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Abstract. We are interested in the system of conservation laws modeling the pressureless mag-
netogasdynamics. Firstly, we solve the Riemann problem and obtain five kinds of structures con-
sisting of combinations of shocks, rarefaction waves and contact discontinuities. Secondly, we
study the vanishing magnetic field limits of the Riemann solutions to the pressureless magneto-
gasdynamics and show that the density and velocity in the Riemann solutions to the pressureless
magnetogasdynamics converge to the Riemann solutions to the pressureless gas dynamics. The
formation processes of delta-shocks and vacuum states are discussed in details.

1. Introduction

Magnetogasdynamics has been the subject of great interest from both mathemati-
cal and physical point of view due to its applications in the variety of fields. The partial
differential equations which govern the continuous motion of a perfectly conducting
gas in one space dimension in the presence of transverse magnetic field with infinite
electrical conductivity may be written in the form [26]⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ρt +(ρu)x = 0,

ρ(ut +uux)+ (p+b2/2)x = 0,

pt +upx + ρc2ux = 0,

bt +(bu)x = 0,

(1.1)

where ρ � 0 and u represent the density and velocity respectively, p the pressure,
b � 0 the transverse magnetic field, and c =

√
∂ p/∂ρ the speed of sound. Raja Sekhar

and Sharma [27] studied the Riemann problem and elementary wave interactions for
(1.1) with p = k1ργ (1 < γ � 2) and b = k2ρ , where k1 and k2 are positive constants,
and γ is the adiabatic constant. Liu and Sun [24] studied the Riemann problem and
wave interactions for (1.1) only with p = k1ργ (1 < γ � 2) . Raja Sekhar and Sharma
[26] solved approximately the Riemann problem for (1.1) with p describing the ideal
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nonisentropic polytropic gas and b = k2ρ . Also see the papers [17, 18, 19, 13] for
investigations with respect to (1.1).

It is well known that the motion of fluid particles is determined by some kinds
of effects, such as the effect of inertia and the effect of pressure difference, etc. For
some situations, the effect of pressure difference may be so small as to be negligible.
The well-known pressureless Euler equations of gas dynamics have been obtained just
by neglecting the effect of pressure difference in the Euler equations of gas dynam-
ics. In this paper, we impose the pressure p = 0 on (1.1) and propose the following
pressureless magnetogasdynamics flow in the conservative form⎧⎪⎪⎪⎨⎪⎪⎪⎩

ρt +(ρu)x = 0,

(ρu)x +(ρu2 + κ2B2/2)x = 0,

(κB)t +(κBu)x = 0,

(1.2)

where we have replaced the magnetic field b by κB with a scaling parameter κ > 0
modeling the strength of transverse magnetic field.

The first task of this paper is to solve the Riemann problem for (1.2). It has three
characteristics, in which two are genuinely nonlinear, and the other is linearly degener-
ate, thus the classical basic waves contain shocks, rarefaction waves and contact discon-
tinuities. By the analysis method in state space, the Riemann solutions are constructed
with five different structures: (i) a backward rarefaction wave, a contact discontinuity,
and a forward rarefaction wave, (ii) a backward rarefaction wave, a contact discontinu-
ity, and a forward shock, (iii) a backward shock, a contact discontinuity, and a forward
rarefaction wave, (iv) a backward shock, a contact discontinuity, and a forward shock,
(v) a backward rarefaction wave, a vacuum intermediary state, and a forward rarefaction
wave.

As κ → 0+ , the system (1.2) formally tends to the pressureless gas dynamics⎧⎨⎩ρt +(ρu)x = 0,

(ρu)x +(ρu2)x = 0.
(1.3)

The model (1.3) has a number of origins, such as the flux-splitting numerical schemes
[21, 1], adhesion particle dynamics [28, 33], pressureless isentropic gas dynamics [2, 3],
and the electron-sheet evolution [25], etc. In earlier papers [30, 23], Sheng, Zhang and
Li solved the 1-D and 2-D Riemann problems for (1.3) completely. A distinctive fea-
ture is that delta-shocks and vacuum states develop in solutions, and (1.3) has been
one of popular systems admitting delta-shocks. A delta-shock is a kind of disconti-
nuity on which at least one of the state variables becomes a singular measure in the
form of a weighted Dirac delta function. Physically, the delta-shocks can describe the
concentration of mass. With respect to delta-shocks, we also refer the readers to pa-
pers [16, 31, 32, 11, 14, 15, 22, 34, 9, 29, 7, 8] for more details. One can see that the
magnetic field prevents the appearance of delta-shocks in solutions to (1.2).

The second task of this paper is to study the limits of the Riemann solutions to (1.2)
as the magnetic field vanishes (i.e., κ → 0+ ). We rigorously prove that as κ → 0+ , the
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limits of the density and velocity in the Riemann solution containing two shocks and
possibly one contact discontinuity to (1.2) are just the delta-shock Riemann solution to
(1.3). The intermediate densities between the two shocks tend to a weighted δ -measure
that forms the delta-shock. By contrast, we also show that as κ → 0+ , the density
and velocity in the Riemann solution containing two rarefaction waves and possibly
one contact discontinuity to (1.2) tend to the vacuum Riemann solution to (1.3). The
nonvacuum intermediate states between the two rarefaction waves tend to the vacuum
state.

We remark that Li [20], and Chen and Liu [5, 6] studied the limits of the Riemann
solutions of the isentropic and nonisentropic Euler equations as the pressure vanishes.
They showed that the vanishing pressure limits of the Riemann solutions of the isen-
tropic and nonisentropic Euler equations are just the Riemann solutions of the pressure-
less gas dynamics. Especially, the phenomena of concentration and cavitation and the
formation of delta-shocks and vacuum states in the limits were identified and analyzed.
Besides, the results were extended to the relativistic Euler equations by Yin and Sheng
[37]. Also see [35, 36] for the researches in this area.

