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UNIFORM EXPONENTIAL STABILITY IN THE SENSE OF HYERS
AND ULAM FOR PERIODIC TIME VARYING LINEAR SYSTEMS

BAKHT ZADA

Abstract. We prove that the uniform exponential stability of time depended p-periodic system
Y() =M(1)P(t), teRy, P(t)eC”

is equivalent to its Hyers—Ulam stability. As a tool, we consider the exact solution of the Cauchy
problem

O() =TI(1)0(1) +e* (1), teR,
0(0) = 0

as the approximate solution of ¥(r) =TI(r)¥(r), t € R., ¥(r) € C", where o is any real num-
ber, {(r) with {(0) =0, is a p-periodic bounded function on the Banach space .7 (R,C").
More precisely we prove that the system ¥(r) = T1(t)¥(), € Ry, ¥(r) € C" is Hyers—Ulam
stable if and only if it is exponentially stable. We argue that Hyers-Ulam stability concept is
quite significant in realistic problems in numerical analysis and economics.
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