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Abstract. This paper deals with study of the two-parametric quantum Hamiltonian systems. The
main objective in our study is Lyapunov inequalities of the two-parametric quantum Hamilto-
nian systems. In this paper, we first define two-parametric quantum analogous of the Leibniz
rule, Cauchy-Schwarz and Holder inequalities and consequently as theoretical part of our main
results, by the use of new Leibniz rule and Cauchy-Schwarz inequality on the considered Hamil-
tonian systems we obtain corresponding Lyapunov inequalities. Applicability of the obtained
Lyapunov inequalities is examined by presenting a disconjugacy and at the same time a nonex-
istence criterion for the related Hamiltonian systems.

1. Introduction

As we know, origin of the quantum calculus turns to the eighteenth century when
scientists such as L. Euler were studying the wave theory of light based on their ex-
perimental observations. Besides, at the beginning of the twentieth century, M. Planck
proposed a new theory about nature of light that a few years later accepted as theory of
quantum physics. According to the Planck’s theory, light has a discrete nature consist-
ing of energy particles that he called them quanta. But, it was F. H. Jackson that in the
first decade of twentieth century formulated the quantum calculus systematically. Ac-
cording to the Jackson’s quantum calculus that is known as q -calculus, for real-valued
function f : qN0 → R , q -difference operator is defined as

(Dq f ) (t) :=
f (t)− f (qt)

(1−q)t
, 0 < q < 1, t ∈ qN0 = {1,q,q2, . . .}, N0 := 0,1,2,3, . . . .

Consequently, Dn
q f (t) := Dq

(
Dn−1

q f
)
(t), n ∈ Z

+ , where by convention, D0
q f (t) :=

f (t) . Also, q -integral or Jackson integral is given by

(Iq f ) (t) =
∫ t

0
f (t)dqt := (1−q)t

∞

∑
n=0

qn f (qnt) ,

such that the infinite series in the right hand side is assumed to be convergent.
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In q -calculus, the q -bracket and q -factorial are defined as

[n]q :=
1−qn

1−q
, [n]q! :=

n

∏
k=1

[k]q, n ∈ Z
+, [0]q! = 1,

respectively. In this case, Dqxn := [n]qxn−1 . More details about q -calculus can be
found in references [13]–[16], [19].

On the other hand, history of the Lyapunov inequalities turns to the last decade of
the nineteenth century where the Russian mathematician A. M. Lyapunov was studying
stability of the second order differential equations with nonconstant ω -periodic coeffi-
cient,

y′′ +q(t)y = 0, −∞ < t < +∞, (q(t + ω) = q(t)). (1.1)

Indeed, the cornerstone of the Lyapunov inequalities has been founded in frame of the
following stability criterion for the differential equation (1.1) as follows.

THEOREM 1.1. (cf. [18]) If the function q takes only positive or zero values(without
being identically zero), and if further it satisfies the condition

ω
∫ ω

0
q(t) � 4,

then roots of the characteristic equation corresponding to (1.1) will always be complex
and their modulus are equal to 1.

By means of the well known Floquet theory, one can derive that the outcome of
Theorem 1.1 is equivalent to the stability of the differential equation (1.1). Nowadays,
the inequality

ω
∫ ω

0
q(t)dt > 4, (1.2)

is known as Lyapunov inequality.
Over 125 years, considerable number of mathematicians have been indicated this

fact that Lyapunov inequalities of differential equations provide not only stability cri-
teria but also propose a wide range of criteria to assessment concepts such as disconju-
gacy, nonexistence, oscillatory properties, upper bound estimation for real zeros of the
nontrivial solutions and lower bound estimation for eigenvalues of the certain classes
of the eigenvalue problems. To more consultation on these applications we refer the
followers to the research papers [3]–[8], [10], [11], [17], [20]–[24] and references cited
therein.

P. Hartman [12] in 1964 started the systematic investigation on Lyapunov inequal-
ities by presenting the following theorem.

THEOREM 1.2. [12] If the boundary value problem{
y′′(t)+q(t)y(t) = 0, a < t < b,
y(a) = 0 = y(b), (1.3)
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has a nontrivial solution, where q is a real and continuous function, then

∫ b

a
|q(s)|ds >

4
b−a

. (1.4)

Hartman, applied the Lyapunov inequality (1.4) to establish some upper bound
estimations for maximum number of real zeros of nontrivial solutions of the boundary
value problem (1.3).

As stated, we are interested in the planar Hamiltonian systems via integral in-
equalities. By a Hamiltonian system, we mean a dynamical system described by a
scalar function H(u,v) so-called Hamiltonian function. In this case, the Hamiltonian
systems is defined by the following Hamiltonian equations:

∂H
∂u

:=
dv
dt

,
∂H
∂v

:= −du
dt

, u,v : R
N → R, N ∈ Z

+.

