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(Communicated by Darko Žubrinić)

Abstract. The box-counting dimension of graphs of oscillatory solutions to the Emden-Fowler
equation is studied. The half-linear equation is also considered.

1. Introduction

In this paper, we study the box-counting dimension of graphs of the oscillatory
solutions to the Emden-Fowler equation

y′′ + f (x)|y|γ−1y = 0, x ∈ (0,x0], (1.1)

where γ > 0, γ �= 1 and

f ∈C2(0,x0], f (x) > 0, f ′(x) < 0, x ∈ (0,x0], lim
x→+0

f (x) = ∞. (1.2)

The main result of the paper is stated in Theorem 1.1 below. A function λx−σ , λ > 0,
σ > 0 is a typical example of f (x) satisfying (1.2).

A solution y of (1.1) is said to be oscillatory near x = 0 if there exists {zn}∞
n=1

such that y(zn) = 0 for n ∈ N and zn → 0 as n → ∞ . Otherwise, it is said to be
nonoscillatory near x = 0.

A study of the oscillatory solutions to the Emden-Fowler equation (1.1) has a long
history. See, for example, [1, 2, 6, 7, 8, 10, 17]. For instance, the following result
is well-known. (Consider the transformation Y (t) = ty(t−1) on (1.1) and apply the
celebrated results in [1] and [2].)

THEOREM A. Let γ > 0 , γ �= 1 , f ∈C(0,x0] and f (x) > 0 for x ∈ (0,x0] . Then
every solution y ∈C2(0,x0] of (1.1) is oscillatory near x = 0 if and only if xγ∗ f (x) �∈
L1(0,x0] , where γ∗ = max{γ,1} .

J. S. W. Wong [18] studied the rectifiability of oscillatory solutions to (1.1). A
solution y of (1.1) is said to be rectifiable (resp. nonrectifiable) oscillatory near x = 0
if y is oscillatory near x = 0 and the length of y is finite (resp. infinite), that is,∫ x0

0

√
1+ |y′(x)|2dx < ∞ (resp. = ∞).
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THEOREM B ([18, Theorem 1]). Let γ > 0 and γ �= 1 . Assume that f ∈C2(0,x0] ,
f (x) > 0 for x∈ (0,x0] , limx→+0 f (x) = ∞ , f−1 f ′+ ∈ L1(0,x0] and ( f−(γ∗+2)/(γ∗+1) f ′)′
∈ L1(0,x0] , where f ′+(x) = max{ f ′(x),0} and γ∗ = max{γ,1} . Then every nontrivial
solution y of (1.1) is oscillatory near x = 0 and the following properties hold:

(i) y is rectifiable if f 1/(γ+3) ∈ L1(0,x0] ;

(ii) y is nonrectifiable if f 1/(γ+3) �∈ L1(0,x0] .

Proposition 1.1 below shows that the box-counting dimension of rectifiable curves
is 1. In this paper, we will obtain the box-counting dimension of nonrectifiable oscil-
latory solutions to (1.1). For linear differential equations, it has been studied by Pašić
[11], Kwong, Pašić and Wong [9], and Pašić and Tanaka [12]. However, to the authors’
knowledge, there is no study about it for the Emden-Fowler equations.

Let Γ ⊂R2 be a bounded set. We define the box-counting dimension (Minkowski-
Bouligand dimension) of Γ by

dimB Γ = 2− lim
ε→+0

log |Γε |
logε

,

provided the limit exists, where Γε denotes the ε -neighborhood of Γ defined by

Γε = {(x,y) ∈ R2 : d((x,y),Γ) � ε},
d((x,y),Γ) denotes the Euclidean distance from (x,y) to Γ , and |Γε | denotes the
two-dimensional Lebesgue measure of Γε . For any d � 0, the lower d -dimensional
Minkowski content of Γ and the upper d -dimensional Minkowski content of Γ are de-
fined by

M d
∗ (Γ) := liminf

ε→+0
ε−(2−d)|Γε | and M ∗d(Γ) := limsup

ε→+0
ε−(2−d)|Γε |,

respectively. If M d∗ (Γ) = M ∗d(Γ) , then it is said to be the d -dimensional Minkowski
content of Γ and denoted by M d(Γ) . More details on the above definitions can be
found in Falconer [5] and Tricot [16]. It is easy to see that if 0 < M d∗ (Γ) � M ∗d(Γ) <
∞ , then dimB Γ = d . We have the following well-known result, see e.g. Tricot [16,
§9.1, Theorem].

