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Abstract. We consider establishing lower bounds for the first zero of the solution of the nonlinear
second order initial value problem

(p(x)y′(x))′ + f (x,y(x)) = 0, x � 0

y(0) = a > 0, y′(0) = 0.

Using the linear case as a starting point, we prove several of these theorems, comparing them by
considering several examples.

We consider the initial value problem (IVP):

(p(x)y′(x))′ + f (x,y(x)) = 0, x � 0

y(0) = a > 0, y′(0) = 0,

where p : [0,∞) → (0,∞) and f : [0,∞)× (0,∞) → R is allowed to be nonlinear. We
assume a solution y exists and has a zero to the right of 0. We let b represent the small-
est zero of y greater than 0. We define a solution y to satisfy i) p(x)y′(x) is absolutely
continuous on [0,b] , ii) (p(x)y′(x))′ + f (x,y(x)) = 0 a.e. on [0,b] and iii)y(0) = a ,
y′(0) = 0. (Note that y(x) > 0 on [0,b) .) The goal of this article is to construct a lower
bound for b . This question was originally motivated by [1] in which a similar problem
was studied for the linear differential equation (p(x)y′(x))′ +q(x)y(x) = 0. (The linear
case for this and similar problems can also be found in [2], [3], [4], [5], [6], and [7].)
The nonlinear problem, while similar in some respects, involves an additional difficulty
which we explain as follows. Consider the linear problem

y′′ + y = 0

y(0) = a > 0, y′(0) = 0

Elementary techniques yield the solution y(x) = acosx and therefore the exact value of
b can be found, which is π/2 and is independent of a . However, consider the nonlinear
problem

y′′ + y2 = 0

y(0) = a > 0, y′(0) = 0.
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There is not a simple closed-form solution, but by varying a and applying the Runge-
Kutta method, it appears that b depends strongly on a . In fact, it appears that there is
an inverse relationship between a and b and it also appears that as a → 0+ , we have
b → ∞ .

The proof of our first theorem is based on the proof found in [1].

THEOREM 1. Let y be a solution of (IVP). Assume that

1)
∫ b
0

1
p(x)dx exists,

2) f (x,y(x)) � 0 a.e. on [0,b) ,
3) f (x,y(x))/y(x) � f (x,y(0))/y(0) a.e. on [0,b) ,

4)
∫ b
0 f (x,y(0))dx exists.

Then,
π
2

�
∫ b

0
max

{
f (x,y(0))

y(0)
,

1
p(x)

}
dx.

Proof. Define Φ : [0,b) → R by

Φ(x) = arctan
p(x)y′(x)

y(x)
.

(Recall y > 0 on [0,b) .) Then,

sec2 Φ(x)Φ′(x) =
y(x)[p(x)y′(x)]′ − p(x)y′(x)y′(x)

[y(x)]2

=
−y(x) f (x,y(x))

[y(x)]2
− tan2 Φ(x)

p(x)

and hence

Φ′(x) =
− f (x,y(x))

y(x)
cos2 Φ(x)− 1

p(x)
sin2 Φ(x). (0.1)

From (0.1) and our assumptions, we have that Φ′(x) � 0, that is, Φ is nonincreasing.
Note that Φ(0) = 0, and we also have lim

x↑b
tanΦ(x) =−∞ and hence we can let Φ(b) =

−π/2. We then have from (0.1):

π
2

= Φ(0)−Φ(b)

=
∫ b

0

[
f (x,y(x))

y(x)
cos2 Φ(x)+

1
p(x)

sin2 Φ(x)
]
dx

�
∫ b

0

[
f (x,y(0))

y(0)
cos2 Φ(x)+

1
p(x)

sin2 Φ(x)
]
dx. (0.2)

Now, applying the inequality c1 cos2 θ +c2 sin2 θ � max{c1,c2} , we have that the right-
hand side in (0.2) is less than or equal to∫ b

0
max

{
f (x,y(0))

y(0)
,

1
p(x)

}
dx. �
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REMARKS.

1. We made the decision to state the hypotheses of these results in the weakest form
possible, but these assumptions typically follow from much more easily verified,
stronger assumptions. For example, if we assume f (x,w)/w is nondecreasing in
w for each x and f is nonnegative valued, then 2) and 3) follow (note that the
solution is nonincreasing in that event) – an example is f (x,w) = wn for n ∈ N .
The reader should be able to identify simpler, more easily verifiable conditions
for the theorems below.