Regarding this Hamiltonian system, 2N -dimensional vector r(t) := (u,v) is the so-
lution of initial value problem defined by the above equations with the initial value
r(0) := r0 ∈ R

2N . Maybe the main advantage of the Hamiltonian systems in compari-
son with the other differential systems is their better description of the evolution process
in physical systems even if corresponding initial value problem cannot be solved analyt-
ically. Using the Hamiltonian systems, we can study dynamical systems related to the
chaos, general relativity, planetary systems and electromagnetic fields for instance. So,
studying the Lyapunov inequalities of the Hamiltonian systems and their applications
can be considered as an important research field that links theory of the mathemati-
cal inequalities to theory of differential equations. In this way, we mention some of
the selected inspiring research papers concerning the planar Hamiltonian systems as
follows.

We begin with the reference [10]. In this paper, the authors first consider the linear
Hamiltonian system

x′ = a(t)x+b(t)u, u′ = −c(t)x−a(t)u, t ∈ R, (1.5)

such that a, b and c are real-valued piece-wise continuous functions on R . Relying on
some assumptions on the nontrivial solution (x,u) , corresponding Lyapunov inequality
of the Hamiltonian system (1.5) is obtained as

∫ β

α
|a(t)|dt +

{∫ β

α
b(t)dt.

∫ β

α
c+(t)dt

} 1
2

� 2, α,β ∈ R, α < β , (1.6)

in which c+(t) = max{c(t),0} . In second phase, they considered the discrete Hamil-
tonian system

Δx(t) = φ(t)x(t +1)+ ψ(t)u(t), Δu(t) = −ρ(t)x(t +1)−φ(t)u(t), t ∈ Z. (1.7)

Similar to the previous phase, they obtained the following Lyapunov inequalities for
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the Hamiltonian system (1.7).

β−2

∑
t=α

|φ(t)|+
{

β−1

∑
t=α

ψ(t).
β−2

∑
t=α

ρ+(t)

} 1
2

� 2, (1.8)

β−2

∑
t=α

|φ(t)|+
{

β−2

∑
t=α

ψ(t).
β−2

∑
t=α

ρ+(t)

} 1
2

� 1, (1.9)

such that α,β ∈ Z and α < β −2. As applications to the Lyapunov inequalities (1.6),
(1.8) and (1.9), stability and disconjugacy of the Hamiltonian systems (1.5) and (1.7)
have been established.

In continuation, the author in [24] considered the discrete Hamiltonian system
(1.7) and using the concept of discrete exponential

ep(n,s) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n−1

∏
r=s

(1+ p(r)) ; s � n,

s−1

∏
r=n

1
1+ p(r)

, ; s > n,

in which n,s ∈ Z and p : Z → R is a function such that 1+ p(n) �= 0, n ∈ Z , obtained
the Lyapunov inequality

β−1

∑
t=α

ψ(t).
β−2

∑
t=α

ρ+(t) � 4exp

(
−

β−2

∑
t=α

| ln(|1−φ(t)|)|
)

. (1.10)

He used this Lyapunov inequality to establish stability and disconjugacy of the Hamil-
tonian system (1.7).

Also, the authors in [23] theoretically studied the nonlinear Hamiltonian system

x′(t) = α(t)x(t)+ β (t)|y(t)|μ−2y(t), y′(t) = −γ(t)|x(t)|ν−2x(t)−α(t)y(t), (1.11)

such that 1
μ + 1

ν = 1 and α,β and γ are locally Lebesgue integrable real-valued func-
tions on R . Corresponding to this Hamiltonian system, the author obtained sequence
of Lyapunov inequalities that we just mention one of them as follows:

∫ b

a

ξ (t)η(t)
ξ (t)+ η(t)

γ+(t)dt � 1, a,b ∈ R, a < b, (1.12)

where,

ξ (t) =
[∫ t

a
β (τ)exp

(
μ
∫ t

τ
α(s)ds

)
dτ
] ν

μ
,

η(t) =
[∫ b

t
β (τ)exp

(
−μ

∫ τ

t
α(s)ds

)
dτ
] ν

μ
.
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Furthermore, to see much more investigations about impulsive Hamiltonian systems,
non-impulsive Hamiltonian systems, non-integer impulsive linear systems or matrix
approach Lyapunov inequalities for Hamiltonian systems we refer the interested fol-
lowers to the references [1]–[9], [11], [17], [22] and references cited therein.

Besides the variety of investigations on the Hamiltonian systems, to the best of
our knowledge there is no any research work about Lyapunov inequalities of quantum
Hamiltonian systems in the literature. This absence inspired us to initiate this investiga-
tion about linear Hamiltonian systems. In this way, motivated by the above mentioned
research works and discussions, we consider the two-parametric quantum Hamiltonian
system ⎧⎨

⎩
(Dp,qu)(t) = a(t)u(pt)+b(t)v(qt),

0 < q < p � 1,
(Dp,qv) (t) = −c(t)u(pt)−a(t)v(qt),

(1.13)

such that Dp,q stands for two parametric quantum difference, a,b and c are real-valued
functions and b(t) > 0. The corresponding Hamiltonian function is given by

H(u,v) :=
c(t)u2

p+q
+a(t)uv+

b(t)v2

p+q
. (1.14)

Having a nontrivial solution in hand and some hypotheses about zeros of this solution,
we will obtain relevant Lyapunov inequality for quantum Hamiltonian system (1.13).
Afterward, applicability of the obtained Lyapunov inequality will be examined by pre-
senting some disconjugacy and nonexistence criteria to estimate qualitative dynamics
of the Hamiltonian system (1.13).