The rest of the article is organized as follows. In Section 2, we recall the Riemann
problem for (1.3). In Section 3, we solve the Riemann problem for (1.2). In Sections 4
and 5, we discuss the limits of the Riemann solutions to (1.2) as κ → 0+ .

2. Solutions of the Riemann problem for the pressureless gas dynamics

In this section, we briefly review the Riemann problem for (1.3) with initial data

(u,ρ)(x,t = 0) = (u±,ρ±), ±x > 0 (2.1)

with ρ± > 0. The detailed investigations can be found in [30, 23]. The eigenvalue
is λ = u with associated eigenvector r = (1,0)T satisfying ∇λ · r = 0. So (1.3) is
extremely nonstrictly hyperbolic.

Since both system (1.3) and initial data (2.1) remain invariant under a uniform
expansion of coordinates x→ αx′ , t → αt ′ , α > 0, we should look for the self-similar
solution (u,ρ)(x, t) = (u,ρ)(ξ ) (ξ = x/t) , then we obtain⎧⎨⎩−ξ ρξ +(ρu)ξ = 0,

−ξ (ρu)ξ +
(
ρu2
)

ξ = 0
(2.2)

and
(u,ρ)(±∞) = (ρ±,u±). (2.3)

This is a two-point boundary value problem of first-order ordinary differential equations
with the boundary values at the infinity.

Besides the constant state solution

(u,ρ)(ξ ) = Constant, (2.4)
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and the singular solution (the vacuum denoted by Vac)

ξ = u,ρ = 0, (2.5)

it is easy to check that the elementary wave of (1.3) is nothing but contact discontinuity

ξ = ul = ur, (2.6)

where the indices l and r denote left and right states respectively.
The Riemann problem can be solved by the following two cases. For the case u− �

u+ , the Riemann solution consists of two contact discontinuities and an intermediary
vacuum state:

(u,ρ)(ξ ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(u−,ρ−) −∞ < ξ � u−,

(ξ , 0) u− � ξ � u+,

(u+,ρ+) u+ � ξ < +∞.

(2.7)

However, for the case u− > u+ , the singularity cannot be a jump with finite amplitude,
that is, there is no solution which is piecewise smooth and bounded. In order to establish
the existence in a space of measures from the mathematical point of view, the delta-
shock should be introduced.

To define the measure solutions, the weighted δ -measure w(s)δL supported on a
smooth curve L parameterized as x = x(s),t = t(s)(c � s � d) is defined by〈

w(s)δL,ψ(x,t)
〉

=
∫ d

c
w(s)ψ

(
x(s),t(s)

)
ds (2.8)

for all test functions ψ(x,t) ∈C∞
0 (R×R

+) .
With this definition, for the case u− > u+ , the following delta-shock Riemann

solutions has been constructed in [30, 23]

(u,ρ)(t,x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(u−,ρ−), x < σ t,(
σ ,w(t)δ (x−σ t)

)
, x = σ t,

(u+,ρ+), x > σ t,

(2.9)

where the weight w(t) and velocity σ satisfy the generalized Rankine-Hugoniot rela-
tion ⎧⎪⎪⎨⎪⎪⎩

dw(t)
dt

= −σ [ρ ]+ [ρu],

dw(t)σ
dt

= −σ [ρu]+
[
ρu2] (2.10)

and the entropy condition
u+ < σ < u− (2.11)

with [a] = a−−a+ being the jump of a across the discontinuities. Under (2.11), solv-
ing (2.10) with initial data w(0) = 0 gives

w(t) =
√ρ−ρ+ (u−−u+) t, σ =

√ρ− u− +
√ρ+ u+√ρ− +
√ρ+

. (2.12)
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THEOREM 2.1. The Riemann problem for the pressureless gas dynamics (1.3)
with initial data (2.1) admits a unique entropy solution, which includes a vacuum state
when u− � u+ and a delta-shock when u− > u+ .

3. Solutions of the Riemann problem for the pressureless magnetogasdynamics

In this section, we solve the Riemann problem for the pressureless magnetogasdy-
namics (1.2) with initial data

(u,ρ ,B)(x,t = 0) = (u±,ρ±,B±), ±x > 0 (3.1)

with ρ± > 0, and examine the dependence of the Riemann solutions on the parameter
κ > 0.

3.1. Hyperbolicity and characteristics

For any smooth solution, system (1.2) can be rewritten as⎛⎜⎝ρ
u

B

⎞⎟⎠
t

+

⎛⎜⎝u ρ 0

0 u κ2B
ρ

0 B u

⎞⎟⎠
⎛⎜⎝ρ

u

B

⎞⎟⎠
x

= 0 (3.2)

with the characteristic equation (u− λ )
[
(u− λ )2 − (κ2B2)/ρ

]
= 0. It defines the

eigenvalues

λ κ
0 = u, λ κ

± = u± κB
√ρ

with corresponding right eigenvectors

rκ
0 = (1,0,0)T , rκ

± =
(
±ρ ,

κB
√ρ

,±B

)T

.

Then it follows

∇λ κ
0 · rκ

0 ≡ 0, ∇λ κ
± · rκ

± =
3
2
· κB
√ρ

.

The three eigenvalues are real and distinct, therefore the system is strictly hyperbolic.
It can also be seen that the characteristic field λ κ

0 is linearly degenerate and the char-
acteristic fields λ κ

± are genuinely nonlinear.

