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EXISTENCE AND UNIQUENESS OF MONOTONE POSITIVE SOLUTIONS

FOR A THIRD–ORDER THREE–POINT BOUNDARY VALUE PROBLEM

LI ZHAO, WEIXUAN WANG AND CHENGBO ZHAI

(Communicated by Meiqiang Feng)

Abstract. In this paper, we study the existence and uniqueness of monotone positive solutions
for a class of nonlinear third-order three-point boundary value problem. The main tool is a fixed
point theorem of generalized concave operators in ordered Banach spaces. An example is given
to illustrate the main result.

1. Introduction

In this article, we discuss the existence and uniqueness of monotone positive solu-
tions for the following third-order differential equation

u′′′(t)+ f (t,u(t),u′(t)) = 0, t ∈ (0,1), (1.1)

under three-point boundary conditions

u(0) = u′(0) = 0, u′(1) = αu′(η), (1.2)

where η ∈ (0,1) , α > 0, αη < 1, f : [0,1]× [0,+∞)× [0,+∞)→ [0,+∞) is continu-
ous. Here, the solution u∗(t) of the problem (1.1), (1.2) is called positive if u∗(t) > 0,
t ∈ (0,1) . A monotone positive solution means increasing positive solution.

In several decades, third-order ordinary differential equations have extensive ap-
plications in mechanics and engineering. So the results on the existence of solutions or
positive solutions for nonlinear third-order ordinary differential equations with three-
point boundary conditions have been obtained continuously in the literature, see [1–26,
28, 29] and references therein. For example, Guo et al. [8, 9] gave the existence
of at least one or three positive solutions for the problem (1.1), (1.2) by using the
Krasnosel’skii fixed point theorem and the Leggett-Williams fixed point theorem, re-
spectively. Based upon the upper and lower solutions and the maximum principle, Yao,
Feng [24] and Feng, Liu [4] established the existence of solutions for the problem (1.1),
(1.2) with α = 0, respectively. From literature, we can see that there are many results
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on the existence of positive solutions, see [5, 8, 9, 11, 12, 18–21, 25] for instance. On
the other hand, there are some papers which were concerned with the uniqueness of
positive solutions, see [15, 16, 26] for details.

Different from the papers mentioned above, in this paper we will discuss the exis-
tence and uniqueness of monotone positive solutions for the problem (1.1), (1.2). The
method used here is a fixed point theorem of generalized concave operators in ordered
Banach spaces. As we know, there has no papers considered monotone positive solu-
tions for nonlinear third-order differential equation boundary value problems.

2. Preliminaries

In this section, we give some definitions and preliminary facts.
Let E be a real Banach space which is partially ordered by a cone P ⊂ E , i.e.,

x � y if and only if y− x ∈ P . By θ we denote the zero element of E . A non-empty
closed convex set P ⊂ E is called a cone if it satisfies

(i) x ∈ P , λ > 0 =⇒ λx ∈ P ;
(ii) x ∈ P , −x ∈ P ⇒ x = θ .
P is called normal if there is a constant N > 0 such that, for all x,y∈E , θ � x � y

implies ‖x‖ � N‖y‖ ; in this case N is called the normality constant of P .
We say that an operator A : E → E is increasing if x � y implies Ax � Ay .
For x,y ∈ E , the notation x ∼ y means that there exist λ > 0 and μ > 0 such that

λx � y � μx . Clearly, ∼ is an equivalence relation. Given h > θ (i.e., h � θ and
h 
= θ ), we denote by Ph the set Ph = {x ∈ E|x ∼ h} . Clearly, Ph ⊂ P is convex and
λPh = Ph for all λ > 0.

Our main tool is the following fixed point theorem of generalized concave opera-
tor, which will be used in the latter proof. See [27] for further information.

THEOREM 2.1. (see [27, Lemma 2.1] and [27, Theorem 2.1]) Let h > θ and P
be a normal cone. Suppose:

(d1 ) A : P → P is increasing and Ah ∈ Ph ;
(d2 ) for any x ∈ P and t ∈ (0,1) , there exists α(t) ∈ (t,1) such that A(tx) �

α(t)Ax.
Then
(i) there exist u0 , v0 ∈ Ph and r ∈ (0,1) such that rv0 � u0 < v0 , u0 � Au0 �

Av0 � v0 ;
(ii) operator equation x = Ax has a unique solution in Ph .