At the end of this section we state the organization of the paper. In Section 2,
we present a brief overview on two-parametric quantum calculus particularly those
parts that will be needed in this paper. In this section we present some technical tools
such as Cauchy-Schwarz and Holder inequalities for two-parametric quantum calculus.
In Section 3, first in the theoretical step we obtain Lyapunov inequality of quantum
Hamiltonian system (1.13) and then in applied step we examine ability of the obtained
Lyapunov inequality to establish qualitative behavior of Hamiltonian system (1.13) as
stated above. For simplicity, from now on we call the two-parametric quantum differ-
ences as (p,q)-differences as well as the other two-parametric quantum elements.

2. Preliminaries

As mentioned previously, we begin this section with fundamental concepts of the
(p,q)-calculus.

DEFINITION 2.1. ([19]) Assume 0 < q < p � 1 and f : R+ → R . The (p,q)-
difference of f is defined by

(Dp,q f ) (t) :=
f (pt)− f (qt)

(p−q)t
, t ∈ R+. (2.1)
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In this case, we define Dn
p,q f := Dp,q

(
Dn−1

p,q f
)
, n ∈ Z

+ . By convention we define
D0

p,q f := f . Note that, taking p = 1, the (p,q)-difference Dp,q reduces to the classic
q -difference Dq .

In the sequel, we present (p,q)-Jackson integrals that generalize the classic Jack-
son integrals.

DEFINITION 2.2. ([19]) Assume 0< q< p� 1. Then the (p,q)-Jackson integral
of real-valued function f is defined by

(Ip,q f ) (t) =
∫ t

0
f (s)dp,qs := (p−q)t

∞

∑
n=0

qn

pn+1 f

(
qn

pn+1 t

)
. (2.2)

Note that, taking p = 1 gives us the classic Jackson integral.

Next, we define the (p,q)-bracket and (p,q)-factorial as follows,

[n]p,q :=
pn−qn

p−q
, [n]p,q! :=

n

∏
k=1

[k]p,q!, n ∈ Z
+, [0]p,q! := 1, (2.3)

respectively, More details can be found in [19] and cited bibliography therein. We
notice that as in the classic q -calculus, Dp,qxn := [n]p,qxn−1, n ∈ Z

+ .
As an instant application of this power rule, we show here that why the function

H(u,v) defined by (1.14) is called the Hamiltonian of the (p,q)-Hamiltonian system
(1.13). To this aim, by the use of (2.3), we get that

Dp,qx
2 := [2]p,qx := (p+q)x.

Now, considering H(u,v) in (1.14) it follows that

∂p,qH

∂v
:= a(t)u+

p+q
p+q

b(t)v = Dp,qu,
∂p,qH

∂u
:= c(t)u+

p+q
p+q

a(t)v = −Dp,qv.

This ensures that H(u,v) is the Hamiltonian of the Hamiltonian system (1.13). Let us

mention that by
∂p,qH

∂v
we mean the partial (p,q)-difference of H with respect to v

that is defined as
∂p,qH

∂v
:=

H(u,v(pt))−H(u,v(t))
(p−q)t

.

In this position we are going to present a theorem including some of the basic properties
of (p,q)-calculus.

THEOREM 2.3. ([19]) Assume 0 < q < p � 1 . If λ ,ci ∈ R, i = 1,2 and f ,g :
R+ → R , then

(P1) Dp,qλ = 0 ;

(P2) Dp,q (c1 f + c2g)(t) = c1Dp,q f (t)+ c2Dp,qg(t);
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(P3) (Dp,q f g) (t) = f (pt)Dp,qg(t)+g(qt)Dp,q f (t);

(P4)
(

Dp,q
f
g

)
(t) =

g(qt)Dp,q f (t)− f (qt)Dp,qg(t)
g(pt)g(qt)

, g(t) �≡ 0 ;

(P5)
∫ b

a
f (t)dp,qt =

∫ b

0
f (t)dp,qt−

∫ a

0
f (t)dp,qt ;

(P6) Dp,q

∫ b

a
f (t)dp,qt = f (t) ;

(P7)
∫ b

a
Dp,q f (t)dp,qt = f (b)− f (a) .

Next, we state and prove (p,q)-approaches of the Cauchy-Schwarz and Holder in-
equalities. The Cauchy-Schwarz inequality will be played key role to extract Lyapunov
inequality of the (p,q)-Hamiltonian system (1.13).

LEMMA 2.4. ((p,q)-Cauchy-Schwarz inequality) Assume f ,g : R+ →R are two
(p,q)-Jackson integrable functions. Then, the (p,q)-Cauchy-Schwarz inequality

∣∣∣∣
∫ t

0
f (s)g(s)dp,qs

∣∣∣∣�
√∫ t

0
f 2(s)dp,qs.

