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Abstract. In this paper, we analyze nonlinear differential equations subject to generalized bound-
ary conditions. More specifically, we provide a framework from which we can provide condi-
tions, which are straightforward to check, for the solvability of a large number of nonlinear scalar
boundary value problems. We begin by giving our general strategy which involves the reformu-
lation of our boundary value problem as an operator equation. We then proceed to establish our
results and compare them to closely related previous work.

1. Introduction

This paper is devoted to the study of nonlinear differential equations subject to
generalized nonlinear boundary conditions or constraints. The class of problems we
consider include, as a special case, differential equations subject to multi-point bound-
ary conditions. A framework is provided which enables us to establish easily verifiable
conditions which guarantee the existence of solutions to a significant class of problems.
Two relevant papers devoted to the study of nonlinear differential equations subject to
constraints are [12] and [13]. The work that we will now present allows us to establish
the existence of solutions for problems that do lie within the scope of the results in
either one of these two papers.

The literature concerning the study of boundary value problems is extensive. In
[9], [14] and [15] the authors analyze boundary value problems subject to linear con-
straints. In [2], the reader will find results pertaining to three-point boundary value
problems. The use of projection schemes appears in [7], [8], [9], [14] and [15].

In [3], [4], [11], and [12] the authors obtain existence results based on a global
inverse function theorem. Readers interested in fractional differential equations may
consult [1] and those who would like to see results involving discrete-time systems are
referred to [6], [10], [11] and [13].
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2. Generalities

In this paper, we study nonlinear scalar boundary value problems which we ap-
proach by reformulating as an operator equation of the form

L x = H(x) (1)

where L is a linear operator, H is a nonlinear operator and both are defined on a
Banach space. Suppose that L has an inverse, and H = Ψ+G . The strategy we will
employ is to first give conditions under which L −Ψ is guaranteed an inverse. That
is, we give conditions under which we can uniquely solve the equation

L x−Ψ(x) = y (2)

for any point y in the space that L and Ψ map into. Given a result of this type, we
then study conditions under which (1) has a (possibly non-unique) solution by studying
the operator (L −Ψ)−1G and determining conditions under which it has a fixed point.
This will rely on a Schauder’s fixed point theorem argument.

3. Differential equations

We consider nonlinear differential equations on the interval [0,1] of the form

an(t)x(n)(t)+an−1(t)x(n−1)(t)+ . . .+a0(t)x(t)+ ψ(x(t)) = G(x)(t) (3)

subject to the boundary conditions

n

∑
j=1

∫ 1

0
x( j−1)(t)dωi j(t)+ ηi(x) = φi(x) (4)

for 1 � i � n .
Here ψ : R → R , the maps ηi and φi for 1 � i � n are nonlinear real-valued

maps from C = (C[0,1],R,‖ · ‖∞) into R where ‖ · ‖∞ denotes the supremum norm.
Further G : C → C is a continuous map, a0,a1, . . . ,an ∈ C and an(t) �= 0 for all t ∈
[0,1] . We use C n to denote the subspace of C consisting of all n -times continuously
differentiable functions on [0,1] . For 1 � i � n , 1 � j � n , ωi j : [0,1] → R is a real-
valued function of bounded variation. We will determine conditions under which we
can guarantee at least one solution in C n to (3)–(4) .

To do so, we first consider a closely related problem. That is, we seek conditions
under which we can uniquely solve

an(t)x(n)(t)+an−1(t)x(n−1)(t)+ . . .+a0(t)x(t)+ ψ(x(t)) = h(t)

subject to

n

∑
j=1

∫ 1

0
x( j−1)(t)dωi j(t)+ ηi(x) = vi
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for 1 � i � n and for any h ∈ C and v ∈ R
n .