3.2. Elementary waves

As usual, we look for the self-similar solution

(u,ρ ,B)(x,t) = (u,ρ ,B)(ξ ), ξ = x/t,
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then we obtain the two-point boundary value problem:⎧⎪⎪⎪⎨⎪⎪⎪⎩
−ξ ρξ +(ρu)ξ = 0,

−ξ (ρu)ξ +
(
ρu2 + κ2B2/2

)
ξ = 0,

−ξ (κB)ξ +(κBu)ξ = 0

(3.3)

and
(u,ρ ,B)(±∞) = (u±,ρ±,B±). (3.4)

(i) Smooth solutions

For any smooth solution, (3.3) becomes⎛⎜⎜⎝
u− ξ ρ 0

0 ρ(u− ξ ) κ2B

0 B u− ξ

⎞⎟⎟⎠
⎛⎜⎜⎝

ρ

u

B

⎞⎟⎟⎠
ξ

= 0. (3.5)

Besides the general solution (constant state)

(u,ρ ,B)(ξ ) =Constant, (3.6)

(3.5) provides the vacuum state ⎧⎨⎩ξ = u,

ρ = B = 0;
(3.7)

the backward rarefaction wave, symbolized by
←−
R ,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ξ = λ κ
− = u− κB√ρ ,

dρ
ρ = dB

B ,

du = − κB
ρ√ρ dρ ;

(3.8)

and the forward rarefaction wave, symbolized by
−→
R ,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ξ = λ κ
+ = u+ κB√ρ ,

dρ
ρ = dB

B ,

du = κB
ρ√ρ dρ .

(3.9)

For the backward rarefaction wave,

dλ κ
−

dρ
=

∂λ κ
−

∂u
du
dρ

+
∂λ κ

−
∂ρ

+
∂λ κ

−
∂B

dB
dρ

= − 3κB
2ρ√ρ

< 0.
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For the forward rarefaction wave,

dλ κ
+

dρ
=

∂λ κ
+

∂u
du
dρ

+
∂λ κ

+

∂ρ
+

∂λ κ
+

∂B
dB
dρ

=
3κB

2ρ√ρ
> 0.

Let Vl = (ul,ρl,Bl) and Vr = (ur,ρr,Br) denote the states connected by a rarefaction
wave on the left and right side respectively. Then the condition λ κ

−(Vr) > λ κ
−(Vl) and

λ κ
+(Vr) > λ κ

+(Vl) are required for the backward and forward rarefaction wave, respec-
tively. Then, it follows that the backward rarefaction wave should satisfy

ρl > ρr, ul < ur, Bl > Br (3.10)

and the forward rarefaction wave should satisfy

ρl < ρr, ul < ur, Bl < Br. (3.11)

For a given left state Vl = (ul,ρl,Bl) , all possible states which can connect to Vl

on the right by a backward rarefaction wave must be located on the curve

←−
R (Vl) :

⎧⎨⎩B = μlρ ,

u = ul −2κμl(
√ρ −√ρl), ρ < ρl,

(3.12)

where μl = Bl/ρl . It is easy to see that
←−
R (Vl) interacts with the u -axis at u0 = ul +

2κ
√

μlBl . For a given state Vr = (ur,ρr,Br) , all possible states which can connect to
Vr = (ur,ρr,Br) on the left by a forward rarefaction wave must be located on the curve

−→
R (Vr) :

⎧⎨⎩B = μrρ ,

u = ur +2κμr(
√ρ −√ρr), ρ < ρr,

(3.13)

where μr = Br/ρr . Obviously,
−→
R (Vr) interacts with the u -axis at u1 = ur−2κ

√
μrBr .

(ii) Discontinuities

Let us turn to the discontinuous solutions. For a bounded discontinuity at ξ = σ ,
the Rankine-Hugoniot relation reads⎧⎪⎪⎪⎨⎪⎪⎪⎩

−σ [ρ ]+ [ρu] = 0,

−σ [ρu]+
[
ρu2 + κ2B2/2

]
= 0,

−σ [κB]+ [κBu] = 0,

(3.14)

where [a] = al −ar is the jump of a across the discontinuity, Vl = (ul,ρl,Bl) and Vr =
(ur,ρr,Br) are the states on the left and right side of the discontinuity. When ρl = ρr ,
it follows ul = ur and Bl = Br . In what follows, we assume ρl �= ρr . Eliminating σ in
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(3.14), it follows ⎧⎪⎪⎪⎨⎪⎪⎪⎩
(ul −ur)(ρlBr −ρrBl) = 0,

ur −ul = ± κ√
2
·

√
1

ρlρr
· B

2
l −B2

r

ρl −ρr
(ρr −ρl).

(3.15)

Besides, from the first equation in (3.14), we have

σ =
ρlul −ρrur

ρl −ρr
= ul +

ρr(ul −ur)
ρl −ρr

= ur +
ρl(ul −ur)

ρl −ρr
. (3.16)

Thus we have three kinds of discontinuities. The first is{
σ = ul,

ul = ur, Bl = Br, ρl �= ρr,
(3.17)

which is a contact discontinuity associating with λ0 , symbolized by J . Two states
Vl = (ul ,ρl,Bl) and Vr = (ur,ρr,Br) can be connected by a contact discontinuity if
they satisfy ul = ur , Bl = Br , ρl �= ρr . The rest two are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ = ul −
κ√
2
·ρr

√
1

ρlρr
· B2

l −B2
r

ρl −ρr

= ur −
κ√
2
·ρl

√
1

ρlρr
· B

2
l −B2

r

ρl −ρr
,

ρr

Br
=

ρl

Bl
,

ur = ul −
κ√
2

√
1

ρlρr
· B2

l −B2
r

ρl −ρr
(ρr −ρl),

(3.18)

and ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ = ul +
κ√
2
·ρr

√
1

ρlρr
· B2

l −B2
r

ρl −ρr

= ur +
κ√
2
·ρl

√
1

ρlρr
· B

2
l −B2

r

ρl −ρr
,

ρr

Br
=

ρl

Bl
,

ur = ul +
κ√
2
·

√
1

ρlρr
· B2

l −B2
r

ρl −ρr
(ρr −ρl).