2. For the linear initial value problem

y′′ + y = 0

y(0) = 1, y′(0) = 0,

Theorem 1 yields the optimum value b = π/2.

By following the proof in [1] a little more closely, we obtain the next result. We
first need two lemmas that are special cases of Theorem 1 from [1].

LEMMA 1. Let α,β be piecewise-continuous on [0,b] and let β be nondecreas-
ing and nonnegative-valued. Then,

∫ b
0 α(x)β (x)dx∫ b

0 β (x)dx
�

∫ b
0 max{α(s) : x � s � b}dx

b
.

LEMMA 2. Let α,β be piecewise-continuous on [0,b] and let β be nonincreas-
ing and nonnegative-valued. Then,

∫ b
0 α(x)β (x)dx∫ b

0 β (x)dx
�

∫ b
0 max{α(s) : 0 � s � x}dx

b
.

We can now prove:

THEOREM 2. Let y be a solution of (IVP). Assume that

1) 1
p is piecewise continuous on [0,b] ,

2) f (x,y(x)) � 0 a.e. on [0,b) ,
3) f (·,y(0)) is piecewise continuous on [0,b] ,
4) f (x,y(x))/y(x) � f (x,y(0))/y(0) a.e. on [0,b) ,

5)
∫ b
0 max{ f (s,y(0))/y(0) : 0 � s � x}dx > 0 .

Then,

π
2

�

√∫ b

0
max{ f (s,y(0))/y(0) : 0 � s � x}dx

√∫ b

0
max

{
1

p(s)
: x � s � b

}
dx

(0.3)
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Proof. Define the positive constant A by

A =

√√√√∫ b
0 max{ f (s,y(0))/y(0) : 0 � s � x}dx∫ b

0 max
{

1
p(s) : x � s � b

}
dx

and Φ : [0,b) → R by

Φ(x) = arctan
p(x)y′(x)

Ay(x)
.

Proceeding as in Theorem 1, we obtain

π
2

�
∫ b

0

[
1
A

f (x,y(0))
y(0)

cos2 Φ(x)+
A

p(x)
sin2 Φ(x)

]
dx. (0.4)

We first note that, applying Lemma 1,∫ b

0

A
p(x)

sin2 Φ(x)dx

=

∫ b
0

A
p(x) sin2 Φ(x)dx∫ b
0 sin2 Φ(x)dx

∫ b

0
sin2 Φ(x)dx

� A
b

∫ b

0
max

{
1

p(s)
: x � s � b

}
dx

∫ b

0
sin2 Φ(x)dx

=
1
b

√∫ b

0
[max{ f (s,y(0))/y(0) : 0 � s � x}cos2 Φ(x)]dx

×
√∫ b

0
max

{
1

p(s)
: x � s � b

}
dx

∫ b

0
sin2 Φ(x)dx.

Similarly, applying Lemma 2,

1
A

∫ b

0

[
f (x,y(0))

y(0)
cos2 Φ(x)

]
dx

=
1
A

∫ b
0

[
f (x,y(0))

y(0) cos2 Φ(x)
]
dx∫ b

0 cos2 Φ(x)dx

∫ b

0
cos2 Φ(x)dx

� 1
Ab

∫ b

0
max{ f (s,y(0))/y(0) : 0 � s � x}dx

∫ b

0
cos2 Φ(x)dx

�
1
b

∫ b
0 max{ f (s,y(0))/y(0) : 0 � s � x}dx√∫ b

0 max{ f (s,y(0))/y(0):0�s�x}dx∫ b
0 max

{
1

p(s) :x�s�b
}
dx

∫ b

0
cos2 Φ(x)dx

� 1
b

√∫ b

0
max{ f (s,y(0))/y(0) : 0 � s � x}dx

×
√∫ b

0
max

{
1

p(s)
: x � s � b

}
dx

∫ b

0
cos2 Φ(x)dx.



Differ. Equ. Appl. 10, No. 2 (2018), 209–218. 213

Applying this to (0.4), we have

π
2

� 1
b

√∫ b

0
max{ f (s,y(0))/y(0) : 0 � s � x}dx

√∫ b

0
max

{
1

p(s)
: x � s � b

}
dx

×
(∫ b

0
cos2 Φ(x)dx+

∫ b

0
sin2 Φ(x)dx

)

=

√∫ b

0
max{ f (s,y(0))/y(0) : 0 � s � x}dx

√∫ b

0
max

{
1

p(s)
: x � s � b

}
dx. �

REMARKS.