√∫ t

0
g2(s)dp,qs, (2.4)

holds.

Proof. According to Definition 2.2, we have∣∣∣∣
∫ t

0
f (s)g(s)dp,qs

∣∣∣∣= (p−q)t
∣∣∣∣ ∞

∑
n=0

qn

pn+1 f

(
qn

pn+1 t

)
g

(
qn

pn+1 t

)∣∣∣∣
= (p−q)t

∣∣∣∣ ∞

∑
n=0

√
qn

pn+1 f

(
qn

pn+1 t

)
.

√
qn

pn+1 g

(
qn

pn+1 t

)∣∣∣∣.
Now, applying the discrete Cauchy-Schwarz inequality on the recent inequality, we get
that

∣∣∣∣
∫ t

0
f (s)g(s)dp,qs

∣∣∣∣� (p−q)t

(
∞

∑
n=0

qn

pn+1 f 2
(

qn

pn+1 t

)) 1
2

.

(
∞

∑
n=0

qn

pn+1 g2
(

qn

pn+1 t

)) 1
2

=

√
(p−q)t

∞

∑
n=0

qn

pn+1 f 2

(
qn

pn+1 t

)
.

√
(p−q)t

∞

∑
n=0

qn

pn+1 g2

(
qn

pn+1 t

)

=

√∫ t

0
f 2(t)dp,qt.

√∫ t

0
g2(t)dp,qt.

This completes the proof. �
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LEMMA 2.5. ((p,q)-Holder inequality) Assume α,β ∈ (1,+∞) with 1
α + 1

β =
1 , and f ,g : R+ → R are two (p,q)-Jackson integrable functions. Then, the (p,q)-
Holder inequality

∫ t

0
| f (s)||g(s)|dp,qs �

(∫ t

0
| f (s)|α dp,qs

) 1
α
(∫ t

0
|g(s)|β dp,qs

) 1
β

, (2.5)

is satisfied.

Proof. Using Definition 2.2, we get∫ t

0
| f (s)||g(s)|dp,qs

= (p−q)t
∞

∑
n=0

qn

pn+1

∣∣∣∣ f
(

qn

pn+1 t

)∣∣∣∣
∣∣∣∣g
(

qn

pn+1 t

)∣∣∣∣
= (p−q)t

∞

∑
n=0

{(
qn

pn+1

) 1
α
∣∣∣∣ f
(

qn

pn+1 t

)∣∣∣∣
}{(

qn

pn+1

) 1
β
∣∣∣∣g
(

qn

pn+1 t

)∣∣∣∣
}

.

Now, applying the discrete Holder inequality on the recent inequality, yields∫ t

0
| f (s)||g(s)|dp,qs

�
(

(p−q)t
∞

∑
n=0

qn

pn+1

∣∣∣∣ f
(

qn

pn+1 t

)∣∣∣∣
α
) 1

α

.

(
(p−q)t

∞

∑
n=0

qn

pn+1

∣∣∣∣g
(

qn

pn+1 t

)∣∣∣∣
β
) 1

β

=
(∫ t

0
| f (t)|αdp,qt

) 1
α
(∫ t

0
|g(t)|β dp,qt

) 1
β

.

This completes the proof. �

REMARK 2.6. If we concentrate on (p,q)-analogous of the Cauchy-Schwarz and
Holder inequalities (2.4) and (2.5), respectively, we figure out this fact that if we con-
sider the Jackson integral

∫ t
a z(s)dp,qs instead

∫ t
0 z(s)dp,qs , so Definition 2.2 and the

property (P5 ) in Theorem 2.3 imply that∫ t

a
z(s)dp,qs :=

∫ t

0
z(s)dp,qs−

∫ a

0
z(s)dp,qs,

and consequently, it follows that∫ t

a
z(s)dp,qs := (p−q)t

∞

∑
n=0

qn

pn+1 z

(
qn

pn+1 t

)
− (p−q)a

∞

∑
n=0

qn

pn+1 z

(
qn

pn+1 a

)
.

Now, we present a counter example to show that why totality of the Cauchy-Schwarz
inequality (2.4) is broken when we take the lower bound a nonzero. Let

f (s) := c, c ∈ R, g(s) :=
1√

pn+1

qn s

, n = 0,1,2, . . . .
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It is easy to check that,

(
∞

∑
n=0

qn

pn+2

(
t f

(
qn

pn+1 t

)
g

(
qn

pn+1 t

)
−a f

(
qn

pn+1 a

)
g

(
qn

pn+1 a

)))2

:=
c2(

√
t−√

a)2

p2(p−q)2

∞

∑
n=0

qn

pn+2

(
t f 2
(

qn

pn+1 t

)
−a f 2

(
qn

pn+1 a

))
:=

c2(t−a)
p(p−q)

,

∞

∑
n=0

qn

pn+2

(
tg2
(

qn

pn+1 t

)
−ag2

(
qn

pn+1 a

))
:= 0.