(3.19)
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In order to identify the admissible solution, the discontinuity (3.18) associating
with λ κ

− should satisfy

σ < λ κ
−(Vl) < λ κ

+(Vl), λ κ
−(Vr) < σ < λ κ

+(Vr), (3.20)

while the discontinuity (3.19) associating with λ κ
+ should satisfy

λ κ
−(Vl) < σ < λ κ

+(Vl), λ κ
−(Vr) < λ κ

+(Vr) < σ . (3.21)

Then one can find that the inequalities (3.20) are equivalent to

−ρrBr

√
1
ρr

< −ρlρr

√
1

ρlρr
· 1
2
· B2

l −B2
r

ρl −ρr
< −ρlBl

√
1
ρl

, (3.22)

while those (3.21) are equivalent to

ρrBr

√
1
ρr

< ρlρr

√
1

ρlρr
· 1
2
· B2

l −B2
r

ρl −ρr
< ρlBl

√
1
ρl

. (3.23)

Moreover, in view of ρr/Br = ρl/Bl , the inequalities (3.22) and (3.23) are respectively
equivalent to

ρl < ρr, ul > ur, Bl < Br (3.24)

and
ρl > ρr, ul > ur, Bl > Br. (3.25)

The discontinuity (3.18) with (3.24) is called as the backward shock and symbol-
ized by

←−
S , and (3.19) with (3.25) is called as the forward shock and symbolized by−→

S .
For a given state Vl = (ul,ρl,Bl) , all possible states which can connect to Vl on

the right by a backward shock must be located on the curve

←−
S (Vl) :

⎧⎪⎨⎪⎩
B = μlρ ,

u = ul − κ√
2
·μl

√
1
ρ + 1

ρl
(ρ −ρl), ρ > ρl.

(3.26)

where μl = Bl/ρl . For
←−
S (Vl) , u tends to the negative infinity as ρ (or B) tends to

positive infinity. For a given state Vr = (ur,ρr,Br) , all possible states which can connect
to Vr = (ur,ρr,Br) on the left by a forward shock must be located on the curve

−→
S (Vr) :

⎧⎪⎨⎪⎩
B = μrρ ,

u = ur + κ√
2
·μr

√
1
ρ + 1

ρr
(ρ −ρr), ρ > ρr,

(3.27)

where μr = Br/ρr . For
−→
S (Vr) , u tends to the positive infinity as ρ (or B) tends to

positive infinity.
We denote

←−
W (Vl) =

←−
R (Vl)∪

←−
S (Vl) and

−→
W (Vr) =

−→
R (Vr)∪

−→
S (Vr) .
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3.3. Construction of Riemann solutions

With the above elementary waves, we are ready to construct the solutions to the
Riemann problem for (1.2) with initial data (3.1) by using the analysis method in the
phase space [4, 38]. Draw the backward wave curve

←−
W (V−) passing the left state

V− = (u−,ρ−,B−) and the forward wave curve
−→
W (V+) passing the right state V+ =

(u+,ρ+,B+) .
When u−+2κ

√
μ−B− < u+−2κ

√
μ+B+ , it is easy to see that the projections on

(B,u)-plane of
←−
W (V−) and

−→
W (V+) do not interact with each other, therefore

←−
W (V−)

and
−→
W (V+) will not interact with each other. Notice that

←−
W (V−) and

−→
W (V+) interact

with the u -axis. At this time, the Riemann solution consists of a backward rarefaction
wave, a vacuum intermediary state and a forward rarefaction wave.

When u− + 2κ
√

μ−B− � u+ − 2κ
√

μ+B+ , the projections on (B,u)-plane of←−
W (V−) and

−→
W (V+) will interact with each other, and the interaction point is unique.

Then
←−
W (V−) and

−→
W (V+) must have pseudo-intersection points. Here the pseudo-

intersection points are the points in which the u and B coordinates are same while
the ρ coordinates may be different (see Figure 3.1). The projections on (B,u)-plane
of the pseudo-intersection points of

←−
W (V−) and

−→
W (V+) are just the interaction point

of the projections on (B,u)-plane of
←−
W (V−) and

−→
W (V+) . The states at the pseudo-

intersection points can be connected by a contact discontinuity (3.17) in the Riemann
solutions. The Riemann solutions can be constructed according to the different loca-
tions on

←−
W (V−) and

−→
W (V+) of the pseudo-intersection points. To be precise, the Rie-

mann solution contains a backward rarefaction wave, a contact discontinuity and a for-
ward rarefaction wave when the pseudo-intersection points lie on

←−
R (V−) and

−→
R (V+) ,

a backward rarefaction wave, a contact discontinuity and a forward shock wave when
the pseudo-intersection points lie on

←−
R (V−) and

−→
S (V+) , a backward shock, a contact

discontinuity and a forward rarefaction wave wave when the pseudo-intersection points
lie on

←−
S (V−) and

−→
R (V+) , a backward shock, a contact discontinuity and a forward

shock wave when the pseudo-intersection points lie on
←−
S (V−) and

−→
S (V+) .

The conclusion can be stated in the following theorem.