PROPOSITION 1.1. Let Γ ⊂ R2 be a simple curve of finite length. Then

lim
ε→+0

|Γε |
2ε

= length(Γ),

where length(Γ) denotes the length of Γ .

Therefore, the box-counting dimension of rectifiable curves is 1.
For each y ∈C(0,x0] , we define the graph Γ(y) of y by

Γ(y) = {(x,y(x)) : 0 < x � x0}.
The main result of this paper is as follows.
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THEOREM 1.1. Let γ > 0 and γ �= 1 . Assume that (1.2) holds, ( f−(γ∗+2)/(γ∗+1) f ′)′
∈ L1(0,x0] and f 1/(γ+3) �∈ L1(0,x0] , where γ∗ = max{γ,1} . Assume, moreover, that
there exists d ∈ (1,2) such that

liminf
x→+0

[ f (x)]
2(2−d)

γ+3

∫ x

0
[ f (ξ )]−

1
γ+3 dξ > 0,

limsup
x→+0

[
x[ f (x)]−

1
γ+3

] d−1
2−d

∫ x0

x
[ f (ξ )]

1
γ+3 dξ < ∞.

Then every nontrivial solution y of (1.1) is oscillatory near x = 0 and 0 <M d∗ (Γ(y)) �
M ∗d(Γ(y)) < ∞ and hence dimB Γ(y) = d .

We will prove Theorem 1.1 in Section 3.
Applying Theorem 1.1 to

y′′ + λx−σ |y|γ−1y = 0, x ∈ (0,x0], (1.3)

we have the following corollary.

COROLLARY 1.1. Let λ > 0 , γ > 0 , γ �= 1 and σ > γ +3 . Then every nontrivial
solution y of (1.3) is oscillatory near x = 0 , 0 < M d∗ (Γ(y)) � M ∗d(Γ(y)) < ∞ and
dimB Γ(y) = d , where d = 3

2 − γ+3
2σ .

REMARK 1.1. Corollary 1.1 answers the open problem raised by J. S. W. Wong
[18]. Corollary 1.1 with γ = 1 was obtained by Pašić [11, Theorem1.5]. From Theorem
A, it follows that if σ � γ∗ + 1, then (1.3) has a nonoscillatory solution near x = 0.
Theorem B implies that if σ > γ∗ + 1, then every nontrivial solution y of (1.3) is
oscillatory near x = 0 and we have: y is rectifiable when γ∗ + 1 < σ < γ + 3; y is
nonrectifiable when σ � γ + 3. (See also [18, Corollary].) Proposition 1.1 shows
that dimB Γ(y) = 1 when γ∗ + 1 < σ < γ + 3. Consequently, we do not know the
box-counting dimension of oscillatory solutions for the case where σ = γ + 3. We
formulate the conjecture as follows. We note that Pašić [11, Theorem 1.5] proved that
dimB Γ(y) = 1 for every nontrivial solution y of (1.3) with γ = 1 and σ = γ +3 = 4.

CONJECTURE 1.1. If λ > 0 , γ > 0 , γ �= 1 and σ = γ + 3 , then dimB Γ(y) = 1
for every nontrivial solution y of (1.3).

J. S. W. Wong [18] gave the asymptotic behavior of oscillatory solutions to (1.1)
as the following form

y(x) = [ f (x)]−
1

γ+3 [V (x)]
1

γ+1 S(ϕ(x)),

y′(x) = −[ f (x)]
1

γ+3 [V (x)]
1
2 S(ϕ(x)),

where V ∈ C1(0,x0] satisfies limx→+0V (x) = V0 for some V0 > 0 and S ∈ C(R) is a
periodic function having zeros. See Proposition 3.1 below. In this paper, we give a
sufficient condition such that M d∗ (Γ(y)) > 0 for each chirp-like function

y(x) = a(x)v(x)S(ϕ(x)), x ∈ (0,x0], (1.4)
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where a ∈C1(0,x0] , v ∈C(0,x0] , ϕ ∈C2(0,x0] and S ∈C1(R) satisfy

a(x) > 0, a′(x) � 0, x ∈ (0,x0], (1.5)

lim
x→+0

v(x) = v0 for some v0 > 0, v(x) > 0, x ∈ (0,x0], (1.6)

lim
x→+0

ϕ(x) = ∞, ϕ(x) > 0 and ϕ ′(x) < 0, x ∈ (0,x0], (1.7)

|S(t + τ)| = |S(t)|, t ∈ R for some τ > 0, (1.8)

S(τ0) = 0, S(t) �= 0, t ∈ (τ0,τ0 + τ) for some τ0 ∈ R. (1.9)

Namely, we will prove the following result.