REMARK 2.1. An operator A is said to be generalized concave if A satisfies con-
dition (d2) .

In what follows, we shall consider the Banach space E = C1[0,1] equipped with
the norm

‖u‖ = max{ max
0�t�1

|u(t)|, max
0�t�1

|u′(t)|}.
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LEMMA 2.1. (see [19]) Assume that αη 
= 1 , y ∈C[0,1] , then the unique solu-
tion of the following equation

u′′′(t)+h(t) = 0, t ∈ (0,1), (2.1)

with boundary conditions (1.2) can be given by

u(t) =
∫ 1

0
G(t,s)y(s)ds, (2.2)

where

G(t,s) = K(t,s)+
αt2

2(1−αη)
K1(η ,s), (2.3)

K(t,s) =
1
2

⎧⎨
⎩

t2(1− s), 0 � t � s � 1,

s(−t2 +2t− s), 0 � s � t � 1,
(2.4)

and

K1(t,s) :=
∂K(t,s)

∂ t
=

⎧⎨
⎩

(1− s)t, 0 � t � s � 1,

(1− t)s, 0 � s � t � 1.

To establish the existence and uniqueness of monotone positive solutions for the
problem (1.1), (1.2), we give some properties of functions K(t,s) , K1(t,s) .

LEMMA 2.2. For all (t,s) ∈ [0,1]× [0,1] , we have
(i) 0 � K1(t,s) � t � 1;
(ii) 0 � 1/2t2(1− s)s � K(t,s) � t2 � 1.

Proof. The conclusion (i) is obvious. So we only need to prove the conclusion
(ii) . For all t,s ∈ [0,1] , if s � t , it follows from (2.4) that

K(t,s) =
1
2
(2t− t2− s)s � 1

2
(2t− t2)t � t2 � 1,

and

K(t,s) =
1
2
(2t− t2− s)s =

1
2
(2t− t2− s+ t2− t2 + t2s− t2s)s

=
1
2
t2(1− s)s+

1
2
(1− t)[(t− s)+ (1− s)t]s

� 1
2
t2(1− s)s � 0.

If t � s , then from (2.4) we have

0 � 1
2
t2(1− s)s � K(t,s) =

1
2
t2(1− s) � t2 � 1.

The proof is completed. �
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3. Monotone positive solutions

For seek monotone positive solutions, we consider the closed convex cone of non-
negative increasing functions P = {u∈ E|u(t) � 0,u′(t) � 0,∀t ∈ [0,1]}. Note that this
induces an order relation �̇ in E by defining u�̇v if and only if u− v ∈ P . It is easy
to prove that this cone is normal. Namely, if u�̇v , then u(t) � v(t) , u′(t) � v′(t) ,
t ∈ [0,1] . Therefore, ‖u‖ � ‖v‖ and the normality constant is 1 .

Define an operator

Au(t)=
∫ 1

0
K(t,s) f (s,u(s),u′(s))ds+

αt2

2(1−αη)

∫ 1

0
K1(η ,s) f (s,u(s),u′(s))ds, t ∈ [0,1].

Then

(Au)′(t)=
∫ 1

0
K1(t,s) f (s,u(s),u′(s))ds+

αt
1−αη

∫ 1

0
K1(η ,s) f (s,u(s),u′(s))ds, t ∈ [0,1].

THEOREM 3.1. Assume that
(H1 ) f (t,x,y) : [0,1]× [0,+∞)× [0,+∞)→ [0,+∞) is continuouswith f (t,0,0) 
≡

0 , t ∈ [0,1];
(H2 ) f (t,x,y) are increasing in x,y ∈ [0,+∞) for fixed t ∈ [0,1] respectively;
(H3 ) for any λ ∈ (0,1) and x,y � 0 , there exists ϕ(λ ) ∈ (λ ,1) such that

f (t,λx,λy) � ϕ(λ ) f (t,x,y).