Define L : C n → C by

[Lx](t) = an(t)x(n)(t)+an−1(t)x(n−1)(t)+ . . .+a0(t)x(t)

and B : C n → R
n by

B(x) =

⎡
⎢⎢⎢⎣

∑n
j=1
∫ 1
0 x( j−1)(t)dω1 j(t)

∑n
j=1
∫ 1
0 x( j−1)(t)dω2 j(t)

· · ·
∑n

j=1
∫ 1
0 x( j−1)(t)dωn j(t)

⎤
⎥⎥⎥⎦ .

The map L : C n → C ×R
n will be defined as

L =

(
L
B

)
.

Before proceeding, we state the following remark which illustrates an important
special case of (3)–(4) that can be dealt with using the framework of this section.

REMARK 1. Let t0 ∈ [0,1] , β ∈ R and let the function ω : [0,1] → R be the step
function

ω(x) =

⎧⎨
⎩

0, t < t0,

β , t � t0,

So for any x ∈ C , the Riemann-Stieltjes of x with respect to ω is given by∫ 1

0
x(t)dω(t) = βx(t0).

Therefore, the boundary value problem (3)–(4) includes problems of the form

an(t)x(n)(t)+an−1(t)x(n−1)(t)+ . . .+a0(t)x(t)+ ψ(x(t)) = G(x)(t)

subject to the multipoint boundary conditions

q

∑
i=1

Bix(ti)+

⎡
⎢⎢⎣

η1(x)
η2(x)
. . .

ηn(x)

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

φ1(x)
φ2(x)
. . .

φn(x)

⎤
⎥⎥⎦

where

x(t) =

⎡
⎢⎢⎣

x(t)
x′(t)
· · ·

x(n−1)(t)

⎤
⎥⎥⎦

ti ∈ [0,1] , and Bi is a real-valued n×n matrix for all 1 � i � q .
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It is well known from the theory of linear differential equations that ker(L) is n -
dimensional. Without loss of generality, choose a basis {u1,u2, . . . ,un} for the kernel
of L such that ‖u1‖+‖u2‖+ . . .+‖un‖ � 1 and let

u =

⎡
⎢⎢⎣

u1

u2

· · ·
un

⎤
⎥⎥⎦

Suppose that the functions of bounded variation ωi j : [0,1]→R for i, j∈{1,2, . . . ,n}
appearing in the boundary conditions are such that the n× n real-valued matrix B =
[Bu1|Bu2| . . . |Bun] is invertible.

Defining the constant B0 as:

B0 = ‖B−1‖
then we have that for any v ∈ R

n

‖uTB−1v‖ � B0|v|.

As a matter of notation, define η : C → R
n by η(x) =

⎡
⎢⎢⎣

η1(x)
η2(x)
. . .

ηn(x)

⎤
⎥⎥⎦ .

THEOREM 1. Suppose the map ψ : R → R is Lipschitz with constant K1 and
η : C → R

n is Lipschitz with constant K2 . If

A0K1 +B0K2 < 1

then for each pair h ∈ C , v ∈ R
n , the boundary value problem

an(t)x(n)(t)+an−1(t)x(n−1)(t)+ . . .+a0(t)x(t)+ ψ(x(t)) = h(t)

subject to
n

∑
j=1

∫ 1

0
x( j−1)(t)dωi j(t)+ ηi(x) = vi, 1 � i � n

has a unique solution.

Proof. Suppose L (x0) = 0 for some 0 �= x0 ∈ C n and {u1, . . . ,un} be the basis
we chose for ker(L) above. Since x0 ∈ ker(L) there exists a unique set of constants
c1, . . . ,cn ∈ R with ci �= 0 for some 1 � i � n such that x0 = ∑n

i=1 ciui . Since x0 ∈
ker(B) we have that

0 = Bx0

= B

(
n

∑
i=1

ciui

)

=
n

∑
i=1

ciBui
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contradicting the fact that {Bu1, . . . ,Bun} is a linearly independent set in R
n . There-

fore, x0 = 0 and we conclude that L : C n → C ×R
n is one-to-one.

