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LYAPUNOV INEQUALITIES FOR TWO–PARAMETRIC QUANTUM

HAMILTONIAN SYSTEMS AND THEIR APPLICATIONS

YOUSEF GHOLAMI

Abstract. This paper deals with study of the two-parametric quantum Hamiltonian systems. The
main objective in our study is Lyapunov inequalities of the two-parametric quantum Hamilto-
nian systems. In this paper, we first define two-parametric quantum analogous of the Leibniz
rule, Cauchy-Schwarz and Holder inequalities and consequently as theoretical part of our main
results, by the use of new Leibniz rule and Cauchy-Schwarz inequality on the considered Hamil-
tonian systems we obtain corresponding Lyapunov inequalities. Applicability of the obtained
Lyapunov inequalities is examined by presenting a disconjugacy and at the same time a nonex-
istence criterion for the related Hamiltonian systems.
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