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NONLOCAL BOUNDARY VALUE PROBLEMS

FOR (p,q)–DIFFERENCE EQUATIONS
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(Communicated by Michal Fečkan)

Abstract. In this paper we study existence and uniqueness of solutions for a boundary value
problem for (p,q) -difference equations with nonlocal integral boundary conditions, by using
classical fixed point theorems. Examples illustrating the main results are also presented.

1. Introduction

Quantum calculus or q -calculus is known as the study of calculus without limits.
The study of q -calculus initiated by Euler on studying infinite series. Jackson [15, 16]
was the first one, who establised the q -derivative or q -difference operator for a function
f on [0,∞) by

Dq f (t) =
f (t)− f (qt)

(1−q)t
, t �= 0, Dq f (0) = lim

t→0
Dq f (t), t = 0, (1)

and studied its properties. The q -integral of a function f on [0,∞) is defined by

∫ t

0
f (s)dqs = (1−q)t

∞

∑
n=0

qn f (qnt), (2)

provided that infinite series converges. The study of q -difference equations also initi-
ated by Jackson [15, 16]. Details of its basic notions, results and methods can be found
in the text [18]. For other papers on the subject see [1, 6, 10, 20]. In recent years, the
topic has attracted the attention of several researchers and a variety of new results can
be found in [2, 8, 9, 11, 12, 19] and references therein.

Recently Tariboon and Ntouyas [24], generalized the classical quantum calculus
by defining quantum calculus on finite intervals, the so called qk -calculus. The new
concepts of qk -derivative and qk -integral are discussed in [24] and as applications
initial and boundary value problems for impulsive qk -difference equations and inclu-
sions are studied. Also several classical inequalities were transformed in context of
qk -calculus. For more details we refer to the recent monograph [3].

Mathematics subject classification (2010): 05A30, 39A13, 34A12.
Keywords and phrases: (p,q) -difference equations, boundary value problems, nonlocal conditions,

existence, fixed point theorems.

c© � � , Zagreb
Paper DEA-10-11

183

http://dx.doi.org/10.7153/dea-2018-10-11


184 N. KAMSRISUK, C. PROMSAKON, S. K. NTOUYAS AND J. TARIBOON

Another generalization of quantum calculus is (p,q)-calculus introduced in [7].
For some recent results see [5, 14, 17, 21, 22, 23] and references cited therein. To
the best of our knowledge, there is no work on boundary value problems for (p,q)-
difference equations in the literature. So, in this paper we initiate the study of boundary
value problems for (p,q)-difference equations. To be more precisely, in the present
paper we study the existence and uniqueness of solution for (p,q)-difference equation
subject to a nonlocal condition of the form

Dp,qx(t) = f (t,x(pt)), t ∈ [0,T/p], (3)

x(0) = αx(T )+
m

∑
i=1

βi

∫ ηi

0
x(s)dpi,qis, (4)

where 0 < q < p � 1, 0 < qi < pi � 1, i = 1,2, . . . ,m are quantum numbers, Dp,q

is (p,q)-difference operator, f ∈ C([0,T/p]×R,R) , T > 0, α , βi , i = 1,2, . . . ,m
are given constants, ηi ∈ [0, piT ], i = 1,2, . . . ,m . We prove existence and unique-
ness results for the problem (3)–(4) by using the classical fixed point theorems, such
as Banach’s fixed point theorem, Boyd and Wong fixed point theorem for nonlinear
contractions and Leray-Schauder nonlinear alternative.

The paper is organized as follows: In Section 2 we recall some definitions and
basic facts from (p,q)-calculus. The main existence and uniqueness results are given
in Section 3. Examples illustrating the obtained results are presented in Section 4.

2. Preliminaries

In this section, we recall some basic concepts of (p,q)-calculus. The (p,q)-
number is defined by

[n]p,q =
pn−qn

p−q
, (5)

where 0 < q < p � 1. For each k,n ∈ N , n � k � 0, the (p,q)-factorial and (p,q)-
binomial are defined by

[n]p,q! =
n

∏
k=1

[k]p,q, n � 1, [0]p,q! = 1, (6)

and [
n
k

]
p,q

=
[n]p,q!