Then:
(i) there are u0,v0 ∈ Ph such that

u0(t)�
∫ 1

0
K(t,s) f (s,u0(s),u′0(s))ds+

αt2

2(1−αη)

∫ 1

0
K1(η ,s) f (s,u0(s),u′0(s))ds, t ∈ [0,1],

u′0(t)�
∫ 1

0
K1(t,s) f (s,u0(s),u′0(s))ds+

αt
1−αη

∫ 1

0
K1(η ,s) f (s,u0(s),u′0(s))ds, t ∈ [0,1],

v0(t)�
∫ 1

0
K(t,s) f (s,v0(s),v′0(s))ds+

αt2

2(1−αη)

∫ 1

0
K1(η ,s) f (s,v0(s),v′0(s))ds, t ∈ [0,1],

v′0(t)�
∫ 1

0
K1(t,s) f (s,v0(s),v′0(s))ds+

αt
1−αη

∫ 1

0
K1(η ,s) f (s,v0(s),v′0(s))ds, t ∈ [0,1];

(ii) the problem (1.1), (1.2) has a unique monotone positive solution u∗ in Ph ,
where h(t) = t2 , t ∈ [0,1].

Proof. We prove that all the conditions of Theorem 2.1 are satisfied. The proof is
divided into several steps.

Step 1. We show that A : P → P is increasing. For u ∈ P , we know that u(t) � 0,
u′(t) � 0, t ∈ [0,1]. From (H1) , (H2) and Lemmas 2.1, 2.2, we have Au(t) � 0,
(Au)′(t) � 0, t ∈ [0,1]. Therefore, Au ∈ P . For any u1 , u2 ∈ P with u1�̇u2 , we
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know that u1(t) � u2(t) , u′1(t) � u′2(t) , t ∈ [0,1] . Also from (H1) , (H2) , we have
Au1(t) � Au2(t) , (Au1)′(t) � (Au2)′(t) , t ∈ [0,1] . Then Au1�̇Au2 , that is: A : P → P
is an increasing operator.

Step 2. We prove that A : P → P is generalized concave. For any λ ∈ (0,1) and
u ∈ P , from (H2) , (H3) , we have

A(λu)(t)

=
∫ 1

0
K(t,s) f (s,λu(s),(λu)′(s))ds+

αt2

2(1−αη)

∫ 1

0
K1(η ,s) f (s,λu(s),(λu)′(s))ds

=
∫ 1

0
K(t,s) f (s,λu(s),λu′(s))ds+

αt2

2(1−αη)

∫ 1

0
K1(η ,s) f (s,λu(s),λu′(s))ds

� ϕ(λ )
[∫ 1

0
K(t,s) f (s,u(s),u′(s))ds+

αt2

2(1−αη)

∫ 1

0
K1(η ,s) f (s,u(s),u′(s))ds

]

= ϕ(λ )Au(t),

and

(A(λu))′(t)

=
∫ 1

0
K1(t,s) f (s,λu(s),λu′(s))ds+

αt
1−αη

∫ 1

0
K1(η ,s) f (s,λu(s),λu′(s))ds

� ϕ(λ )
[∫ 1

0
K1(t,s) f (s,u(s),u′(s))ds+

αt
1−αη

∫ 1

0
K1(η ,s) f (s,u(s),u′(s))ds

]

= ϕ(λ )(Au)′(t).

Hence, A(λu)(t) � ϕ(λ )Au(t) , (A(λu))′(t) � ϕ(λ )(Au)′(t) . So A(λu)�̇ϕ(λ )Au ,
∀ λ ∈ (0,1) , u ∈ P .

Step 3. We show that Ah ∈ Ph . That is, we need to prove that there exist two
constants l1 , l2 > 0 such that l1h�̇Ah�̇l2h . From (H2) and Lemma 2.2,

Ah(t) =
∫ 1

0
K(t,s) f (s,h(s),h′(s))ds+

αt2

2(1−αη)

∫ 1

0
K1(η ,s) f (s,h(s),h′(s))ds

=
∫ 1

0
K(t,s) f (s,s2,2s)ds+

αt2

2(1−αη)

∫ 1

0
K1(η ,s) f (s,s2 ,2s)ds

� 1
2
t2

∫ 1

0
s(1− s) f (s,s2,2s)ds

� 1
2

∫ 1

0
s(1− s) f (s,0,0)ds · t2,
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and

Ah(t) =
∫ 1

0
K(t,s) f (s,s2,2s)ds+

αt2

2(1−αη)

∫ 1

0
K1(η ,s) f (s,s2,2s)ds

� t2
∫ 1

0
f (s,s2,2s)ds+

αt2

2(1−αη)

∫ 1

0
f (s,s2,2s)ds

� t2
[∫ 1

0
f (s,1,2)ds+

α
2(1−αη)

∫ 1

0
f (s,1,2)ds

]
.