THEOREM 3.1. There exists a unique piecewise smooth solution, which consists
of shocks, rarefaction waves, contact discontinuities and vacuum states, to the Riemann
problem for (1.2) with initial data (3.1).

4. Limits of solutions to (1.2) and (3.1) for u− > u+

In this section, we study the vanishing magnetic field limits of the Riemann solu-
tions to the pressureless the magnetogasdynamics when u− > u+ , and show the phe-
nomenon of concentration and the formation of delta-shocks in the limit. It can be
checked that when u− > u+ , there must exist M0 > 0 such that the solution to (1.2)
and (3.1) is the

←−
S J

−→
S solution when 0 < κ < M0 .
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V− = (u−, ρ−, B−)

�V+ = (u+, ρ+, B+)

←−
W (V−)

−→
W (V+)

Figure 3.1: The pseudo-intersection points of the wave curves

For fixed κ ∈ (0,M0) , the
←−
S J

−→
S solution is expressed as

Uκ(ξ ) = (uκ ,ρκ ,Bκ)(ξ ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(u−,ρ−,B−) −∞ < ξ < σκ
−,

(uκ
∗ ,ρκ

∗1,B
κ
∗ ) σκ

− < ξ < σκ
0 ,

(uκ
∗ ,ρκ

∗2,B
κ
∗ ) σκ

0 < ξ < σκ
+,

(u+,ρ+,B+) σκ
+ < ξ < +∞,

(4.1)

where (u−,ρ−,B−) and (uκ
∗ ,ρκ

∗1,B
κ
∗ ) are connected by backward shock

←−
S with speed

σκ
− , (uκ

∗ ,ρκ
∗2,B

κ
∗ ) and (u+,ρ+,B+) are connected by forward shock

←−
S with speed σκ

+ ,
and (uκ

∗ ,ρκ
∗1,B

κ
∗ ) and (uκ

∗ ,ρκ
∗2,B

κ
∗ ) are connected by contact discontinuity with speed

σκ
0 = uκ

∗ . Then it follows

←−
S :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
σκ
− = u−− κ√

2
·μ−ρκ

∗1

√
1

ρ− + 1
ρκ
∗1

,

Bκ
∗ = μ−ρκ

∗1,

uκ
∗ = u−− κ√

2
·μ−

√
1

ρ− + 1
ρκ
∗1

(ρκ
∗1−ρ−), ρκ

∗1 > ρ−,

(4.2)

and

−→
S :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
σκ

+ = u+ + κ√
2
·μ+ρκ

∗2

√
1

ρ+
+ 1

ρκ
∗2

,

Bκ
∗ = μ+ρκ

∗2,

u+ = uκ
∗ + κ√

2
·μ+

√
1

ρ+
+ 1

ρκ
∗2

(ρ+−ρκ
∗2), ρκ

∗2 > ρ+,

(4.3)
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where μ± = B±/ρ± > 0. From (4.2) and (4.3), we can get

u−−u+

= κ√
2

(
√μ−

√
1

Bκ∗
+ 1

B−
(Bκ

∗ −B−)+
√μ+

√
1

Bκ∗
+ 1

B+
(Bκ

∗ −B+)
)

= κ√
2

(
√μ−

√(
1

B−
− 1

Bκ∗

)
((Bκ

∗ )2− (B−)2)+
√μ+

√(
1

B+
− 1

Bκ∗

)
((Bκ

∗ )2 − (B+)2)
)

:= I(κ ,Bκ
∗ ).

(4.4)
The following Lemmas 4.1–4.4 show the limit behaviors of the states between two

shocks.

THEOREM 4.1. Bκ
∗ ,ρκ

∗1 and ρκ
∗2 are monotonic decreasing with respect to κ .

Proof. Let κ1 > κ2 . Assume Bκ1∗ � Bκ2∗ , then one can deduce I(κ1,B
κ1∗ ) >

I(κ2,B
κ2∗ ) , which contradicts with I(κ1,B

κ1∗ ) = I(κ2,B
κ2∗ ) = u− − u+ . Therefore, we

have Bκ1∗ < Bκ2∗ and then Bκ
∗ is monotonic decreasing with respect to κ . Due to

Bκ
∗ = μ−ρκ

∗1 = μ+ρκ
∗2 , we have ρκ

∗1 and ρκ
∗2 are monotonic decreasing with respect

to κ . �

THEOREM 4.2.

lim
κ→0+

Bκ
∗ = lim

κ→0+
ρκ
∗1 = lim

κ→0+
ρκ
∗2 = +∞.

Proof. In virtue of the monotonicity of Bκ
∗ , we have either lim

κ→0+
Bκ
∗ = +∞ or

lim
κ→0+

Bκ
∗ = M �= +∞ . If lim

κ→0+
Bκ
∗ = M �= +∞ , then from (4.4), we can get u− = u+ ,

which contradicts with u− > u+ . Therefore we have lim
κ→0+

Bκ
∗ = +∞ . From Bκ

∗ =

μ−ρκ
∗1 = μ+ρκ

∗2 , we obtain lim
κ→0+

ρκ
∗1 = lim

κ→0+
ρκ
∗2 = +∞ . �

THEOREM 4.3. κBκ
∗ is monotonic increasing with respect to κ , and

lim
κ→0+

κ√
2
Bκ
∗ =

√ρ−ρ+√ρ− +
√ρ+

(u−−u+). (4.5)

Proof. Let κ1 > κ2 . Assume κ1B
κ1∗ � κ2B

κ2∗ , then taking into account that Bκ
∗ is

monotonic decreasing, one can deduce I(κ1,B
κ1∗ ) < I(κ2,B

κ2∗ ) from (4.4), which con-
tradicts with I(κ1,B

κ1∗ ) = I(κ2,B
κ2∗ ) = u−− u+ . Therefore, we have κ1B

κ1∗ > κ2B
κ2∗ .