[n− k]p,q![k]p,q!
, (7)

respectively.
Let f : [0,T ] → R . The (p,q)-derivative of function f is defined as

Dp,q f (t) =
f (pt)− f (qt)

(p−q)t
, t �= 0, (8)

and Dp,q f (0) = limt→0 Dp,q f (t) . Observe that the function g(t) = Dp,q f (t) is defined
on [0,T/p] . We say that f is (p,q)-differentiable on [0,T/p] provided Dp,q f (t) exists
for all t ∈ [0,T/p] .
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Let f : [0,T ] → R. Then the (p,q)-integral of f is defined by

∫ t

0
f (s)dp,qs = (p−q)t

∞

∑
n=0

qn

pn+1 f

(
qn

pn+1 t

)
, (9)

provided that the right hand side is convergent. Note that the function φ(t)=
∫ t

0
f (s)dp,qs

is defined on [0, pT ] .
In the following theorems we collect the basic properties of (p,q)-differentiation

and (p,q)-integration, respectively. See [23].

THEOREM 1. Suppose that f ,g : [0,T ] → R is (p,q)-differentiable on [0,T/p] .
Then:

(a) f +g : [0,T ] → R is (p,q)-differentiable on [0,T/p] , and

Dp,q( f (t)+g(t)) = Dp,q f (t)+Dp,qg(t). (10)

(b) λ f : [0,T ] → R is (p,q)-differentiable on [0,T/p] for any constant λ , and

Dp,q(λ f )(t) = λDp,q f (t). (11)

(c) f g : [0,T ] → R is (p,q)-differentiable on [0,T/p] , and

Dp,q( f g)(t) = f (pt)Dp,qg(t)+g(qt)Dp,q f (t). (12)

(d) If g(t) �= 0 , then
f
g

is (p,q)-differentiable on [0,T/p] with

Dp,q

(
f
g

)
(t) =

g(qt)Dp,q f (t)− f (qt)Dp,qg(t)
g(pt)g(qt)

. (13)

THEOREM 2. Let f ,g : [0,T ] → R are continuous functions and 0 < q < p � 1 .
The following formulas hold:

(a) The (p,q)-integration by parts is given by

∫ b

a
f (px)Dp,qg(x)dp,qt = f (x)g(x)|ba −

∫ b

a
g(qx)Dp,q f (x)dp,qt.

(b) Dp,q

∫ t

0
f (s)dp,qs = f (t).

(c)
∫ t

0
Dp,q f (s)dp,qs = f (t)− f (0).

(d)
∫ t

a
Dp,q f (s)dp,qs = f (t)− f (a) where a ∈ (0,t).
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THEOREM 3. Let a function f : [0,T ] → R and constants 0 < q < p � 1 . Then
for t ∈ [0, p2T ] , we have∫ t

0

∫ s

0
f (r)dp,qrdp,qs =

1
p

∫ t

0
(t−qs) f

(
1
p
s

)
dp,qs. (14)

Proof. From the definition of (p,q)-integral in (9), for t ∈ [0, p2T ] , we obtain

∫ t

0

∫ s

0
f (r)dp,qrdp,qs =

∫ t

0

(
(p−q)s

∞

∑
n=0

qn

pn+1 f

(
qn

pn+1 s

))
dp,qs

= (p−q)
∞

∑
n=0

qn

pn+1

(∫ t

0
s f

(
qn

pn+1 s

)
dp,qs

)
.

Note that∫ t

0
s f

(
qn

pn+1 s

)
dp,qs = (p−q)t

∞

∑
m=0

qm

pm+1

(
qm

pm+1 t

)
f

(
qn

pn+1

qm

pm+1 t

)

= (p−q)t2
∞

∑
m=0

q2m

p2m+2 f

(
qn+m

pn+m+2 t

)
.

Hence ∫ t

0

∫ s

0
f (r)dp,qrdp,qs = (p−q)2t2

∞

∑
n=0

∞

∑
m=0

qn+2m

pn+2m+3 f

(
qn+m

pn+m+2 t

)
.