Moreover, also from (H2) and Lemma 2.2, we have

(Au)′(t) =
∫ 1

0
K1(t,s) f (s,u(s),u′(s))ds+

αt
1−αη

∫ 1

0
K1(η ,s) f (s,u(s),u′(s))ds

=
∫ 1

0
K1(t,s) f (s,s2,2s)ds+

αt
1−αη

∫ 1

0
K1(η ,s) f (s,s2 ,2s)ds

� 2t

[
α

2(1−αη)

∫ 1

0
K1(η ,s) f (s,0,0)ds

]

=
α

2(1−αη)

∫ 1

0
K1(η ,s) f (s,0,0)ds ·h′(t),

and

(Au)′(t) =
∫ 1

0
K1(t,s) f (s,s2,2s)ds+

αt
1−αη

∫ 1

0
K1(η ,s) f (s,s2 ,2s)ds

� 2t

[
1
2

∫ 1

0
f (s,1,2)ds+

α
2(1−αη)

∫ 1

0
K1(η ,s) f (s,1,2)ds

]

=
[
1
2

∫ 1

0
f (s,1,2)ds+

α
2(1−αη)

∫ 1

0
K1(η ,s) f (s,1,2)ds

]
·h′(t).

Let

c1 =
1
2

∫ 1

0
s(1− s) f (s,0,0)ds,

c2 =
∫ 1

0
f (s,1,2)ds+

α
2(1−αη)

∫ 1

0
f (s,1,2)ds,

c3 =
α

2(1−αη)

∫ 1

0
K1(η ,s) f (s,0,0)ds,

c4 =
1
2

∫ 1

0
f (s,1,2)ds+

α
2(1−αη)

∫ 1

0
K1(η ,s) f (s,1,2)ds.

By (H1) , (H2) , we can easily get c2 > c1 > 0, c4 > c3 > 0. Let l1 = min{c1,c3} ,
l2 = max{c2,c4}. We have 0 < l1 < l2 , and then

l1h(t) � c1h(t) � Ah(t) � c2h(t) � l2h(t),
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(l1h)′(t) = l1h
′(t) � c3h

′(t) � (Ah)′(t) � c4h
′(t) � l2h

′(t) = (l2h)′(t), t ∈ [0,1].

Thus, l1h�̇Ah�̇l2h . That is, Ah ∈ Ph .
Finally, an application of Theorem 2.1 implies that:
(i) there are u0 , v0 ∈ Ph such that u0�̇Au0 , Av0�̇v0 ;
(ii) operator equation u = Au has a unique solution u∗ in Ph . That is, u0(t) �

Au0(t) , Av0(t) � v0(t) , u′0(t) � (Au0)′(t) , (Av0)′(t) � v′0(t) and

u0(t)�
∫ 1

0
K(t,s) f (s,u0(s),u′0(s))ds+

αt2

2(1−αη)

∫ 1

0
K1(η ,s) f (s,u0(s),u′0(s))ds, t ∈ [0,1],

u′0(t)�
∫ 1

0
K1(t,s) f (s,u0(s),u′0(s))ds+

αt
1−αη

∫ 1

0
K1(η ,s) f (s,u0(s),u′0(s))ds, t ∈ [0,1],

v0(t)�
∫ 1

0
K(t,s) f (s,v0(s),v′0(s))ds+

αt2

2(1−αη)

∫ 1

0
K1(η ,s) f (s,v0(s),v′0(s))ds, t ∈ [0,1],

v′0(t)�
∫ 1

0
K1(t,s) f (s,v0(s),v′0(s))ds+

αt
1−αη

∫ 1

0
K1(η ,s) f (s,v0(s),v′0(s))ds, t ∈ [0,1];

and the problem (1.1), (1.2) has a unique solution u∗ in Ph . So u∗(t) � 0, u∗′(t) �
0, t ∈ [0,1]. Therefore, u∗(t) is a monotone positive solution of the problem (1.1),
(1.2). �

From Theorem 3.1, we can consider the uniqueness and existence of monotone
positive solutions for the following third-order differential equation

u′′′(t)+ f (t,u(t)) = 0, t ∈ (0,1), (3.1)

with the following three-point boundary conditions

u(0) = u′(0) = 0, u′(1) = αu′(η), (3.2)

where η ∈ (0,1) , α > 0, αη < 1.