1. For the linear initial value problem

y′′ + y = 0

y(0) = 1, y′(0) = 0,

Theorem 2 yields π/2 �
√

b
∫ b
0 dx , the optimum value b = π/2.

2. For the case f (x,y)= yn , n∈{2,3, . . .} , (0.3) becomes π/2 �
√

b
y(0)

∫ b
0 (y(0))n dx ,

i.e., b � π/
[
2(y(0))n/2−1/2

]
, and hence as y(0)→ 0+ , it follows that b→ ∞ , as

conjectured above.

3. For the initial value problem

y′′ + xy2 = 0

y(0) = 1, y′(0) = 0,

Theorem 1 yields π/2 �
∫ b
0 max{x,1}dx . It is easy to see b � 1 (integrating

the differential equation twice we have 1 =
∫ b
0

∫ t
0 x[y(x)]2dxdt and then using

the fact that y is nonincreasing, if b < 1 we also have
∫ b
0

∫ t
0 x[y(x)]2dxdt �∫ b

0

∫ t
0 1dxdt = b2/2 < 1/2, a contradiction), so we have π/2 �

∫ 1
0 1dx+

∫ b
1 xdx

and hence b �
√

π −1 ≈ 1.46. Theorem 2 gives π/2 �
√

b
∫ b
0 xdx and hence

b �
(

π/
√

2
)2/3 ≈ 1.70, so Theorem 2 gives more information in this example

than Theorem 1.

4. For the initial value problem

y′′ +2e−xy2 = 0

y(0) = 1, y′(0) = 0,

Theorem 1 yields π/2 �
∫ b
0 max{2e−x,1}dx . Proceeding as before, we have

b � 1, so we have π/2 �
∫ ln2
0 2e−xdx+

∫ b
ln2 1dx and hence b � π/2−1+ ln2 ≈
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1.26. Theorem 2 yields π/2 �
√

b
∫ b
0 max{2e−s : 0 � s � x}dx which gives us

b � π/(2
√

2) ≈ 1.1, hence Theorem 1 gives more information in this example
than Theorem 2.

Following the approach of [6], we can prove the following for the nonlinear case.

THEOREM 3. Let y be a solution of (IVP). Assume that

1) f (x,y(x)) � f (x,y(0)) a.e. on [0,b) ,

2)
∫ x
0 f (t,y(0))dt exists for every x ∈ [0,b) ,

3)
∫ b
0

∫ x
0 f (t,y(0))dt

p(x) dx exists.

Then,

1 � 1
y(0)

∫ b

0

∫ x
0 f (t,y(0))dt

p(x)
dx.

Proof. Let x ∈ [0,b] . Then,

∫ x

0
(p(t)y′(t))′dt +

∫ x

0
f (t,y(t))dt = 0 =⇒

p(x)y′(x)− p(0)y′(0) = −
∫ x

0
f (t,y(t))dt =⇒

−p(x)y′(x) =
∫ x

0
f (t,y(t))dt �

∫ x

0
f (t,y(0))dt =⇒

−
∫ b

0
y′(x)dx �

∫ b

0

∫ x
0 f (t,y(0))dt

p(x)
dx =⇒

y(0) �
∫ b

0

∫ x
0 f (t,y(0))dt

p(x)
dx =⇒

1 � 1
y(0)

∫ b

0

∫ x
0 f (t,y(0))dt

p(x)
dx. �

REMARKS.

1. Consider the problem

y′′ +2y2 = 0

y(0) = 1, y′(0) = 0.

Theorem 3 yields 1 �
∫ b
0

∫ x
0 2dt dx from which it follows that b � 1. Theorem 1

yields π/2 �
∫ b
0 max{2,1}dx and hence tells us that b � π/4≈ 0.79. Theorem

2 yields π/2 �
√

b
∫ b
0 2ds and hence gives b � π/(2

√
2) ≈ 1.11.
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2. Interestingly, for the linear problem

y′′ + y = 0

y(0) = 1, y′(0) = 0,

Theorem 3 yields 1 �
∫ b
0

∫ x
0 1dt dx and hence b �

√
2, which is less than the

optimum value of π/2.