Since
∞

∑
n=0

∞

∑
m=0

qn+2m

pn+2m+3 f

(
qm+m

pn+m+2 t

)
=

∞

∑
n=0

qn

pn+3

1
(p−q)

(
p− qn+1

pn

)
f

(
qn

pn+2 t

)
,

we get that∫ t

0

∫ s

0
f (r)dp,qrdp,qs = (p−q)t2

∞

∑
n=0

(
qn

pn+2 −
q2n+1

p2n+3

)
f

(
qn

pn+2 t

)

= (p−q)t
∞

∑
n=0

qn

pn+1

(
t
p
− qn+1

pn+2 t

)
f

(
qn

pn+2 t

)

= (p−q)t
∞

∑
n=0

qn

pn+1

(
t
p
−
(

q
p

)(
qn

pn+1 t

))
f

(
1
p

(
qn

pn+1

))

=
∫ t

0

(
t
p
− q

p
s

)
f

(
1
p
s

)
dp,qs.

Therefore, the right-hand side of (14) holds. The proof is completed. �
Let Λ be a nonzero constant defined by

Λ = 1−α −
m

∑
i=1

βiηi. (15)

The following lemma deals with a linear variant of problem (3)–(4).
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LEMMA 1. Let Λ �= 0 , ηi ∈ [0, piT ], i = 1,2, . . . ,m, and h ∈C([0,T/p],R) . The
function x is a solution of the nonlocal (p,q)-difference boundary value problem

Dp,qx(t) = h(t), t ∈ [0,T/p], (16)

x(0) = αx(T )+
m

∑
i=1

βi

∫ ηi

0
x(s)dpi,qis, (17)

if and only if

x(t) =
1
Λ

[
α
∫ T

0
h(s)dp,qs+

m

∑
i=1

βi

∫ ηi

0

∫ s

0
h(r)dp,qrdpi,qis

]
+
∫ t

0
h(s)dp,qs, (18)

for t ∈ [0,T ] .

Proof. Applying the (p,q)-integration to (16), we have

x(t) = x(0)+
∫ t

0
h(s)dp,qs, t ∈ [0,T/p]. (19)

In particular, for t = T , we have

x(T ) = x(0)+
∫ T

0
h(s)dp,qs. (20)

Next, by (p,q)-integration with respect to t in (19)

∫ t

0
x(s)dpi,qis = x(0)

∫ t

0
dpi,qis+

∫ t

0

∫ s

0
h(r)dp,qrdpi,qis, t ∈ [0, piT ].

By substituting t = ηi we have

∫ ηi

0
x(s)dpi,qis = ηix(0)+

∫ ηi

0

∫ s

0
h(r)dp,qrdpi,qis,

from which we get

m

∑
i=1

βi

∫ ηi

0
x(s)dpi,qis = x(0)

m

∑
i=1

βiηi +
m

∑
i=1

βi

∫ ηi

0

∫ s

0
h(r)dp,qrdpi,qis.

Using the nonlocal boundary condition (4), we obtain

x(0) =
1
Λ

[
α
∫ T

0
h(s)dp,qs+

m

∑
i=1

βi

∫ ηi

0

∫ s

0
h(r)dp,qrdpi,qis

]
. (21)

By substituting the value of x(0) in (19) we obtain the solution (18). The converse
follows by direct computation. The proof is completed. �
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REMARK 1. If pi = p , qi = q for i = 1,2, . . . ,m, then

x(t) =
1
Λ

[
α
∫ T

0
h(s)dp,qs+

1
p

m

∑
i=1

βi

∫ ηi

0
(ηi −qs)h

(
s
p

)
dp,qs

]
+
∫ t

0
h(s)dp,qs,

is a unique solution of (16) with nonlocal condition

x(0) = αx(T )+
m

∑
i=1

βi

∫ ηi

0
x(s)dp,qs.