Taking the limit κ → 0+ on both sides of (4.4) and taking Lemma 4.2 into account give
(4.5). �
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THEOREM 4.4.

lim
κ→0+

uκ
∗ =

√ρ−u− +
√ρ+u+√ρ− +
√ρ+

:= σ .

Proof. Form the last equation in (4.2) (or (4.3)) and Lemmas 4.2–4.3, one can
easily obtain the conclusion, and we omit the details. �

The following Lemma 4.5 shows the limit behaviors of the speeds of shocks and
contact discontinuity.

THEOREM 4.5.

lim
κ→0+

σκ
− = lim

κ→0+
σκ

+ = lim
κ→0+

σκ
0 = σ .

Proof. Form (4.2), (4.3) and Lemmas 4.2–4.4, one can directly obtain the conclu-
sions. �

THEOREM 4.6.

lim
κ→0+

ρκ
∗1(σκ

0 −σκ
−) =

ρ−
√ρ+√ρ− +
√ρ+

(u−−u+),

lim
κ→0+

ρκ
∗2(σ

κ
+ −σκ

0 ) =
ρ+

√ρ−√ρ− +
√ρ+

(u−−u+).

Proof. Note σκ
0 = uκ

∗ and

σκ
− = uκ

∗ −
κ√
2
·μ−ρ−

√
1

ρ−
+

1
ρκ
∗1

,

σκ
+ = uκ

∗ +
κ√
2
·μ+ρ+

√
1

ρ+
+

1
ρκ
∗1

.

We have

ρκ
∗1(σ

κ
0 −σκ

−) =
κ√
2
Bκ
∗ ·ρ−

√
1

ρ−
+

1
ρκ
∗1

,

and

ρκ
∗2(σ

κ
+ −σκ

0 ) =
κ√
2
Bκ
∗ ·ρ+

√
1

ρ+
+

1
ρκ
∗2

.

Then the conclusions can be obtained with the Lemmas 4.2–4.3. �
Let us take a sloping test function φ(ξ ) ∈C∞

0 (−∞,+∞) [10, 12] such that φ(ξ )≡
φ(σ) for ξ in a neighborhood Ω of ξ = σ . Then there exists M1 ∈ (0,M0) such that
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when κ ∈ (0,M1) , it holds σκ
− ∈ Ω and σκ

+ ∈ Ω . It is well known that the solution
(4.1) satisfies weak formulations

−
∫ +∞

−∞
ρκ(uκ − ξ )φ ′dξ +

∫ +∞

−∞
ρκ φdξ = 0, (4.6)

−
∫ +∞

−∞
ρκuκ(uκ − ξ )φ ′dξ +

∫ +∞

−∞
ρκuκφdξ =

κ2

2

∫ +∞

−∞
(Bκ)2φ ′dξ . (4.7)

Since ∫ +∞

−∞
ρκ(uκ − ξ )φ ′dξ =

(∫ σ κ
−

−∞
+
∫ +∞

σ κ
+

)
ρκ(uκ − ξ )φ ′dξ ,

we have

lim
κ→0+

∫ +∞

−∞
ρκ(uκ − ξ )φ ′dξ = lim

κ→0+

{∫ σ κ
−

−∞
ρ−(u−− ξ )φ ′dξ +

∫ +∞

σ κ
+

ρ+(u+− ξ )φ ′dξ

}

=
(
−σ [ρ ]+ [ρu]

)
φ(σ)+

∫ +∞

−∞
H(ξ −σ)φdξ ,

where

H(x) =

{
ρ−, x < 0,

ρ+, x > 0.

Returning to (4.6), we get

lim
κ→0+

∫ +∞

−∞

(
ρκ −H(ξ −σ)

)
φdξ =

(
−σ [ρ ]+ [ρu]

)
φ(σ). (4.8)

Due to

lim
κ→0+

κ2

2

∫ +∞

−∞
(Bκ)2φ ′dξ = lim

κ→0+

κ2

2

(∫ σ κ
−

−∞
B2
−φ ′dξ +

∫ +∞

σ κ
+

B2
+φ ′dξ

)
= 0,

we have from (4.7)

lim
κ→0+

∫ +∞

−∞

(
ρκuκ − H̃(ξ −σ)

)
φdξ =

(
−σ [ρu]+ [ρu2]

)
φ(σ), (4.9)

where

H̃(x) =

{
ρ−u−, x < 0,

ρ+u+, x > 0.

For an arbitrary test function ϕ(ξ )∈C∞
0 (−∞,+∞) , we take a sloping test function

φ such that φ(σ) = ϕ(σ) and

max
ξ∈(−∞,+∞)

|φ −ϕ |< μ .
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We have

lim
κ→0+

∫ +∞

−∞

(
ρκ −H(ξ −σ)

)
ϕdξ

= lim
κ→0+

{∫ +∞

−∞

(
ρκ −H(ξ −σ)

)
φdξ +

∫ +∞

−∞

(
ρκ −H(ξ −σ)

)
(ϕ −φ)dξ

}
.

The first term on the right side

lim
κ→0+

∫ +∞

−∞

(
ρκ −H(ξ −σ)

)
φdξ =

(
−σ [ρ ]+ [ρu]

)
φ(σ)

=
(
−σ [ρ ]+ [ρu]

)
ϕ(σ).