THEOREM 1.2. Assume that a ∈ C1(0,x0] , v ∈ C(0,x0] ϕ ∈ C1(0,x0] and S ∈
C1(R) satisfy (1.5)–(1.9), and that there exists Φ ∈C1(0,x0] such that

0 < liminf
x→+0

−ϕ ′(x)
Φ(x)

� limsup
x→+0

−ϕ ′(x)
Φ(x)

< ∞, (1.10)

Φ(x) > 0, Φ′(x) < 0, x ∈ (0,x0], limsup
x→+0

(
[Φ(x)]−1)′ < ∞. (1.11)

Assume, moreover, that there exists d ∈ (1,2) such that

liminf
x→+0

[Φ(x)]2−d
∫ x

0
a(ξ )dξ > 0. (1.12)

Then M d∗ (Γ(y)) > 0 for each chirp-like function (1.4).

Theorem 1.2 with v(x) ≡ 1 and Φ(x) ≡ −ϕ ′(x) has been obtained in [13]. The
proof of Theorem 1.2 will be given in Section 2.

Using the result in [13, Lemma 28], we can obtain the following consequence,
which will be shown in Section 2.

PROPOSITION 1.2. Let y ∈C1(0,x0] be bounded on (0,x0] . Assume that

limsup
x→+0

[
x sup

ξ∈(0,x]
|y(ξ )|

] d−1
2−d ∫ x0

x
|y′(ξ )|dξ < ∞ (1.13)

for some d ∈ (1,2) . Then M ∗d(Γ(y)) < ∞ .

Combining these results, we can obtain Theorem 1.1.
Next we consider the half-linear equation

(|y′|p−2y′)′ + f (x)|y|p−2y = 0, x ∈ (0,x0], (1.14)

where p > 1 and f satisfies (1.2). There are a lot of oscillatory results for (1.14). See,
for example, Došlý and P. Řehák [3]. Pašić and J. S. W. Wong [14] established the
following result.
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THEOREM C ([14, Theorem 6]). Let p > 1 . Assume that (1.2) holds and

f−θ ( f θ−(1/p))′′ ∈ L1(0,x0] for some θ ∈ (0,1/p), (1.15)

0 < liminf
x→+0

xσ f (x) � limsup
x→+0

xσ f (x) < ∞ for some σ > p.

Then every nontrivial solution y of (1.14) is oscillatory near x = 0 and the following
properties hold:

(i) if p < σ < p2 , then 0 < M 1∗ (Γ(y)) � M ∗1(Γ(y)) < ∞ and dimB Γ(y) = 1;

(ii) if σ > p2 , then 0 < M d∗ (Γ(y)) � M ∗d(Γ(y)) < ∞ and dimB Γ(y) = d , where
d = 1+ 1

p − p
σ .

Pašić and J. S. W. Wong [14] gave the asymptotic behavior of oscillatory solu-
tions of (1.14). Therefore, in the same way as (1.1), we can obtain the box-counting
dimension of graphs of oscillatory solutions as follows.

THEOREM 1.3. Let p > 1 . Assume that (1.2) and (1.15) hold. Assume, moreover,
that there exists d ∈ (1,2) such that

liminf
x→+0

[ f (x)]
2−d

p

∫ x

0
[ f (ξ )]−

1
pp′ dξ > 0,

limsup
x→+0

[
x[ f (x)]−

1
pp′

] d−1
2−d

∫ x0

x
[ f (ξ )]

1
p2 dξ < ∞,

where p′ is a positive number with 1
p + 1

p′ = 1 , that is, p′ = p/(p− 1) . Then ev-

ery nontrivial solution y of (1.14) is oscillatory near x = 0 and 0 < M d∗ (Γ(y)) �
M ∗d(Γ(y)) < ∞ and hence dimB Γ(y) = d .