3. Main results

Let C = C([0,T ],R) denotes the Banach space of all continuous functions from
[0,T ] to R endowed with the norm defined by ‖x‖ = sup[0,T ] |x(t)| . In view of Lemma
1, we define an operator A : C → C by

A x(t) =
1
Λ

[
α
∫ T

0
f (s,x(ps))dp,qs+

m

∑
i=1

βi

∫ ηi

0

∫ s

0
f (r,x(pr))dp,qrdpi,qis

]

+
∫ t

0
f (s,x(ps))dp,qs, (22)

with Λ �= 0, defined by (15). It should be noticed that problem (3)–(4) has solutions
if and only if the operator A has fixed points. In addition, if pi = p,qi = q for i =
1,2, . . . ,m, then the operator A can be modified by applying Theorem 3 and Remark
1.

For the sake of convenience, we put

Φ =
|α|
|Λ|T +

1
|Λ|

m

∑
i=1

(
η2

i |βi|
pi +qi

)
+T. (23)

THEOREM 4. Let f : [0,T/p]×R → R be a continuous function satisfying the
assumption:

(H1) there exists a constant L > 0 such that | f (t,x)− f (t,y)| � L|x− y| for each
t ∈ [0,T/p] and x,y ∈ R .

If
LΦ < 1, (24)

where Φ is given by (23), then the boundary value problem (3)–(4) has a unique solu-
tion on [0,T ] .

Proof. We transform problem (3)–(4) into a fixed point problem x = A x, where
the operator A is defined by (22). Applying Banach’s contraction mapping principle,
we shall show that A has a unique fixed point.
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Define a ball Br = {x ∈ C : ‖x‖ � r} with the value r satisfying

r >
MΦ

1−LΦ
,

where M = supt∈[0,T/p] | f (t,0)| . Now, we will show that A Br ⊂ Br . For any x ∈ Br ,
we have

|A x(t)| � 1
|Λ|

[
|α|
∫ T

0
| f (s,x(ps))|dp,qs+

m

∑
i=1

|βi|
∫ ηi

0

∫ s

0
| f (r,x(pr))|dp,qrdpi,qis

]

+
∫ t

0
| f (s,x(ps))|dp,qs

� |α|
|Λ|

∫ T

0
(| f (s,x(ps))− f (s,0)|+ | f (s,0)|)dp,qs+

m

∑
i=1

|βi|
|Λ|

∫ ηi

0

∫ s

0
(| f (r,x(pr))

− f (s,0)|+ | f (s,0)|)dp,qrdpi,qis+
∫ T

0
(| f (s,x(ps))− f (s,0)|+ | f (s,0)|)dp,qs

� (L‖x‖+M)

{
|α|
|Λ|

∫ T

0
dp,qs+

m

∑
i=1

|βi|
|Λ|

∫ ηi

0

∫ s

0
dp,qrdpi,qis+

∫ T

0
dp,qs

}

� (Lr+M)

{
|α|
|Λ|T +

1
|Λ|

m

∑
i=1

(
η2

i |βi|
pi +qi

)
+T

}

= (Lr+M)Φ < r,

which means that ‖A x‖ < r . Therefore we have A Br ⊂ Br .
For x,y ∈ C and for each t ∈ [0,T ] , we have

|A x(t)−A y(t)|

� 1
|Λ|

[
|α|
∫ T

0
| f (s,x(ps))− f (s,y(ps))|dp,qs+

m

∑
i=1

|βi|
∫ ηi

0

∫ s

0
| f (r,x(pr))

− f (r,y(pr))|dp,qrdpi,qis

]
+
∫ t

0
| f (s,x(ps))− f (s,y(ps))|dp,qs

� L‖x− y‖
{
|α|
|Λ|T +

1
|Λ|

m

∑
i=1

(
η2

i |βi|
pi +qi

)
+T

}

= LΦ‖x− y‖.