In this case, the Cauchy-Schwarz inequality (2.4) holds for the lower bound a �= 0, if
and only if

(
∞

∑
n=0

qn

pn+2

(
t f

(
qn

pn+1 t

)
g

(
qn

pn+1 t

)
−a f

(
qn

pn+1 a

)
g

(
qn

pn+1 a

)))2

� 0,

that is this inequality is not true unless for the trivial case t = a, a �= 0. Now, if we
take, a = 0, then we get that

(
∞

∑
n=0

qn

pn+2

(
t f

(
qn

pn+1 t

)
g

(
qn

pn+1 t

)))2

:=
c2t

p2(p−q)2

∞

∑
n=0

qn

pn+2

(
t f 2
(

qn

pn+1 t

))
:=

c2t
p(p−q)

,

∞

∑
n=0

qn

pn+2

(
tg2
(

qn

pn+1 t

))
:=

1
p(p−q)

.

As is expected, in this case the Cauchy-Schwarz inequality (2.4) is satisfied. This is the
main reason that in this paper, we restrict ourselves to the Jackson integrals with the
lower bound 0.

Here, we define so-called (p,q)-basic numbers as follows.

DEFINITION 2.7. [19] By (p,q)-basic number that we show it by the notation
[n]p,q , we mean

[n]p,q :=
pn−qn

p−q
=

n−1

∑
k=0

pn−k−1qk. (2.6)

Accordingly, the (p,q)-factorial is defined by

[n]p,q! :=
n

∏
k=1

[k]p,q, [0]p,q! := 1. (2.7)

Consequently, we define so-called (p,q)-shifted factorials as follows.
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DEFINITION 2.8. [19] By (p,q)-shifted factorial that we show it with the nota-
tion ((a,b);(p,q))n , we mean

((a,b);(p,q))n :=

⎧⎪⎪⎨
⎪⎪⎩

1; n = 0,

n−1

∏
k=0

(
pka−qkb

)
; n = 1,2, . . .

(2.8)

Two particular cases are mentioned as below:

((p,q);(p,q))n :=

⎧⎪⎪⎨
⎪⎪⎩

1; n = 0,

n−1

∏
k=0

(
pk+1−qk+1

)
= (p−q)n[n]p,q!, n = 1,2, . . .

(2.9)

((1,a);(1,q))n := (a;q)n =

⎧⎪⎪⎨
⎪⎪⎩

1; n = 0,

n−1

∏
k=0

(
1−qka

)
; n = 1,2, . . .

(2.10)

Also, (a;q)∞ := limn→∞(a;q)n .

Using the above definitions, now we can define the (p,q)-trigonometric functions.

DEFINITION 2.9. The (p,q)-basic sine and cosine functions are defined by

sinp,q t :=
∞

∑
n=0

(−1)n

[2n+1]p,q!
t2n+1

(p−q)2n+1 , (2.11)

cosp,q t :=
∞

∑
n=0

(−1)n

[2n]p,q!
t2n

(p−q)2n . (2.12)

A direct calculation indicates that,

Dp,q sinp,q(t) :=
1

p−q
cosp,q(t), Dp,q cosp,q(t) :=

−1
p−q

sinp,q(t). (2.13)

REMARK 2.10. Let us note that setting p := 1 in all of the above definitions,
lemmas and theorems, gives us the corresponding results in the classic one-parametric
q -calculus.

At the and of this section we mention this point that in what follows, we work in
frame of the Banach space (B;‖.‖) , such that

B :=
{
u
∣∣ u : R+ → R

}
, ‖u‖ := max

t∈R+
|u(t)|.
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3. Main results

This section contains two parts. In the first part that makes theoretical body of the
our investigation, we obtain Lyapunov inequalities of the (p,q)-Hamiltonian system
(1.13). To this aim, we have the following theorem.

THEOREM 3.1. Assume (u,v) is a nontrivial solution of the (p,q)-Hamiltonian
system (1.13) such that u(0) = 0 and u(β ) = 0 , for β ∈ R+ with 0 < β and u(t) �= 0
for t ∈ (0,β ) . Then, the Lyapunov inequality of this Hamiltonian system is given by

∫ β

0
|a(t)|dp,qt +

√∫ β

0
b(t)dp,qt.

√∫ β

0
c+(t)dp,qt � 2. (3.1)

Proof. The proof begins with the (p,q)-Leibniz rule (P3) in Theorem 2.3. If we
multiply the first equation of the (p,q)-Hamiltonian system (1.13) by v(qt) and second
equation by u(pt) , then, adding the resulting equations gives us the following equation:

(Dp,quv)(t) = b(t)v2(qt)− c(t)u2(pt). (3.2)

(p,q)-integrating of both sides of the equation (3.2) from t = 0 to t = β , and then
applying the property (P7) in Theorem 2.3, we get the following equality:

∫ β

0
b(t)v2(qt)dp,qt =

∫ β

0
c(t)u2(pt)dp,qt. (3.3)

Now, if we separate the integrating interval [0,β ] into the two subintervals [0,t] and
[t,β ] , then take (p,q)-integral from both sides of the first equation in (p,q)-Hamiltonian
system (1.13), firstly from 0 to t , and then from t to β , after implying the boundary
conditions u(0) = 0 = u(β ) , we conclude that

u(t) =
∫ t

0
a(s)u(ps)dp,qs+

∫ t

0
b(s)v(qs)dp,qs,

−u(t) =
∫ β

t
a(s)u(ps)dp,qs+

∫ β

t
b(s)v(qs)dp,qs.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.4)

Thus we have

|u(t)| �
∫ t

0
|a(s)||u(ps)|dp,qs+

∫ t

0
b(s)|v(qs)|dp,qs,

|u(t)| �
∫ β

t
|a(s)||u(ps)|dp,qs+

∫ β

t
b(s)|v(qs)|dp,qs.

