive constants C and Cp . Therefore, by following the same arguments as
Lemma 2.4 in [19] (see also [22, 7]) if we set

G (t) = Iε (tΦ), for t � 0, (2.2)

it is seen that there exists t1,t2 satisfy 0 < t1 < t2 such that G ′(t) < 0 if t > t1 and
G (t) < 0 if t > t2 . We remark that t1 = CεsN for constant C > 0.

By Lemma 2, we know that G (t) > 0 for t small enough, then there exists a t0
such that G (t0) = 0, that is,

Iε(t0Φ) = 0 for small ε > 0.

By using Lemma 2 again, we can get ‖t0Φ‖ε > ρ , where ρ is defined in Lemma 2 .
Moreover, as in [19], we have

max
t�0

G (t) = max
0�t�t1

G (t)

= max
0�t�t1

{
1
2
t2ε−sN(C+C2)−

∫
Ω

G(w(x,0))dx

}

� max
0�t�t1

1
2
t2ε−sN(C+C2)

=
1
2
t21 ε−sN(C+C2)

� C0εsN , (2.3)

for some constant C0 > 0. For the last inequality, we have used the fact t1 =CεsN . �



124 HAIGE NI ET AL, Differ. Equ. Appl. 10, No. 1 (2018), 115–129.

3. Proofs

This section is devoted to prove of our main results, Theorems 1 and 2.

Proof. [Proof of Theorem 2] (Existence.) We let E = H ε(C ,y1−2s) , e = t0Φ and

X = {γ ∈C([0,1];E) : γ(0) = 0,γ(1) = e}.
As the proof in [22], the functional Iε is in C1(H ε(C ,y1−2s);R) . Hence, applying
Lemmas 1-3 and the Mountain Pass Lemma (see [2, 29]), then the number

c = min
γ∈X

max
t∈[0,1]

Iε (γ(t))

is a critical value of Iε in H ε(C ,y1−2s) . Thus, there exists wε in H ε(C ,y1−2s)
such that

I ′
ε (wε ) = 0, (3.1)

that is wε is a weak solution of equation (1.6).
(L∞ -estimate.) Here we use the Moser-Nash iteration method. For the conve-

nience, we denote w := wε where wε is the solution obtained above, and u := uε with
uε = wε (x,0) .

Letting t = |t|+ k and t
+ = t+ + k . For k > 0 large, we have

|g(t)− t|� C
(| t |p + t

)
for 1 < p <

N +2s
N−2s

.

Denote w+ = max{0,w} , w− = −min{0,w} . We deal only with w+ , it can be done
in the same way for w− . Define

w+
L =

{
w+ if w+ < L,

L if w+ � L.
(3.2)

For any ϕ ∈ H ε (C ,y1−2s) , by Definition 1,∫
C

y1−2s(ε2s∇xw∇xϕ +wyϕy
)

=
∫

Ω×{0}
(
g(w(x,0))−w(x,0)

)
ϕdx. (3.3)

For β > 1 to be determined, we choose in (3.3) that

ϕ = w+(w+
L )2(β−1)− k2(β−1)+1.

Then, we have that

∇ϕ = (w+
L )2(β−1)∇w+ +2(β −1)w+(w+

L )2(β−1)−1∇w+
L ,

and ∫
C

y1−2s{ε2s∇xw
[
(w+

L )2(β−1)∇xw
+ +2(β −1)w+(w+

L )2(β−1)−1∇xw
+
L

]
+wy

[
(w+

L )2(β−1)(w+)y +2(β −1)w+(w+
L )2(β−1)−1(w+

L )y
]}

dxdy

=
∫

C
y1−2s{(w+

L )2(β−1)[ε2s|∇xw
+|2 +(w+)2

y

]
+2(β −1)w+(w+

L )2(β−1)−1[ε2s|∇xw
+
L |2 +(w+

L )2
y

]}
dxdy.