Consequently ‖A x−A y‖ � LΦ‖x− y‖ . As LΦ < 1, A is a contraction. By the
Banach’s contraction mapping principle, we deduce that A has a fixed point which is
the unique solution of the problem (3)–(4) on [0,T ] . This completes the proof. �

Next, we give the second existence and uniqueness result by using nonlinear con-
tractions.
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DEFINITION 1. Let E be a Banach space and let A : E → E be a mapping. A is
said to be a nonlinear contraction if there exists a continuous nondecreasing function
Ψ : R

+ → R
+ such that Ψ(0) = 0 and Ψ(θ ) < θ for all θ > 0 with the property:

‖Ax−Ay‖� Ψ(‖x− y‖), ∀x,y ∈ E. (25)

LEMMA 2. (Boyd and Wong) ([4]) Let E be a Banach space and let A : E → E
be a nonlinear contraction. Then A has a unique fixed point in E .

THEOREM 5. Let f : [0,T/p]×R → R be a continuous function satisfying the
assumption:

(H2 ) | f (t,x)− f (t,y)|� g(t)
|x− y|

G∗ + |x− y| , t ∈ [0,T/p] , x,y∈R , where g : [0,T/p]→
R

+ is continuous and the positive constant G∗ is defined by

G∗ =
( |α|+ |Λ|

|Λ|
)∫ T

0
g(s)dp,qs+

1
|Λ|

m

∑
i=1

|βi|
∫ ηi

0

∫ s

0
g(s)dp,qrdpi,qis.

Then the boundary value problem (3)–(4) has a unique solution on [0,T ] .

Proof. Consider the operator A : C → C defined by (22). Let the continuous
nondecreasing function Ψ : R

+ → R
+ defined by

Ψ(θ ) =
G∗θ

G∗ + θ
, ∀θ � 0.

Note that the function Ψ satisfies Ψ(0) = 0 and Ψ(θ ) < θ for all θ > 0.
For any x,y ∈C and for each t ∈ [0,T ] , we have

|A x(t)−A y(t)|
� 1

|Λ|
[
|α|
∫ T

0
| f (s,x(ps))− f (s,y(ps))|dp,qs+

m

∑
i=1

|βi|
∫ ηi

0

∫ s

0
| f (r,x(pr))

− f (r,y(pr))|dp,qrdpi,qis

]
+
∫ t

0
| f (s,x(ps))− f (s,y(ps))|dp,qs

� |α|
|Λ|

∫ T

0

(
g(s)

|x(ps)− y(ps)|
G∗ + |x(ps)− y(ps)|

)
dp,qs

+
1
|Λ|

m

∑
i=1

|βi|
∫ ηi

0

∫ s

0

(
g(r)

|x(pr)− y(pr)|
G∗ + |x(pr)− y(pr)|

)
dp,qrdpi,qis

+
∫ t

0

(
g(s)

|x(ps)− y(ps)|
G∗ + |x(ps)− y(ps)|

)
dp,qs

� Ψ(‖x− y‖)
G∗

( |α|
|Λ|

∫ T

0
g(s)dp,qs+

1
|Λ|

m

∑
i=1

|βi|
∫ ηi

0

∫ s

0
g(s)dp,qrdpi,qis+

∫ T

0
g(s)dp,qs

)
= Ψ(‖x− y‖).
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Then ‖A x−A y‖ � Ψ(‖x− y‖) and A is a nonlinear contraction and it has a unique
fixed point in C by Lemma 2. This completes the proof. �

Our next existence result is based on Leray-Schauder’s Nonlinear Alternative.

LEMMA 3. (Nonlinear alternative for single-value maps) ([13]) Let E be a Ba-
nach space, C be a closed, covex subset of E , U be an open subset of C and 0 ∈U .
Suppose that A :U →C is a continuous, compact (that is, A(U) is a relatively compact
subset of C) map. Then either

(i) A has a fixed point in U , or

(ii) there is a u ∈ ∂U (the boundary of U in C) and λ ∈ (0,1) with u = λA(u) .

THEOREM 6. Assume that f : [0,T/p]×R → R is a continuous function. In
addition we suppose that:

(H3) there exist a continuous nondecreasing function ψ : [0,∞) → (0,∞) and a func-
tion p ∈C([0,T/p],R+) such that

| f (t,x)| � p(t)ψ(‖x‖) for each (t,x) ∈ [0,T/p]×R;

(H4) there exists a constant N > 0 such that N
‖p‖ψ(N)Φ > 1 , where Φ is defined by

(23).