The proof of Theorem 1.3 will be given in Section 3.

EXAMPLE 1.1. We consider the equation

(|y′|p−2y′)′ + λx−σ |y|p−2y = 0, x ∈ (0,x0], (1.16)

where p > 1, λ > 0 and σ ∈ R . Theorem 1.3 implies that if σ > p2 , then every non-
trivial solution y of (1.16) is oscillatory near x = 0 and 0 < M d∗ (Γ(y)) � M ∗d(Γ(y)) <
∞ and dimB Γ(y) = d , where d = 1+ 1

p − p
σ .
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2. Lower and upper Minkowski contents

In this section we prove Theorem 1.2. To this end, we need the following result
obtained in [9, pp. 2350].

LEMMA 2.1. Let y∈C(0,x0] be a bounded function on (0,x0] and let an ∈ (0,x0]
be a decreasing sequence of consecutive zeros of y(x) such that an → 0 . Assume that
there exists ε0 > 0 and k : (0,ε0) → N such that

an−an+1 � ε for all n � k(ε) and ε ∈ (0,ε0) . (2.1)

Then
|Γε(y)| � ∑

n�k(ε)
max

x∈[an+1,an]
|y(x)|(an−an+1), ε ∈ (0,ε0). (2.2)

Proof of Theorem 1.2. By (1.10) and (1.11), there exist x1 ∈ (0,x0] , C1 > 0 and
C2 > 0 such that

0 < C1Φ(x) � −ϕ ′(x) � C2Φ(x), x ∈ (0,x1]. (2.3)

Let y(x) be a chirp function given by (1.4). Set an = ϕ−1(τ0 +nτ) for all sufficiently
large n ∈ N , where ϕ−1 is the inverse function of ϕ . From (1.7), it follows that an is
strictly decreasing and an → 0 as n → ∞ . Then y(an) = 0 and y(x) �= 0 on (an+1,an)
for all sufficiently large n ∈ N . We take N ∈ N such that aN � x1 . By the mean value
theorem, for each n � N , there exists cn ∈ (τ0 +nτ,τ0 +(n+1)τ) such that

an−an+1 = ϕ−1(τ0 +nτ)−ϕ−1(τ0 +(n+1)τ) =
−τ

ϕ ′(ϕ−1(cn))
.

Since Φ(ϕ−1(t)) is increasing, by (2.3), we observe that

−τ
ϕ ′(ϕ−1(cn))

� τ
C1Φ(ϕ−1(cn))

� τ
C1Φ(ϕ−1(τ0 +nτ))

=
τ

C1Φ(an)

for n � N . In the same way, we have

−τ
ϕ ′(ϕ−1(cn))

� τ
C2Φ(an+1)

, n � N.

Consequently, we obtain

τ
C2Φ(an+1)

� an−an+1 � τ
C1Φ(an)

, n � N. (2.4)

Note that 1/Φ(an) is decreasing. Moreover, 1/Φ(an)→ 0 as n→ ∞ . Indeed, by (2.4),
we have

0 <
1

Φ(an+1)
� C2

τ
(an−an+1) → 0 as n → ∞.
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Set
ε0 =

τ
C1Φ(aN+1)

.

For each ε ∈ (0,ε0) , let k(ε) be the smallest positive integer satisfying

τ
C1Φ(ak(ε))

� ε. (2.5)

From (2.4), it follows that k(ε) satisfies (2.1). Therefore, Lemma 2.1 implies that (2.2)
holds.

By (1.11), there exists L > 0 such that

−Φ′(x)
[Φ(x)]2

=
(
[Φ(x)]−1)′ � L, x ∈ (0,x0]. (2.6)

Set ψ(t) = logΦ(ϕ−1(t)) for t � ϕ(x0) . By the mean value theorem, for each t �
ϕ(x1) , there exists c ∈ (t,t +2τ) such that

ψ(t +2τ)−ψ(t) = 2τψ ′(c),

that is,

logΦ(ϕ−1(t +2τ))− logΦ(ϕ−1(t)) =
2τ[−Φ′(ϕ−1(c))]

Φ(ϕ−1(c))[−ϕ ′(ϕ−1(c))]
.