The second term on the right side∫ +∞

−∞

(
ρκ −H(ξ −σ)

)
(ϕ −φ)dξ

=
∫ σ κ

+

σ κ
−

(
ρκ −H(ξ −σ)

)
(ϕ −φ)dξ

=
∫ σ κ

+

σ κ
−

ρκ(ϕ −φ)dξ −
∫ σ κ

+

σ κ
−

H(ξ −σ)(ϕ −φ)dξ

=
(∫ σ κ

0

σ κ
−

+
∫ σ κ

+

σ κ
0

)
ρκ(ϕ −φ)dξ −

(∫ σ κ
0

σ κ
−

+
∫ σ κ

+

σ κ
0

)
H(ξ −σ)(ϕ −φ)dξ ,

which converges to 0 as κ → 0+ by sending μ → 0 and recalling Lemma 4.6. Thus
we have that

lim
κ→0+

∫ +∞

−∞

(
ρκ −H(ξ −σ)

)
ϕdξ =

(
−σ [ρ ]+ [ρu]

)
ϕ(σ) (4.10)

for all test functions ϕ ∈C∞
0 (−∞,+∞) . Similarly, we have

lim
κ→0+

∫ +∞

−∞

(
ρκuκ − H̃(ξ −σ)

)
ϕdξ =

(
−σ [ρu]+ [ρu2]

)
ϕ(σ) (4.11)

for all test functions ϕ ∈C∞
0 (−∞,+∞) .

Let ψ(x, t)∈C∞
0 ((−∞,+∞)× [0,+∞)) be an arbitrary test function, and let ψ̃(ξ ,t)

:= ψ(ξ t, t) . Then it follows

lim
κ→0+

∫ +∞

0

∫ +∞

−∞
ρκ(x/t)ψ(x,t)dxdt = lim

κ→0+

∫ +∞

0

∫ +∞

−∞
ρκ(ξ )ψ(ξ t,t)d(ξ t)dt

= lim
κ→0+

∫ +∞

0
t

(∫ +∞

−∞
ρκ(ξ )ψ̃(ξ ,t)dξ

)
dt,



178 H. CHENG AND Z. SUN

and with (4.10)

lim
κ→0+

∫ +∞

−∞
ρκ(ξ )ψ̃(ξ ,t)dξ

=
∫ +∞

−∞
H(ξ −σ)ψ̃(ξ ,t)dξ +

(
−σ [ρ ]+ [ρu]

)
ψ̃(σ ,t)

= t−1
∫ +∞

−∞
H(x−σ t)ψ(x,t)dx+

(
−σ [ρ ]+ [ρu]

)
ψ(σ t,t).

Combining the two relations above yields

lim
κ→0+

∫ +∞

0

∫ +∞

−∞
ρκ(x/t)ψ(x,t)dxdt

=
∫ +∞

0

∫ +∞

−∞
H(x−σ t)ψ(x,t)dxdt +

∫ +∞

0

(
−σ [ρ ]+ [ρu]

)
tψ(σ t, t)dt.

(4.12)

By the definition, the last term∫ +∞

0

(
−σ [ρ ]+ [ρu]

)
tψ(σ t,t)dt =

〈
w(t)δx=σt ,ψ(x,t)

〉
with

w(t) =
(
−σ [ρ ]+ [ρu]

)
t.

Similarly, we can show from (4.11) that

lim
κ→0+

∫ +∞

0

∫ +∞

−∞
ρκ(x/t)uκ(x/t)ψ(x,t)dxdt

=
∫ +∞

0

∫ +∞

−∞
H̃(x−σ t)ψ(x,t)dxdt +

〈
w̃(t)δx=σt ,ψ(x, t)

〉 (4.13)

with
w̃(t) =

(
−σ [ρu]+ [ρu2]

)
t.

Thus we obtain the following conclusion.

THEOREM 4.7. Let u− > u+ . For fixed κ > 0 , assume that (uκ ,ρκ ,Bκ)(x,t) is
the two-shock solution to (1.2) and (3.1). Then

lim
κ→0+

uκ(t,x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
u−, x < σ t

σ , x = σ t,

u+, x > σ t,

ρκ and ρκuκ converge in the sense of distributions, and the limit functions are all the
sum of a step function and a Dirac delta function supported on x = σ t with weights(

−σ [ρ ]+ [ρu]
)
t and

(
−σ [ρu]+

[
ρu2])t,

respectively, where σ = (
√ρ−u− +

√ρ+u+)/(
√ρ− +

√ρ+) .
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It can be seen that the limits of (uκ ,ρκ)(x,t) are the delta-shock solution of the
Riemann problem for the pressureless gas dynamics obtained in Section 2.

5. Limits of solutions to (1.2) and (3.1) for u− < u+

In this section, we study the vanishing magnetic field limits of the Riemann so-
lutions to the pressureless magnetogasdynamics when u− < u+ , and show the phe-
nomenon of cavitation and the formation of vacuum states in the limit. It can be checked
that when u− < u+ , there must exist N0 > 0 such that the Riemann solution to (1.2)
and (3.1) containing two rarefaction waves and a contact discontinuity when κ < N0 .