(3.4)
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Let WL = w+(w+
L )β−1 and then

∇WL = (w+
L )β−1∇w+ +(β −1)w+(w+

L )β−2∇w+
L ,

we deduce from (3.3) and (3.4) for β > 1 that∫
C

y1−2s(ε2s|∇xWL|2 +(WL)2
y

)
dxdy

� Cβ
∫

C
y1−2s{ε2s∇xw

[
(w+

L )2(β−1)∇xw
+ +2(β −1)w+(w+

L )2(β−1)−1∇xw
+
L

]
+wy

[
(w+

L )2(β−1)(w+)y +2(β −1)w+(w+
L )2(β−1)−1(w+

L )y
]}

dxdy

= Cβ
∫

Ω×{0}
(
w+(w+

L )2(β−1)− k2(β−1)+1)(g(w(x,0))−w(x,0)
)
dxdy

� Cβ
∫

Ω×{0}
w+(w+

L )2(β−1)∣∣g(w(x,0))−w(x,0)
∣∣dxdy.

(3.5)

By Young inequality, for any θ > 0, there exists Cθ > 0 such that

|g(t)− t|� C
(| t |p + | t |) � θ | t |2∗s−1 +Cθ | t |.

This implies ∫
Ω×{0}

w+(w+
L )2(β−1)|g(w(x,0))−w(x,0)|dx

� C
∫

Ω×{0}
((w+)p+1 +(w+)2)(w+

L )2(β−1)dx

� C
∫

Ω×{0}
[
θ (w+)2∗s (w+

L )2(β−1) +Cθ (w+
L )2(β−1)(w+)2]dx.

(3.6)

By (3.5), (3.6) and the Sobolev embedding theorem,(∫
Ω×{0}

|WL|2∗s dx
) 2

2∗s � C
∫

C
y1−2s(ε2s|∇xWL|2 +(WL)2

y

)
dxdy

� Cβ
∫

Ω×{0}
[
θ (w+)2∗s (w+

L )2(β−1) +Cθ (w+
L )2(β−1)(w+)2]dx.

Since trΩw = u , then we have(∫
Ω
(u+(u+

L )β−1)2∗s dx
) 2

2∗s

� Cβ
∫

Ω

[
θ (u+)2∗s (u+

L )2(β−1) +Cθ (u+
L )2(β−1)(u+)2]dx.

(3.7)

Next, we claim that u ∈ L(2∗s )2/2(Ω) . In fact, choosing β = 2∗s/2, we have(∫
Ω
(u+(u+

L )
2∗s−2

2 )2∗s dx
) 2

2∗s

�
∫

Ω

[
θ (u+)2∗s (u+

L )2∗s−2 +Cθ (u+
L )2∗s−2(u+)2]dx

� θ
(∫

Ω
(u+(u+

L )
2∗s−2

2 )2∗s dx
) 2

2∗s
(∫

Ω
(u+)2∗s dx

) 2∗s−2
2∗s +Cθ

∫
Ω
(u+

L )2∗s−2(u+)2 dx.

(3.8)
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Choosing θ > 0 small enough, we obtain

(∫
Ω
(u+(u+

L )
2∗s−2

2 )2∗s dx
) 2

2∗s � C
∫

Ω
(u+

L )2∗s−2(u+)2 dx.

Let L → +∞ , it yields

(∫
Ω
(u+)

(2∗s )2
2 )dx

) 2
2∗s � C

∫
Ω
(u+)2∗s dx < +∞. (3.9)

Letting t = (2∗s )2/[2(2∗s −2)] , then 2t/(t−1) < 2∗s . We estimate the right-hand
side of (3.7). By the Hölder inequality,∫

Ω
(u+)2∗s (u+

L )2(β−1)dx

�
(∫

Ω
(u+)(2

∗
s−2)t dx

) 1
t
(∫

Ω
(u+)

2β t
t−1 dx

)1− 1
t

� C
(∫

Ω
(u+)

2β t
t−1 dx

)1− 1
t

(3.10)

and ∫
Ω
(u+)2β dx

�
(∫

Ω
(u+)(2

∗
s−2)t dx

) 1
t
(∫

Ω
(u+)

2β t
t−1 dx

)1− 1
t

� C
(∫

Ω
(u+)

2β t
t−1 dx

)1− 1
t
.