We can improve Theorem 3 by using the iteration trick of [3], as illustrated in the
following proof:

THEOREM 4. Let y be a solution of (IVP). Assume that

1)
∫ b
x

∫ τ
0 f (r,y(0))dr

p(τ) dτ exists for all x ∈ [0,b) ,

2) f
(
x,

∫ b
x

∫ τ
0 f (r,y(r))dr

p(τ) dτ
)

� f
(
x,

∫ b
x

∫ τ
0 f (r,y(0))dr

p(τ) dτ
)

a.e. on [0,b) ,

3)
∫ x
0 f

(
s,

∫ b
s

∫ τ
0 f (r,y(0))dr

p(τ) dτ
)

ds exists for all x ∈ [0,b] .

Then,

1 � 1
y(0)

∫ b

0

∫ t

0
f

(
s,

∫ b

s

∫ τ
0 f (r,y(0))dr

p(τ)
dτ

)
dsdt.

Proof. Let τ,s ∈ [0,b] . Then,

∫ τ

0
(p(r)y′(r))′dr+

∫ τ

0
f (r,y(r))dr = 0 =⇒

p(τ)y′(τ)− p(0)y′(0) = −
∫ τ

0
f (r,y(r))dr =⇒

−p(τ)y′(τ) =
∫ τ

0
f (r,y(r))dr =⇒

−
∫ b

s
y′(τ)dτ =

∫ b

s

∫ τ
0 f (r,y(r))dr

p(τ)
dτ =⇒

y(s) =
∫ b

s

∫ τ
0 f (r,y(r))dr

p(τ)
dτ.

Let t ∈ [0,b] . Substituting this expression for y(s) into
∫ t
0 y′′(s)ds+

∫ t
0 f (s,y(s))ds = 0,

we have

−
∫ t

0
y′′(s)ds =

∫ t

0
f

(
s,

∫ b

s

∫ τ
0 f (r,y(r))dr

p(τ)
dτ

)
ds =⇒

−y′(t) �
∫ t

0
f

(
s,

∫ b

s

∫ τ
0 f (r,y(0))dr

p(τ)
dτ

)
ds =⇒

−
∫ b

0
y′(t)dt �

∫ b

0

∫ t

0
f

(
s,

∫ b

s

∫ τ
0 f (r,y(0))dr

p(τ)
dτ

)
dsdt =⇒
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y(0) �
∫ b

0

∫ t

0
f

(
s,

∫ b

s

∫ τ
0 f (r,y(0))dr

p(τ)
dτ

)
dsdt. �

REMARKS.

1. We note that hypothesis 2 holds if f (x, ·) is nonnegative and is nondecreasing for
each x ∈ [0,b].

2. Consider the problem

y′′ + y2 = 0

y(0) = 1, y′(0) = 0.

Theorem 3 yields b �
√

2 ≈ 1.41. For Theorem 4, we observe that

∫ b

s

∫ τ

0
f (r,y(0))drdτ =

(
b2− s2)/2

and then∫ b

0

∫ t

0

[(
b2− s2)2

/4
]
dsdt =

∫ b

0

(
b4t/4−b2t3/6+ t5/20

)
dt

= (11/120)b6

and hence b � 6
√

(120/11)≈ 1.49.

We can improve Theorems 3 and 4 further by exploiting the fact that in many cases
y is concave down on [0,b] as discussed in [5].

THEOREM 5. Let y be a solution of (IVP). Assume that

1) f (x,y1(x)) � f (x,y(x)) a.e. on [0,b) , where y1(x) = y(0)(b−x)
b ,

2)
∫ s
0

∫ τ
0 f (r,y1(r))dr

p(τ) dτ exists for s ∈ [0,b) ,

3) f (s,y(s)) � f
(
s,y(0)− ∫ s

0

∫ τ
0 f (r,y1(r))dr

p(τ) dτ
)

a.e. on [0,b) ,

4)
∫ b
0

∫ t
0 f

(
s,y(0)−∫ s

0

∫ τ
0 f (r,y1(r))dr

p(τ) dτ
)

ds

p(t) dt exists.