Then the boundary value problem (3)–(4) has at least one solution on [0,T ] .

Proof. Firstly, we will show that the operator A , difined by (22), maps bounded
sets (balls) into bounded sets in C . For a positive number R , let BR = {x∈C : ‖x‖� R}
be a bounded ball in C . Then for t ∈ [0,T ] we have

|A x(t)| � |α|
|Λ|

∫ T

0
| f (s,x(ps))|dp,qs+

m

∑
i=1

|βi|
|Λ|

∫ ηi

0

∫ s

0
| f (r,x(pr)dp,qrdpi,qis

+
∫ T

0
| f (s,x(ps))dp,qs

� ‖p‖ψ(R)

{
|α|
|Λ|T +

1
|Λ|

m

∑
i=1

(
η2

i |βi|
pi +qi

)
+T

}

= ‖p‖ψ(R)Φ.

Therefore, we conclude that ‖A x‖ � ‖p‖ψ(R)Φ .
Secondly, we show that A maps bounded sets into equicontinuous sets of C . Let

t1,t2 ∈ [0,T ] with t1 < t2 and x ∈ BR . Then we have

|(A x)(t2)− (A x)(t1)| =

∣∣∣∣∣
∫ t2

0
f (s,x(ps))dp,qs−

∫ t1

0
f (s,x(ps))dp,qs

∣∣∣∣∣
� ‖p‖ψ(R)|t2− t1|.
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Obviously the right hand side of the above inequality tends to zero independent of
x ∈ BR as t1 → t2 . Therefore it follows by the Arzelá-Ascoli theorem that A : C → C
is completely continuous.

The result will follow from the Leray-Schauder nonlinear alternative (Lemma 3)
once we have proved the boundedness of the set of all solutions to equations x = θA x
for θ ∈ [0,1] .

Let x be a solution. Then, for t ∈ [0,T ] , and following the similar computations
as in the first step, we have

‖x‖ � ‖p‖ψ(‖x‖)
{
|α|
|Λ|T +

1
|Λ|

m

∑
i=1

(
η2

i |βi|
pi +qi

)
+T

}

= ‖p‖ψ(‖x‖)Φ.

Consequently, we have
‖x‖

‖p‖ψ(‖x‖)Φ � 1.

In view of (H4) , there exists N such that ‖x‖ �= N . Let us set

U = {x ∈ C : ‖x‖ < N}. (26)

Note that the operator A : U → C is continuous and completely continuous. From the
choice of U , there is no x∈ ∂U such that x = θA x for some θ ∈ (0,1) . Consequently,
by nonlinear alternative of Leray-Schauder type we deduce that A has a fixed point
in U , which is a solution of the boundary value problem (3)–(4). This completes the
proof. �

4. Examples

EXAMPLE 1. Consider the following nonlocal boundary value problem for (p,q)-
difference equation of the form⎧⎪⎪⎪⎨
⎪⎪⎪⎩

D 1
2 , 1

4
x(t) =

|cos t|
10

(
x2(t/2)+2|x(t/2)|

1+ |x(t/2)|
)

+ et , t ∈ [0,4],

x(0) =
1
5
x(2)+

1
3

∫ 1/3

0
x(s)d 1

5 , 1
7
s+

2
3

∫ 1/4

0
x(s)d 3

4 , 3
5
s+

4
3

∫ 2/3

0
x(s)d 4

5 , 1
2
s.

(27)

Here p = 1/2, q = 1/4, T = 2, α = 1/5, m = 3, β1 = 1/3, β2 = 2/3, β3 = 4/3,
η1 = 1/3, η2 = 1/4, η3 = 2/3, p1 = 1/5, p2 = 3/4, p3 = 4/5, q1 = 1/7, q2 = 3/5,
q3 = 1/2 and f (t,x) = |cost|(x2 +2|x|)/(10(1+ |x|))+ et . Since

| f (t,x)− f (t,y)| � (1/5)|x− y|,
then (H1) is satisfied with L = 1/5. We can show that Λ = 1− α − ∑m

i=1 βiηi ≈
−0.3666666666 and

Φ =
|α|
|Λ|T +

1
|Λ|

m

∑
i=1

(
η2

i |βi|
pi +qi

)
+T = 4.7128982.
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Then we have

LΦ =
1
5
(4.7128982) = 0.94257964 < 1.