Therefore, by (2.3) and (2.6), we have

log
Φ(ϕ−1(t +2τ))

Φ(ϕ−1(t))
� 2τ[−Φ′(ϕ−1(c))]

Φ(ϕ−1(c))[C1Φ(ϕ−1(c))]
= 2τC−1

1
−Φ′(ϕ−1(c))
[Φ(ϕ−1(c))]2

� 2τC−1
1 L,

which implies that

Φ(ϕ−1(t)) � C3Φ(ϕ−1(t +2τ)), t � ϕ(x1), (2.7)

where C3 = e−2τC−1
1 L .

By the definition of k(ε) and (2.5), we find that

τ
C1Φ(ak(ε)−1)

> ε.

Hence, from (2.7), it follows that

τε−1 > C1Φ(ak(ε)−1) = C1Φ(ϕ−1(τ0 +(k(ε)−1)τ))

� C1C3Φ(ϕ−1(τ0 +(k(ε)−1)τ +2τ))

= C1C3Φ(ϕ−1(τ0 +(k(ε)+1)τ))
= C1C3Φ(ak(ε)+1),
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which means that
Φ(ak(ε)+1) < C4ε−1, ε ∈ (0,ε0), (2.8)

where C4 = τ/(C1C3) .
Set

M = max
t∈R

|S(t)|= max
t∈[0,τ]

|S(t)|.

We can take v1 > 0 such that v(x) � v1 for x ∈ (0,x0] in view of (1.6). Since a(x) is
nondecreasing on (0,x0] by (1.5), we find that

max
x∈[an+1,an]

|y(x)| = max
x∈[an+1,an]

a(x)v(x)|S(ϕ(x))|

� v1a(an+1) max
x∈[an+1,an]

|S(ϕ(x))| = v1Ma(an+1). (2.9)

From (2.4) and (2.9) , it follows that

max
x∈[an+1,an]

|y(x)|(an −an+1) � C5
a(an+1)
Φ(an+1)

= C5
a
(
ϕ−1(τ0 +(n+1)τ)

)
Φ

(
ϕ−1(τ0 +(n+1)τ)

)
for n � N , where C5 = τv1MC−1

2 . Since a(ϕ−1(t))/Φ(ϕ−1(t)) is nonincreasing, using
(2.3), we observe that

∑
n�k(ε)

max
x∈[an+1,an]

|y(x)|(an −an+1) � C5 ∑
n�k(ε)

a
(
ϕ−1(τ0 +(n+1)τ)

)
Φ

(
ϕ−1(τ0 +(n+1)τ)

)
� C5

∫ ∞

k(ε)

a
(
ϕ−1(τ0 +(t +1)τ)

)
Φ

(
ϕ−1(τ0 +(t +1)τ)

) dt

= τ−1C5

∫ ϕ−1(τ0+(k(ε)+1)τ)

0

a(ξ )
Φ(ξ )

[−ϕ ′(ξ )]dξ

= C6

∫ ak(ε)+1

0
a(ξ )dξ , (2.10)

where C6 = τ−1C1C5 . By (1.12), there exists C7 > 0 such that∫ x

0
a(ξ )dξ � C7[Φ(x)]−(2−d), x ∈ (0,x0]. (2.11)

Combining (2.2), (2.10), (2.11) and (2.8), we obtain

|Γε(y)| � ∑
n�k(ε)

max
x∈[an+1,an]

|y(x)|(an −an+1) � C6C7
[
Φ(ak(ε)+1)

]−(2−d)

� C6C7
[
C4ε−1]−(2−d)

= c1ε2−d , ε ∈ (0,ε0),

where c1 = C6C7C
−(2−d)
4 . Consequently, M d∗ (Γ(y)) � c1 > 0. �

Now we give a proof of Proposition 1.2. That is a corollary of the following lemma
obtained in [13, Lemma 28].
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LEMMA 2.2. Let y ∈C1(0,x0] be bounded on (0,x0] . Assume that y′ �∈ L1(0,x0]
and (1.13) holds for some d ∈ (1,2) . Then there exists c2 > 0 such that |Γε(y)| �
c2ε2−d for ε ∈ (0,1) .