THEOREM 3.2. Assume that
(H4 ) f (t,x) : [0,1]× [0,+∞)→ [0,+∞) is continuous with f (t,0) 
≡ 0 , t ∈ [0,1];
(H5 ) f (t,x) is increasing in x ∈ [0,+∞) for fixed t ∈ [0,1];
(H6 ) for any λ ∈ (0,1) and x � 0 , there exists ϕ(λ ) ∈ (λ ,1) such that

f (t,λx) � ϕ(λ ) f (t,x).

Then:
(i) there are u0,v0 ∈ Ph such that

u0(t) �
∫ 1

0
K(t,s) f (s,u0(s))ds+

αt2

2(1−αη)

∫ 1

0
K1(η ,s) f (s,u0(s))ds, t ∈ [0,1],

u′0(t) �
∫ 1

0
K1(t,s) f (s,u0(s))ds+

αt
1−αη

∫ 1

0
K1(η ,s) f (s,u0(s))ds, t ∈ [0,1],
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v0(t) �
∫ 1

0
K(t,s) f (s,v0(s))ds+

αt2

2(1−αη)

∫ 1

0
K1(η ,s) f (s,v0(s))ds, t ∈ [0,1],

v′0(t) �
∫ 1

0
K1(t,s) f (s,v0(s))ds+

αt
1−αη

∫ 1

0
K1(η ,s) f (s,v0(s))ds, t ∈ [0,1];

(ii) the problem (3.1), (3.2) has a unique monotone positive solution u∗ in Ph ,
where h(t) = t2 , t ∈ [0,1].

Now we can consider

u′′′(t)+ f (t,u(t),u′(t)) = 0, t ∈ (0,1), (3.3)

under two-point boundary conditions

u(0) = u′(0) = 0, u′(1) = 0. (3.4)

By Lemma 2.2 (ii) and Theorem 2.1, we can easily obtain the following result.

THEOREM 3.3. Assume that (H1)–(H3) hold. Then:
(i) there are u0,v0 ∈ Ph such that

u0(t) �
∫ 1

0
K(t,s) f (s,u0(s),u′0(s))ds, t ∈ [0,1],

u′0(t) �
∫ 1

0
K1(t,s) f (s,u0(s),u′0(s))ds, t ∈ [0,1],

v0(t) �
∫ 1

0
K(t,s) f (s,v0(s),v′0(s))ds, t ∈ [0,1],

v′0(t) �
∫ 1

0
K1(t,s) f (s,v0(s),v′0(s))ds, t ∈ [0,1];

(ii) the problem (3.3), (3.4) has a unique monotone positive solution u∗ in Ph ,
where h(t) = t2 , t ∈ [0,1].

4. An example

Now, we present an example to illustrate the main result.

EXAMPLE 4.1. Consider the following third-order three-point boundary value
problem

u′′′(t)+ [u(t)]1/2 +[u′(t)]1/3 +(1− t)t1/2 = 0, t ∈ (0,1), (4.1)

u(0) = u′(0) = 0, u′(1) = 2u′(1/3). (4.2)

We can show that the problem (4.1), (4.2) has a unique monotone positive solution in
Ph , where h(t) = t2 , t ∈ [0,1] .

Proof. In this example, α = 2, η = 1/3. Let f (t,x,y) = x1/2 +y1/3 +(1− t)t1/2 .
It is not difficult to see that the conditions (H1) , (H2) hold. In addition, let ϕ(λ ) =
λ 1/2 . Then, the condition (H3) of Theorem 3.1 holds. Hence, by Theorem 3.1, the
conclusion follows, and the proof is complete. �
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