(3.5)

Adding both sides of the recent inequalities, we get

2|u(t)|�
∫ β

0
|a(t)||u(pt)|dp,qt +

∫ β

0
b(t)|v(qt)|dp,qt. (3.6)
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Using the (p,q)-Cauchy-Schwarz inequality (2.4), we get

∫ β

0
b(t)|v(qt)|dp,qt �

√∫ β

0
b(t)dp,qt.

√∫ β

0
b(t)v2(qt)dp,qt

�

√∫ β

0
b(t)dp,qt.

√∫ β

0
|c(t)|u2(pt)dp,qt.

So, we have

∫ β

0
b(t)|v(qt)|dp,qt �

√∫ β

0
b(t)dp,qt.

√∫ β

0
c+(t)u2(pt)dp,qt. (3.7)

Now, applying the inequality (3.7) into the inequality (3.6), leads us to the inequality

2|u(t)| �
∫ β

0
|a(t)||u(pt)|dp,qt +

√∫ β

0
b(t)dp,qt.

√∫ β

0
c+(t)u2(pt)dp,qt.

Here we take max-norm on both sides, to reach the (p,q)-Lyapunov inequality

∫ β

0
|a(t)|dp,qt +

√∫ β

0
b(t)dp,qt.

√∫ β

0
c+(t)dp,qt � 2.

This completes the proof. �

REMARK 3.2. By the use of Definition 2.2, one may represent the Lyapunov in-
equality (3.1) as infinite series corresponding to the (p,q)-Jackson integrals. To this
aim, according to Definition 2.2 we expand the (p,q)-Jackson integrals in (3.1). Con-
sequently, the Lyapunov inequality of the (p,q)-Hamiltonian system (1.13) takes itself
the following form:

∞

∑
n=0

qn

pn+1

∣∣∣∣a
(

qn

pn+1 β
)∣∣∣∣+

√
∞

∑
n=0

qn

pn+1 b

(
qn

pn+1 β
)

.

√
∞

∑
n=0

qn

pn+1 c+

(
qn

pn+1 β
)

� 2
β (p−q)

.

(3.8)
But we are believed that this is not the end. Because we can apply another beautiful rule
to reach new refinement of the (p,q)-Lyapunov inequality (3.8). Applying the Cauchy
product of two infinite series

∞

∑
n=0

μn

∞

∑
n=0

νn =
∞

∑
n=0

n

∑
k=0

μnνn−k,

into the (p,q)-Lyapunov inequality (3.8), we get the (p,q)-quantum representation

∞

∑
n=0

qn

pn+1

∣∣∣∣a
(

qn

pn+1 β
)∣∣∣∣+

√
∞

∑
n=0

n

∑
k=0

q2n−k

p2n−k+1 b

(
qn

pn+1 β
)

c+

(
qn−k

pn−k+1 β
)

� 2
β (p−q)

.

(3.9)
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COROLLARY 3.3. If we set p := 1 in the Lyapunov inequalities (3.1) and (3.9),
we get the following classic q-Lyapunov inequalities:

∫ β

0
|a(t)|dqt +

√∫ β

0
b(t)dqt.

√∫ β

0
c+(t)dqt � 2,

and

∞

∑
n=0

qn

∣∣∣∣a(qnβ )
∣∣∣∣+
√

∞

∑
n=0

n

∑
k=0

q2n−kb(qnβ )c+ (qn−kβ ) � 2
β (1−q)

.

In this position we present an example to justify the Lyapunov inequality (3.1).

EXAMPLE 3.4. Consider the (1,
√

0.1)-Hamiltonian system

D1,
√

0.1u = v, D1,
√

0.1v = −u. (3.10)

Actually, if we take a(t) = 0, b(t) = c(t) = 1, p = 1 and q =
√

0.1 in the Hamiltonian
system (1.13), this setting gives us the Hamiltonian system (3.10) and the corresponding
Hamiltonian

H(u,v) :
u2− v2

1+
√

0.1
.