Proof of Proposition 1.2. If y′ �∈L1(0,x0] , then Lemma 2.2 implies that M ∗d(Γ(y))
< ∞ . Now we assume that y′ ∈L1(0,x0] . Then y is rectifiable. Indeed, since

√
1+ x2 �

1+ |x| for x ∈ R , we have∫ x0

0

√
1+ |y′(x)|2dx �

∫ x0

0
(1+ |y′(x)|)dx < ∞.

Hence, by Proposition 1.1, we conclude that M ∗d(Γ(y)) = 0 < ∞ . �

3. Box-counting dimension of oscillatory solutions

In this section, we give proofs of Theorems 1.1 and 1.3.
According to Drábek and Manásevich [4] and Takeuchi [15], for each p , q ∈

(1,∞) , we define the generalized sine function sinp,q and the corresponding generalized
π by the inverse function of

sin−1
p,q x :=

∫ x

0
(1− sq)−1/pds, 0 � x � 1

and

πp,q := 2sin−1
p,q 1 = 2

∫ 1

0
(1− sq)−1/pds,

respectively. We note here that sinp,q(πp,q/2) = 1. The function sinp,q x is increasing
in [0,πp,q/2] onto [0,1] . We extend it to (πp,q/2,πp,q] by sinp,q(πp,q − x) and to the
whole real line R as the odd 2πp,q -periodic continuation of the function. Then sinp,q x
is a solution of

(φp(S′))′ +
q
p′

φq(S) = 0, S(0) = 0, S′(0) = 1.

We define the generalized cosine function cosp,q by cosp,q x := (sinp,q x)′ for x ∈ R .
Then we have

|sinp,q x|p + |cosp,q x|q = 1, x ∈ R.

For Emden-Fowler equations, we have the following asymptotic behavior result
obtained by J. S. W. Wong [18].

PROPOSITION 3.1. Let γ > 0 and γ �= 1 . Assume that f ∈C2(0,x0] , f (x) > 0 for
x ∈ (0,x0] , limx→+0 f (x) = ∞ , f−1 f ′+ ∈ L1(0,x0] and ( f−(γ∗+2)/(γ∗+1) f ′)′ ∈ L1(0,x0] ,
where f ′+(x) = max{ f ′(x),0} and γ∗ = max{γ,1} . Then, for each nontrivial solution
y of (1.1), there exist functions V , ϕ ∈C1(0,x0] such that

y(x) = [ f (x)]−
1

γ+3 [V (x)]
1

γ+1 sin2,γ+1(ϕ(x)), (3.1)

y′(x) = −[ f (x)]
1

γ+3 [V (x)]
1
2 cos2,γ+1(ϕ(x)), (3.2)
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lim
x→+0

V (x) = V0 for some constant V0 > 0, (3.3)

lim
x→+0

ϕ(x) = ∞, (3.4)

ϕ ′(x) = −[ f (x)]
2

γ+3 [V (x)]
γ−1

2(γ+1) +
1

γ +1
f ′(x)
f (x)

sin2,γ+1(ϕ(x))cos2,γ+1(ϕ(x)) (3.5)

for x ∈ (0,x0] .

The following lemma was also obtained by J. S. W. Wong [18, Lemma 2]

LEMMA 3.1. Assume that f ∈C2(0,x0] , f (x) > 0 for x∈ (0,x0] , limx→+0 f (x) =
∞ , and ( f−(γ∗+2)/(γ∗+1) f ′)′ ∈ L1(0,x0] , where γ∗ = max{γ,1} . Then

lim
x→+0

[ f (x)]−
γ+5
γ+3 f ′(x) = 0.

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let y be a nontrivial solution of (1.1). Proposition 3.1
implies that there exist V , ϕ ∈ C1(0,x0] such that (3.1)–(3.5) hold. Therefore, y is
oscillatory near x = 0 and bounded on (0,x0] . Set

a(x) = [ f (x)]−
1

γ+3 , v(x) = [V (x)]
1

γ+1 , Φ(x) = [ f (x)]
2

γ+3 .

From Lemma 3.1, (3.3) and (3.5), it follows that

lim
x→+0

−ϕ ′(x)
Φ(x)

= V
γ−1

2(γ+1)
0 (3.6)

and

lim
x→+0

([Φ(x)]−1)′ = − 2
γ +3

lim
x→+0

[ f (x)]−
γ+5
γ+3 f ′(x) = 0.

