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UNIFORM EXPONENTIAL STABILITY IN THE SENSE OF HYERS

AND ULAM FOR PERIODIC TIME VARYING LINEAR SYSTEMS

BAKHT ZADA

Abstract. We prove that the uniform exponential stability of time depended p -periodic system

Ψ̇(t) = Π(t)Ψ(t), t ∈ R+, Ψ(t) ∈ C
n

is equivalent to its Hyers–Ulam stability. As a tool, we consider the exact solution of the Cauchy
problem {

Θ̇(t) = Π(t)Θ(t)+ eiαtζ (t), t ∈ R+

Θ(0) = Θ0

as the approximate solution of Ψ̇(t) = Π(t)Ψ(t), t ∈ R+, Ψ(t)∈ Cn , where α is any real num-
ber, ζ (t) with ζ (0) = 0 , is a p -periodic bounded function on the Banach space S (R+,Cn) .
More precisely we prove that the system Ψ̇(t) = Π(t)Ψ(t), t ∈ R+, Ψ(t) ∈ Cn is Hyers–Ulam
stable if and only if it is exponentially stable. We argue that Hyers-Ulam stability concept is
quite significant in realistic problems in numerical analysis and economics.
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