To find its solution, we apply Definition 2.9 to reach:

u(t) := (1−
√

0.1)sin1,
√

0.1(t), v(t) := (1−
√

0.1)cos1,
√

0.1(t). (3.11)

Unlike the classic trigonometric function sin(t) , that has the exact real zeros nπ , n∈Z ,
exact real zeros of the (1,

√
q)-trigonometric function sin1,

√
q(t) have not been identi-

fied by now. Instead, its asymptotic real zeros for certain values of the quantum param-
eter q have been obtained for instance in [21] (Paper 11, page 203, Sec. 2.2, Tables of
zeros and Sec. 2.3, Asymptotic of zeros, Eq. (2.13)) as follows:

ζn = q
1
4−n− c1(q)+o(1), n → ∞, (3.12)

with

c1(q) :=
1
2

q
1
4

1−q
1
2

(q;q2)2
∞

(q2;q2)2
∞

.

Accordingly, if we choose the value q := 0.1, then (3.12) gives us the corresponding
asymptotic real zero of sin1,

√
0.1 , for n = 1 as ζ1 = 5.2733546903306. Hence, we get

that

u(0) := 0, u(ζ1) := 0.
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Reviewing the assumptions of Theorem 3.1, since all of the assumptions are satisfied,
it follows that the Lyapunov inequality

∫ β

0
|a(t)|dp,qt +

√∫ β

0
b(t)dp,qt.

√∫ β

0
c+(t)dp,qt

=
∫ 5.2733546903306

0
1d1,

√
0.1t

= (1−
√

0.1)5.2733546903306
∞

∑
n=0

(
√

0.1)n, (Definition (2.2))

= 5.2733546903306> 2,

is satisfied.

Having the (p,q)-Lyapunov inequalities (3.1) and (3.9) of the (p,q)-Hamiltonian
system (1.13) in hand, enables us to estimate qualitative dynamics of this Hamilto-
nian system. To this aim, we present the second part of the main results consisting of
some disconjugacy and nonexistence criteria for the nontrivial solutions of the (p,q)-
Hamiltonian system (1.13) as follows.

DEFINITION 3.5. Disconjugacy. The (p,q)-Hamiltonian system (1.13) is said to
be disconjugate on the interval [0,β ] provided that there is no real solution (u,v) of
this system with u nontrivial and having at least two zeros on [0,β ] . Otherwise, the
(p,q)-Hamiltonian system (1.13) is said to be conjugate on [0,β ] .

THEOREM 3.6. Assume all assumptions of Theorem 3.1 are satisfied. If

∞

∑
n=0

qn

pn+1

∣∣∣∣a
(

qn

pn+1 β
)∣∣∣∣+

√
∞

∑
n=0

n

∑
k=0

q2n−k

p2n−k+1 b

(
qn

pn+1 β
)

c+

(
qn−k

pn−k+1 β
)

<
2

β (p−q)
.

(3.13)

then, the (p,q)-Hamiltonian system (1.13) is disconjugate on [0,β ] .

Proof. Suppose on the contrary that the (p,q)-Hamiltonian system (1.13) is con-
jugate on the interval [0,β ] . So, according to Definition 3.5, there exists a solution
(u,v) of the (p,q)-Hamiltonian system (1.13) such that u is nontrivial and has at lest
two zeros t1 and t2, t1 < t2 in the interval [0,β ] and u(t) �= 0 for t ∈ (t1, t2) . Hence,
Theorem 3.1 and Remark 3.2 for setting t1 = 0 and t2 = β imply that

∞

∑
n=0

qn

pn+1

∣∣∣∣a
(

qn

pn+1 β
)∣∣∣∣+

√
∞

∑
n=0

n

∑
k=0

q2n−k

p2n−k+1 b

(
qn

pn+1 β
)

c+

(
qn−k

pn−k+1 β
)

� 2
β (p−q)

.

Since this inequality contradicts the assumption (3.13), then the resulting contradic-
tion ensures disconjugacy of the (p,q)-Hamiltonian system (1.13). This completes the
proof. �
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The next application of the Lyapunov inequality (3.9), deals with non-existence of
nontrivial solutions for the (p,q)-Hamiltonian system (1.13). Indeed, we show that this
disconjugacy criterion (Theorem 3.6) at the same time can be considered as a nonexis-
tence criterion.

THEOREM 3.7. Assume the conditions of Theorem 3.6 hold. Then the (p,q)-
Hamiltonian system (1.13) has no nontrivial solution on the interval [0,β ] .

Proof. Suppose on the contrary that there exists at least one nontrivial solution
for the (p,q)-Hamiltonian system (1.13). If we denote this solution by (u,v) , then u
is a nontrivial with u(0) = 0 = u(β ) and u(t) �= 0 for t ∈ (0,β ) . Thus, according to
Theorem 3.1 and Remark 3.2, we have

∞

∑
n=0

qn

pn+1

∣∣∣∣a
(

qn

pn+1 β
)∣∣∣∣+

√
∞

∑
n=0

n

∑
k=0

q2n−k

p2n−k+1 b

(
qn

pn+1 β
)

c+

(
qn−k

pn−k+1 β
)

� 2
β (p−q)

,

that contradicts the inequality (3.13). So, the (p,q)-Hamiltonian system (1.13) has no
nontrivial solution on [0,β ] . �

Acknowledgements. The Author appreciates both of the anonymous referees for
insightful reading and technical suggestions that have been improved the first draft.