Hence, by Theorem 3.1, the nonlocal boundary value problem (27) has a unique solu-
tion on [0,2] .

EXAMPLE 2. Consider the following nonlocal boundary value problem for (p,q)-
difference equation of the form⎧⎪⎪⎪⎨
⎪⎪⎪⎩

D 3
4 , 3

5
x(t) =

(
t
32

+
1
4

) |x(3t/4)|
1+ |x(3t/4)| +

3
8
, t ∈ [0,4/5],

x(0) =
5
6
x

(
3
5

)
+

1
3

∫ 1/5

0
x(s)d 1

2 , 1
4
s+

2
5

∫ 1/3

0
x(s)d 2

3 , 2
5
s+

4
7

∫ 1/2

0
x(s)d 4

3 , 3
7
s.

(28)

Here p = 3/4, q = 3/5, T = 3/5, α = 5/6, m = 3, β1 = 1/3, β2 = 2/5, β3 =
4/7, η1 = 1/5, η2 = 1/3, η3 = 1/2, p1 = 1/2, p2 = 2/3, p3 = 4/3, q1 = 1/4,
q2 = 2/5, q3 = 3/7 and f (t,x) = ((t/32)+ (1/4))|x|/(1 + |x|) + 3/8. We choose
g(t) = (t/32)+ (1/4) . Then we find that

Λ = 1−α −
m

∑
i=1

βiηi = −0.319047619

and

G∗ =
( |α|+ |Λ|

|Λ|
)∫ T

0
g(s)dp,qs+

1
|Λ|

m

∑
i=1

|βi|
∫ ηi

0

∫ s

0
g(s)dp,qrdpi,qis = 0.5735834475.

Clearly,

| f (t,x)− f (t,y)| =
(

t
32

+
1
4

)( |x|− |y|
1+ |x|+ |y|+ |x||y|

)

�
(

t
32

+
1
4

)( |x− y|
0.5735834475+ |x− y|

)
.

Hence, by Theorem 3.4, the nonlocal boundary value problem (28) has a unique solu-
tion on [0,3/5] .

EXAMPLE 3. Consider the following nonlocal boundary value problem for (p,q)-
difference equation of the form⎧⎪⎪⎪⎨
⎪⎪⎪⎩

D 1
4 , 1

6
x(t) =

1
(2+ t)2

(
2x10(t/4)

1+ |x9(t/4)| +3

)
, t ∈ [0,2],

x(0) =
4
3
x

(
1
2

)
+

2
3

∫ 1/7

0
x(s)d 1

3 , 1
4
s+

5
6

∫ 1/6

0
x(s)d 2

5 , 1
3
s+

4
5

∫ 1/2

0
x(s)d 2

3 , 1
2
s.

(29)
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Here p = 1/4, q = 1/6, T = 1/2, α = 4/3, m = 3, β1 = 2/3, β2 = 5/6, β3 =
4/5, η1 = 1/7, η2 = 1/6, η3 = 1/2, p1 = 1/3, p2 = 2/5, p3 = 2/3, q1 = 1/4,
q2 = 1/3, q3 = 1/2 and f (t,x) = (2x10/(1+ |x|9)+3)/(2+ t)2 . Clearly,

| f (t,x)| =
∣∣∣∣ 1
(2+ t)2

(
2x10

1+ |x|9 +3

)∣∣∣∣� 1
(2+ t)2 (2|x|+3).

Choosing p(t)= 1/(2+t)2 and ψ(|x|)= 2|x|+3, we can show that Λ =−0.9674603175
and Φ = 1.4180088065. Then we have

N

( 1
4 )(2N +3)(1.4180088065)

> 1,

which implies that there exists a constant N > 3.654717173. Hence, by Theorem 3.9,
the nonlocal boundary value problem (29) has at least one solution on [0,1/2] .
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