Then,

1 � 1
y(0)

∫ b

0

∫ t
0 f

(
s,y(0)− ∫ s

0

∫ τ
0 f (r,y1(r))dr

p(τ) dτ
)

ds

p(t)
dt.

Proof. For s,τ ∈ [0,b] ,∫ τ

0
(p(r)y′(r))′ dr+

∫ τ

0
f (r,y(r))dr = 0 =⇒

p(τ)y′(τ)− p(0)y′(0) = −
∫ τ

0
f (r,y(r))dr =⇒
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−p(τ)y′(τ) =
∫ τ

0
f (r,y(r))dr =⇒

−
∫ s

0
y′(τ)dτ =

∫ s

0

∫ τ
0 f (r,y(r))dr

p(τ)
dτ =⇒

−y(s)+ y(0) =
∫ s

0

∫ τ
0 f (r,y(r))dr

p(τ)
dτ �

∫ s

0

∫ τ
0 f (r,y1(r))dr

p(τ)
dτ =⇒

y(s) � y(0)−
∫ s

0

∫ τ
0 f (r,y1(r))dr

p(τ)
dτ (0.5)

Let t ∈ [0,b] . We have, from the original differential equation

−
∫ t

0
(p(s)y′(s)) ′ds =

∫ t

0
f (s,y(s))ds

and then applying (0.5) to the right-hand side

−
∫ t

0
(p(s)y′(s)) ′ds �

∫ t

0
f

(
s,y(0)−

∫ s

0

∫ τ
0 f (r,y1(r))dr

p(τ)
dτ

)
ds =⇒

−p(t)y′(t) �
∫ t

0
f

(
s,y(0)−

∫ s

0

∫ τ
0 f (r,y1(r))dr

p(τ)
dτ

)
ds =⇒

−
∫ b

0
y′(t)dt �

∫ b

0

∫ t
0 f

(
s,y(0)− ∫ s

0

∫ τ
0 f (r,y1(r))dr

p(τ) dτ
)

ds

p(t)
dt =⇒

y(0) �
∫ b

0

∫ t
0 f

(
s,y(0)− ∫ s

0

∫ τ
0 f (r,y1(r))dr

p(τ) dτ
)

ds

p(t)
dt. �

COROLLARY 1. Let y be a solution of (IVP). Assume that

1) p is differentiable and nonincreasing,

2) f (x,y(x)) � 0 a.e. on [0,b)

3) For each x ∈ [0,b] , f (x, ·) is nondecreasing on [0,a] .

4)
∫ s
0

∫ τ
0 f (r,y1(r))dr

p(τ) dτ exists for s ∈ [0,b) ,

5)
∫ b
0

∫ t
0 f

(
s,y(0)−∫ s

0

∫ τ
0 f (r,y1(r))dr

p(τ) dτ
)

ds

p(t) dt exists.

Then,

1 � 1
y(0)

∫ b

0

∫ t
0 f

(
s,y(0)− ∫ s

0

∫ τ
0 f (r,y1(r))dr

p(τ) dτ
)

ds

p(t)
dt.
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Proof. Since y′(x)=−∫ x
0 f (s,y(s))ds/p(x)� 0 and y′′(x)= p′(x)

∫ x
0 f (s,y(s))ds/

[p(x)]2 − f (x,y(x))/p(x) � 0 on [0,b] from our assumptions, y dominates the line
from (0,y(0)) to (b,0) , i.e., y(x) � y1(x) . From this and assumption 3 of our Corol-
lary, assumption 1 of Theorem 5 follows. Assumption 3 of Theorem 5 follows from
assumption 3 of the Corollary along with (0.5). �

REMARK. Returning to the problem from Remark 2 following Theorem 4, we
have∫ s

0

∫ τ

0
f (r,y1(r))drdτ =

∫ s

0

∫ τ

0

[
(b− r)2/b2]drdτ = (6b2s2 −4bs3 + s4)/(12b2)

and then ∫ b

0

∫ t

0
f

(
s,1−

∫ s

0

∫ τ

0
f (r,y1(r))drdτ

)
dsdt

=
∫ b

0

∫ t

0

(
1− (6b2s2 −4bs3 + s4)/(12b2)

)2
dsdt

= (1/630)(2b6−35b4 +315b2)

and hence b � 1.63 from Theorem 5 (or its corollary). Incidentally, both Theorems 1
and 2 give b � 1.57, even using y1 in place of y(0) .
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