RE F ER EN C ES

[1] T. ABDELJAWAD, J. ALZABUT, D. BALEANU, A generalized q-fractional Gronwall inequality and
its applications to nonlinear delay q-fractional difference systems, J. Inequal. Appl. 2016, no. 1,
(2016), pp. 1–13.

[2] C. D. AHLBRANDT, Hamiltonian systems on time scales, J. Math. Anal. Appl. 250, (2000), pp. 561–
578.

[3] GEORGE A. ANASTASSIOU, Multivariate Lyapunov inequalities, Appl. Math. Lett. 24, (2011), pp.
2167–2171.

[4] A. CHIDOUH, D. F. M. TORRES, A generalized Lyapunov’s inequality for a fractional boundary
value problem, J. Comput. Appl. Math. 312, no. 1, (2017), pp. 192–197.

[5] S. DHAR, Q. KONG, M. MCCABE, Fractional boundary value problems and Lyapunov-type inequal-
ities with fractional integral boundary conditions, Electron. J. Qual. Theory Differ. Equ., (2016), no.
43, pp. 1–16.

[6] RUI A. C. FERREIRA, On a Lyapunov-type inequality and the zeros of a certain Mittag-Leffler func-
tion, J. Math. Anal. Appl. 412, (2014), 1058–1063.

[7] K. GHANBARI, Y. GHOLAMI, New classes of Lyapunov type inequalities of fractional Δ -difference
Sturm-Liouville problems with applications, Bull. Iranian Math. Soc. 43, no. 2, (2017), pp. 385–408.

[8] Y. GHOLAMI, K. GHANBARI, New class of conformable derivatives and applications to differential
impulsive systems, SeMA 75, no. 2, (2018), pp. 305–333.

[9] J. R. GREAF, S. HEIDARKHANI, L. KONG, Infinitely many periodic solutions to a class of perturbed
second-order impulsive Hamiltonian systems, Differ. Equ. Appl. 9, no. 2, (2017), pp. 195–212.

[10] G. SH. GUSEINOV, B. KAYMAKÇALAN, Lyapunov inequalities for discrete linear Hamiltonian sys-
tems, Comput. Math. Appl. 45, (2003), pp. 1399–1416.

[11] G. SH. GUSEINOV, A. ZAFER, Stability criteria for linear periodic impulsive Hamiltonian systems,
J. Math. Anal. Appl. 335, (2007), pp. 1195–1206.

[12] P. HARTMAN, Ordinary Differential Equations, John Wiley and Sons, New York, (1964).



276 Y. GHOLAMI

[13] F. H. JACKSON, A Generalisation of the Functions Γ(n) and xn , Proc. R. Soc. Lond. 74, (1905), pp.
64–72.

[14] F. H. JACKSON, On q-Functions and a certain difference operator, Transactions of the Royal Society
of Edinburgh 46, no. 2, (1909), pp. 253–281.

[15] F. H. JACKSON, q-Difference equations, Am. J. Math. 32, (1910), pp. 305–314.
[16] V. KAC, P. CHEUNG, Quantum calculus, Springer, 2001.
[17] Z. KAYAR, A. ZAFER, Matrix measure approach to Lyapunov-type inequalities for linear Hamilto-

nian systems with impulse effect, J. Math. Anal. Appl. 440, no. 1, (2016), pp. 250–265.
[18] A. M. LYAPUNOV, The general problem of the stability of motion, Int. J. Control 55, no. 3, (1992),

pp. 521–790, http://www.tandfonline.com/toc/tcon20/55/3.
[19] P. NJIONOU SADJANG, On the fundamental theorem of (p,q) -calculus and some (p,q) -Taylor for-

mulas, arXiv:1309.3934v1, (2013).
[20] D. O’REGAN, B. SAMET, Lyapunov-type inequalities for a class of fractional differential equations,

J. Inequal. Appl. 2015, 2015:247.
[21] M. E. H. ISMAIL, D. W. STANTON, q-Series from a contemporary perspective, American Mathe-

matical Society, (2000).
[22] X. H. TANG, M. ZHANG, Lyapunov inequalities and stability for linear Hamiltonian systems, J.

Differential Equations 252, (2012), pp. 358–381.
[23] X. H. TANG, Q. M. ZHANG, M. ZHANG, Lyapunov-type inequalities for the first-order nonlinear

Hamiltonian systems, Comput. Math. Appl. 62, (2011), pp. 3603–3613.
[24] A. ZAFER, Discrete linear Hamiltonian systems: Lyapunov type inequalities, stability and disconju-

gacy criteria, J. Math. Anal. Appl. 396, (2012), pp. 606–617.

(Received October 24, 2017) Yousef Gholami
Department of Applied Mathematics

Sahand University of Technology
P. O. Box: 51335-1996, Tabriz, Iran

and
Department of Applied Mathematics, PNU

P. O. Box: 59716-19204, Miandowab, West Azerbaijan, Iran
e-mail: yousefgholami@hotmail.com; y gholami@sut.ac.ir

Differential Equations & Applications
www.ele-math.com
dea@ele-math.com