For fixed κ < N0 with u−+2κ
√

μ−B− > u+−2κ
√

μ+B+ , the Riemann solution
is the

←−
R J

−→
R solution expressed as

(uκ ,ρκ ,Bκ)(ξ ) (5.1)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(u−,ρ−,B−), −∞ < ξ � u−−κ
√

μ−B−,

←−
R , u−−κ

√
μ−B− � ξ � u− +2κ

√
μ−B−−3κ

√
μ−Bκ

∗ ,

(uκ
∗ ,ρκ

∗1,B
κ
∗ ), u−+2κ

√
μ−B−−3κ

√
μ−Bκ

∗ � ξ < u−+2κ
√

μ−B−−2κ
√

μ−Bκ
∗ ,

(uκ
∗ ,ρκ

∗2,B
κ
∗ ), u+−2κ

√
μ+B++2κ

√
μ+Bκ

∗ < ξ < u+−2κ
√

μ+B++3κ
√

μ+Bκ
∗ ,

−→
R , u+−2κ

√
μ+B+ +3κ

√
μ+Bκ

∗ � ξ � u+ + κ
√

μ+B+,

(u+,ρ+,B+), u+ + κ
√

μ+B+ � ξ < +∞,

where (u−,ρ−,B−) and (uκ
∗ ,ρκ

∗1,B
κ
∗ ) are connected by backward rarefaction wave

←−
R :

←−
R :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ξ = u−κ

√
μ−B

B = μ−ρ ,

u = u−−2κμ−(
√ρ −√ρ−), ρ < ρ−

(5.2)

with μ− = B−/ρ− , (uκ
∗ ,ρκ

∗2,B
κ
∗ ) and (u+,ρ+,B+) are connected by forward rarefac-

tion wave
←−
R :

−→
R :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ξ = u+ κ

√
μ+B,

B = μ+ρ ,

u = u+−2κμ+(
√ρ+−√ρ), ρ < ρ+

(5.3)

with μ+ = B+/ρ+ , and (uκ
∗ ,ρκ

∗1,B
κ
∗ ) and (uκ

∗ ,ρκ
∗2,B

κ
∗ ) are connected by a contact

discontinuity with speed σκ
0 = uκ

∗ .

Because (uκ
∗ ,ρκ

∗1,B
κ
∗ ) lies on

←−
R and (uκ

∗ ,ρκ
∗2,B

κ
∗ ) lies on

−→
R , we have

uκ
∗ = u− +2κ

√
μ−B−−2κ

√
μ−Bκ

∗ = u+−2κ
√

μ+B+ +2κ
√

μ+Bκ
∗ , (5.4)
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which gives

u+−u− = 2κ
√

μ−

(√
B−−

√
Bκ
∗

)
+2κ

√
μ+

(√
B+−

√
Bκ
∗

)
:= J(κ ,Bκ

∗ ), (5.5)

or
(u− +2κ

√
μ−B−)− (u+−2κ

√
μ+B+) = 2κ(

√
μ− +

√
μ+)

√
Bκ
∗ . (5.6)

THEOREM 5.1. Bκ
∗ , ρκ

∗1 and ρκ
∗2 are monotonic increasing with respect to κ .

Proof. Let κ1 > κ2 . Assume Bκ1∗ � Bκ2∗ , then one can deduce J(κ1,B
κ1∗ ) >

J(κ2,B
κ2∗ ) , which contradicts with J(κ1,B

κ1∗ ) = J(κ2,B
κ2∗ ) = u− − u+ . Therefore, we

have Bκ1∗ > Bκ2∗ and then Bκ
∗ is monotonicly increasing with respect to κ . Due to

ρκ
∗1 = Bκ

∗/μ− and ρκ
∗2 = Bκ

∗/μ+ , we have ρκ
∗1 and ρκ

∗2 are monotonicly increasing
with respect to κ . �

Assume that N1 > 0 satisfies

u− +2N1
√

μ−B− = u+−2N1
√

μ+B+.

Then taking the limit κ → N1 on both sides of (5.6) and recalling ρκ
∗1 = Bκ

∗/μ− and
ρκ
∗2 = Bκ

∗/μ+ , we have

lim
κ→N1

Bκ
∗ = lim

κ→N1
ρκ
∗1 = lim

κ→N1
ρκ
∗2 = 0.

Therefore, from κ = N1 , the vacuum state appears. Furthermore, with (5.4), one has

lim
κ→N1

uκ
∗ = u− +2N1

√
μ−B− = u+−2N1

√
μ+B+ := u1.

Moreover, as κ → N1 , both the wave front ξ f ront = u− + 2κ
√

μ−B− − 3κ
√

μ−Bκ
∗ of

←−
R and the wave back ξback = u+ − 2κ

√
μ+B+ + 3κ

√
μ+Bκ

∗ of
−→
R tend to ξ = u1 .

That is, the wave front of
←−
R , the wave back of

−→
R and the contact discontinuity J

coincide as κ → N1 .
When κ decreases so that κ < N1 , the Riemann solution becomes

(uκ ,ρκ ,Bκ)(ξ ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(u−,ρ−,B−), −∞ < ξ � u−−κ
√

μ−B−,

←−
R , u−−κ

√
μ−B− � ξ � u−+2κ

√
μ−B−,

(ξ ,0,0), u− +2κ
√

μ−B− � ξ � u+−2κ
√

μ+B+,

−→
R , u+−2κ

√
μ+B+ � ξ � u+ + κ

√
μ+B+,

(u+,ρ+,B+), u+ + κ
√

μ+B+ � ξ < +∞

(5.7)

with (5.2) and (5.3). Then when κ continues to decrease, the rarefaction waves become
narrower and narrower and the vacuum region in between becomes wider and wider.
Finally, when κ drops to zero, the rarefaction waves become two lines with ξ = u−
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and ξ = u+ , and between which is a vacuum state. In summary, the limit functions of
the velocity and density as κ → 0+ are

lim
κ→0+

(uκ ,ρκ)(ξ ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(u−,ρ−) −∞ < ξ � u−,

(ξ ,0) u− � ξ � u+,

(u+,ρ+) u+ � ξ < +∞,

which are just the vacuum solution of the Riemann problem for the pressureless gas
dynamics obtained in Section 2.
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