(3.11)

We deduce from (3.7), (3.10) and (3.11) that

(∫
Ω
(u+(u+

L )β−1)2∗s dx
) 2

2∗s � Cβ 2
(∫

Ω
(u+)

2β t
t−1 dx

)1− 1
t
,

that is, (∫
Ω
(u+)β2∗s dx

) 1
β � C

1
β β

2∗s
β

(∫
Ω
(u+)

2β t
t−1 dx

) (t−1)2∗s
2tβ

For i � 1, we define βi+1 inductively so that

2tβi+1

t−1
= βi2∗s ,

that is,

βi+1 =
2∗s (t −1)

2t
βi,

and β1 = 2∗s/2. Therefore, we have

(∫
Ω
(u+)βi+12

∗
s dx

) 1
βi+1 � C

1
βi+1 β

2∗s
βi+1
i+1

(∫
Ω
(u+)βi2∗s dx

) 1
βi . (3.12)
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Let

Ai =
(∫

Ω
(u+)βi2∗s dx

) 1
βi .

Iterating by (3.12), we obtain

Ai+1 � Πi+1
m=2C

1
βm β

2∗s
βm
m A1 � C0A1.

This implies that
‖u+‖L∞(Ω) � C0A1.

We complete the proof by using the fact

A1 =
(∫

Ω
(u+)

(2∗s )2
2 dx

) 2
2∗s < +∞.

Similarly, we can prove ‖u−‖L∞(Ω) < +∞ . Therefore wε(x,0) = uε(x) ∈ L∞(Ω) .
(Positivity.) Since uε(x) = wε (x,0) ∈ L∞(Ω) , then by bootstrap argument we can

prove that wε is a classical solution of (1.6) (see for example [22, 30]). In order to
prove that wε > 0 everywhere in C , let us choose w−

ε in the weak formulation

〈I ′
ε (wε ),w−

ε 〉 = 0,

which implies that wε � 0 in C . Hence, using the strong maximum principle (see
[21]), we have wε > 0 in C .

(Nonconstant solutions.) By (2.3),

Iε(wε ) = c � max
t∈[0,t0]

Iε (tΦ) � C0εsN .

Let us argue by contradiction. Suppose that wε = c0 , where c0 is positive real number.
Hence,

Iε(wε ) =
(

1
2
c2
0−

1
p+1

cp+1
0

)
|Ω|.

Since (3.1) holds ture, then by using the equation (1.6), we have that g(c0) = c0 which
implies that c0 = 1. Thus,

Iε (wε) =
(

1
2
− 1

p+1

)
|Ω|,

which contradicts the inequality Iε(wε ) � C0εsN for ε small.
So, we conclude that for small ε the function Iε has at least one positive non-

constant critical point.
Now we are in position to prove Theorem 1.

Proof. [Proof of Theorem 1] A direct conclusion of Theorem 2 is that there exists
at least one positive nonconstant solution uε(x) = wε(x,0) to problem (1.1) provided
ε > 0 is small. Moreover, uε(x) = wε(x,0) ∈ L∞(Ω) . �
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[11] S. DIPIERRO, A. FIGALLI AND E. VALDINOCI, Strongly nonlocal dislocation dynamics in crys- tals,
Comm. Partial Differential Equations 39 (2014), no. 12, 2351–2387.

[12] S. DIPIERRO, M. MEDINA, I. PERAL AND E. VALDINOCI,Bifurcation results for a fractional elliptic
equation with critical exponent in R

N , Manuscripta Math. 153 (2017), no. 1-2, 183–230.
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