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ON A GENERAL CLASS OF SECOND–ORDER, LINEAR,

ORDINARY DIFFERENTIAL EQUATIONS SOLVABLE

AS A SYSTEM OF FIRST–ORDER EQUATIONS

ROMEO PASCONE

Abstract. An approach for solving general second-order, linear, variable-coefficient ordinary dif-
ferential equations in standard form under initial-value conditions is presented for the case of a
specific constant-form relation between the two otherwise arbitrary coefficients. The resulting
system of linear equations produces fundamental (or state transition) matrix elements used to
create integral- and closed-form solutions for both homogeneous and nonhomogeneous differ-
ential equation variants. Two example equations are chosen to illustrate application. A short
discussion is presented on the comparison of the theoretical results for these examples with the
corresponding symbolic integration outputs provided by several commercial programs which
were seen, at times, to be long and unwieldy or even non-existent.
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