Let h ∈ C and v ∈ R
n . By the general theory of linear scalar ODEs it is well

known that the solution Lx = h has at least one solution in C n . Let xp ∈ C n be the
particular solution to this equation given by variation of parameters. That is,

xp(t) =
n

∑
k=1

uk(t)
∫ t

0

h(s)Wk[u1, . . . ,un](s)
an(s)W [u1, . . . ,un](s)

ds

where Wk denotes the determinant of the matrix obtained by replacing the kth column
of the matrix whose determinant is W with en (the standard basis vector with a 1 in
the nth slot and 0s everywhere else).

By our assumption that {Bu1, . . . ,Bun} is a basis for R
n , there exists a unique set

of constants d1, . . . ,dn such that

n

∑
i=1

diBui = v−B(xp).

Then we have that

L

(
xp +

n

∑
i=1

diui

)
= h+0 = h

and further that

B

(
xP +

n

∑
i=1

diui

)
= B(xp)+B

(
n

∑
i=1

diui

)

= B(xp)+
n

∑
i=1

diBui

= B(xp)+ (v−B(xp)).

Therefore, L : C n → C ×R
n is a bijection with

L −1(h,v)T =
(
L|ker(B)

)−1
h+uTB−1v

where
(
L|ker(B)

)
is the map L restricted to the kernel of B . Consequently, we have that

‖L −1‖ � max{A0,B0} where A0 is an upper bound on the norm of the continuous

linear map
(
L|ker(B)

)−1
.

We now define Ψ : C → C ×R
n by Ψ(x) =

[−ψ(x)
−η(x)

]
. Note that since the map

from R to R given by t �→ ψ(t) is Lipschitz with constant K1 , then the map from C to
C defined by x �→ ψ ◦ x is Lipschitz with constant K1 . For each pair (h,v) ∈ C ×R

n ,
we define the map H(h,v) : C → C by

H(h,v)(x) = L −1Ψ(x)+L −1[(h,v)T ].
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Let x1,x2 ∈ C . Then we have that

‖H(h,v)(x1)−H(h,v)(x2)‖ = ‖L −1Ψ(x1)−L −1Ψ(x2)‖
� A0‖ψ(x1)−ψ(x2)‖+B0‖η(x1)−η(x2)‖
� (A0K1 +B0K2)‖x1− x2‖.

Then H(h,v) is a contraction on C and so by Banach’s fixed point theorem it has a
unique fixed point x0 ∈ C . Since L −1 maps into C n , we have that x0 ∈ C n . There-
fore, there exists a unique x0 ∈ C n satisfying L (x)−Ψ(x) = (h,v)T . Since h ∈ C
and v ∈ R

n were arbitrary, we conclude that the operator (L −Ψ) : C n → C ×R
n is

invertible. From this it follows that for each pair (h,v) ∈ C ×R
n , the boundary value

problem

an(t)x(n)(t)+an−1(t)x(n−1)(t)+ . . .+a0(t)x(t)+ ψ(x(t)) = h(t)

subject to
n

∑
j=1

∫ 1

0
x( j−1)(t)dωi j(t)+ ηi(x) = vi, 1 � i � n

has exactly one solution. �
The following lemma establishes an important result regarding the map L −1 :

C ×R
n → C . The importance of this lemma will become apparent when we provide

our conditions for the solvability of (3)–(4) .

LEMMA 1. The operator L −1 : C ×R
n → C is compact.

Proof. Let M > 0 and define S = {(h,v)∈C ×R
n : ‖h‖+ |v|� M} . Let (h,v)∈ S .

Then

‖L −1(h,v)‖ �
∥∥L −1

∥∥(‖h‖+ |v|)
� max{A0,B0}(‖h‖+ |v|)
� max{A0,B0}M.

Therefore the set {L −1(S)} is bounded. We now wish to show this set forms an
equicontinuous set of functions.