By (3.3), (3.4) and (3.6), there exists x1 ∈ (0,x0] such that v(x) > 0, ϕ(x) > 0 and
ϕ ′(x) < 0 for x ∈ (0,x1] . Applying Theorem 1.2, we have M d∗ (Γ(y)) > 0.

Next we will show that M ∗d(Γ(y)) < ∞ , by Proposition 1.2. From (3.1) and (3.3),
it follows that

|y(x)| � C1[ f (x)]
− 1

γ+3 , x ∈ (0,x0]

for some C1 > 0. Since f ′(x) < 0 for x ∈ (0,x0] , we have

sup
ξ∈(0,x]

|y(ξ )| � C1[ f (x)]
− 1

γ+3 , x ∈ (0,x0].

By (3.2), we obtain

|y′(x)| � C2[ f (x)]
1

γ+3 , x ∈ (0,x0]

for some C2 > 0. Hence, Proposition 1.2 shows that M ∗d(Γ(y)) < ∞ . �

Finally, we give a proof of Theorem 1.3. To this end, we need the following
Proposition 3.2 and Lemma 3.2, which were established by Pašić and Wong [14].
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PROPOSITION 3.2. Let p > 1 . Assume that (1.2) and (1.15) hold. Then, for each
nontrivial solution y of (1.14), there exist functions V , ϕ ∈C1(0,x0] satisfying (3.3),
(3.4) and

y(x) = (p−1)
1

pp′ [ f (x)]−
1

pp′ [V (x)]
1
p sinp,p(ϕ(x)), (3.7)

y′(x) = −(p−1)
1
p2 [ f (x)]

1
p2 [V (x)]

1
p cosp,p(ϕ(x)), (3.8)

ϕ ′(x) =−(p−1)−
1
p [ f (x)]

1
p +

1
p

f ′(x)
f (x)

sinp,p(ϕ(x))|cosp,p(ϕ(x))|p−2 cosp,p(ϕ(x))

(3.9)

for x ∈ (0,x0] .

LEMMA 3.2. Let p > 1 . Assume that (1.2) and (1.15) hold. Then

lim
x→+0

[ f (x)]−
1
p−1 f ′(x) = 0.

Proof of Theorem 1.3. Let y be a nontrivial solution of (1.14). By Proposition 3.2,
there exist V , ϕ ∈C1(0,x0] such that (3.3), (3.4), (3.7), (3.8), and (3.9) hold. Then y
is oscillatory near x = 0 and bounded on (0,x0] . Set

a(x) = [ f (x)]−
1

pp′ , v(x) = (p−1)
1

pp′ [V (x)]
1
p , Φ(x) = [ f (x)]

1
p .

By Lemma 3.2 and (3.9), we find that

lim
x→+0

−ϕ ′(x)
Φ(x)

= (p−1)−
1
p (3.10)

and

lim
x→+0

([Φ(x)]−1)′ = − 1
p

lim
x→+0

[ f (x)]−
1
p−1 f ′(x) = 0.

From (3.3), (3.4) and (3.10), it follows that v(x) > 0, ϕ(x) > 0 and ϕ ′(x) < 0 on (0,x1]
for some x1 ∈ (0,x0] . Therefore, Theorem 1.2 implies that M d∗ (Γ(y)) > 0.

By (3.7), there exists a constant C1 > 0 such that

|y(x)| � C1[ f (x)]
− 1

pp′ , x ∈ (0,x0].

Since f ′(x) < 0 for x ∈ (0,x0] , we have

sup
ξ∈(0,x]

|y(ξ )| � C1[ f (x)]
− 1

pp′ , x ∈ (0,x0].

From (3.8), it follows that

|y′(x)| � C2[ f (x)]
1
p2 , x ∈ (0,x0]

for some C2 > 0. Hence, Proposition 1.2 implies that M ∗d(Γ(y)) < ∞ . �
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[9] M. K. KWONG, M. PAŠIĆ AND J. S. W. WONG, Rectifiable oscillations in second-order linear
differential equations, J. Differential Equations 245 (2008), 2333–2351.

[10] M. NAITO, A remark on the existence of slowly growing positive solutions to second order super-
linear ordinary differential equations, No. DEA Nonlinear Differential Equations Appl. 20 (2013),
1759–1769.
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