Let ε > 0, and let δ = ε
max{A0,B0}M . Then for any (h,v)∈C ×R

n and t1,t2 ∈ [0,1]
with |t1 − t2| < δ ,∣∣[L −1(h,v)

]
(t1)−

[
L −1(h,v)

]
(t2)
∣∣

=

∣∣∣∣∣
[(

L|ker(B)
)−1

h
]
(t1)−

[(
L|ker(B)

)−1
h
]
(t2)+uT (t1)B−1v(t1)−uT (t2)B−1v(t2)

∣∣∣∣∣
�
∣∣∣∣∣
[(

L|ker(B)
)−1

h
]
(t1)−

[(
L|ker(B)

)−1
h
]
(t2)

∣∣∣∣∣+
∣∣∣uT (t1)B−1v(t1)−uT (t2)B−1v(t2)

∣∣∣
� max{A0,B0}M|t1− t2|
< ε.
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Therefore the set of functions {L −1(S)} is equicontinous and we conclude that
L −1 : C ×R

n → C is compact by the Arzelá–Ascoli theorem. �

Recall that in the proof of theorem 1, we established that the operator L −Ψ is
a bijection from C n onto C ×R

n . We now state important properties of (L −Ψ)−1

under the conditions of theorem 1. The proof of the first corollary follows directly from
corollary 2.3.2 in [5].

COROLLARY 1. Suppose the conditions of theorem 1 hold. Then the map (L −
Ψ)−1 : C ×R

n → C n is Lipschitz continuous with constant

K ≡ max{A0,B0}
1− (A0K1 +B0K2)

.

COROLLARY 2. Under the conditions of theorem 1, the map (L −Ψ)−1 : C ×
R

n → C n is compact. This follows from the fact that we can write

(L −Ψ)−1 = L −1
(

Ψ◦ (L −Ψ)−1 + I
)
.

Therefore it is clear from this representation that (L −Ψ)−1 is compact as the com-
position of a compact operator with a continuous one.

We now proceed to establish conditions for the solvability of the boundary value
problem

an(t)x(n)(t)+an−1(t)x(n−1)(t)+ . . .+a0(t)x(t)+ ψ(x(t)) = G(x)(t)

subject to the boundary conditions

n

∑
j=1

∫ 1

0
x( j−1)(t)dωi j(t)+ ηi(x) = φi(x)

for 1 � i � n .

We define φ : C → R
n by φ =

⎡
⎢⎢⎣

φ1

φ2

. . .
φn

⎤
⎥⎥⎦ and G : C → C ×R

n by G =

[
G
φ

]
.

In doing so, we are now ready to state sufficient conditions under which we can
guarantee the existence of at least one solution to the nonlinear boundary value problem
(3)− (4) .

Before stating theorem 2, define M0 as the norm of the unique solution to the
boundary value problem

an(t)x(n)(t)+an−1(t)x(n−1)(t)+ . . .+a0(t)x(t)+ ψ(x(t)) = 0
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subject to the boundary conditions

n

∑
j=1

∫ 1

0
x( j−1)(t)dωi j(t)+ ηi(x) = 0

for 1 � i � n .

THEOREM 2. Suppose the map ψ : R → R is Lipschitz with constant K1 and
η : C → R

n is Lipschitz with constant K2 . If

A0K1 +B0K2 < 1

and there exists a constant M such that for ‖x‖ � M, ‖G (x)‖ � K−1(M−M0) . Then
there exists a solution to the boundary value problem

an(t)x(n)(t)+an−1(t)x(n−1)(t)+ . . .+a0(t)x(t)+ ψ(x(t)) = G(x)(t)

subject to the boundary conditions

n

∑
j=1

∫ 1

0
x( j−1)(t)dωi j(t)+ ηi(x) = φi(x)

for 1 � i � n.

Proof. Note that the map (L −Ψ)−1G : C →C is compact as the composition of
a compact operator with a continuous one. Define B = {z ∈ C : ‖z‖ � M} . Let x ∈ B .
Then

‖(L −Ψ)−1G (x)‖ � ‖(L −Ψ)−1G (x)−M0‖+M0

� K‖G (x)‖+M0

� K(K−1(M−M0))+M0

= M.

Since (L −Ψ)−1G (B)⊆ B and B is clearly closed, bounded, and convex we have that
(L −Ψ)−1G has at least one fixed point in C by Schauder’s fixed point theorem. That
is, there exists at least one x0 ∈ C such that (L −Ψ)−1G (x0) = x0 . Since (L −Ψ)−1

maps into C n , we have that x0 must be an element of C n . This is equivalent to there
existing at least one x0 ∈ C n such that L (x0)−Ψ(x0) = G (x0) . �

The following corollary is immediate:

COROLLARY 3. Suppose the map ψ : R → R is Lipschitz with constant K1 and
η : C → R

n is Lipschitz with constant K2 . If

A0K1 +B0K2 < 1
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and

lim
‖x‖→∞

‖G (x)‖
‖x‖ = 0

then the boundary value problem (3)– (4) has a solution.

In the next section, we consider advantages this framework provides us in cases
where we attempt to analyze problems that are seemingly well-suited to using the
framework outlined in [12] and [13].

4. Comparison to previous results

To view advantages of using this framework as opposed to previous results, con-
sider another set of special cases of the general boundary value problem (3)–(4) . That
is, problems already in self-adjoint form. This is a necessity if we are to attempt to use
the analysis of [12] and [13].

REMARK 2. Consider differential equations on [0,1] of the form:

(p(t)x′(t))′ +q(t)x(t)+ ψ(x(t)) = G(x(t)) (5)

subject to the boundary conditions

αx(0)+ βx′(0)+
2

∑
j=1

∫ 1

0
x( j−1)(t)dω1 j(t)+ η1(x) = 0

(6)

γx(1)+ δx′(1)+
2

∑
j=1

∫ 1

0
x( j−1)(t)dω2 j(t)+ η2(x) = 0

where ψ : R → R is Lipschitz, α2 + β 2 �= 0, γ2 + δ 2 �= 0, η1 and η2 are nonlinear
Lipschitz functions from C 2 into R . The function ωi j : [0,1] → R is a function of
bounded variation for i = 1,2 and j = 1,2. We assume that p, p′ , and q are continuous,
p(t) > 0 for all t ∈ [0,1] . We assume the map G is a continuous function from C into
C satisfying

lim
‖x‖→∞

‖G(x)‖
‖x‖ = 0.

Using results from [12] and [13], we would have to treat the linear integral bound-
ary conditions appearing in (6) as part of the nonlinear component of the problem. Let
K̂2 be the Lipschitz constant of the map defined by

x �→
[

∑2
j=1
∫ 1
0 x( j−1)(t)dω1 j(t)+ η1(x)

∑2
j=1
∫ 1
0 x( j−1)(t)dω2 j(t)+ η2(x)

]
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with respect to the norms used in those previous papers. Suppose {u1,u2} is a basis for
the solution space of

(p(t)x′(t))′ +q(t)x(t) = 0

and without loss of generality suppose that(∫ 1

0
|u1(t)|2dt

) 1
2

+

(∫ 1

0
|u2(t)|2dt

) 1
2

� 1.

Further, suppose the 2× 2 matrix B̂ =

[
αu1(0)+ βu′1(0), αu2(0)+ βu′2(0)
γu1(1)+ δu′1(1), γu2(1)+ δu′2(1)

]
is in-

vertible. Then if (
sup
v∈R2

|B̂−1v|
)

K̂2 � 1

it would be impossible to establish the existence of solutions to (5)–(6) using any of
the results appearing in [12] or [13].

When we formulate (5)–(6) within the framework presented in section 3, it is
clear that if the map

x �→
⎡
⎣ (p(t)x′(t))′ +q(t)x(t)

αx(0)+ βx′(0)+ ∑2
j=1
∫ 1
0 x( j−1)(t)dω1 j(t)

γx(1)+ δx′(1)+ ∑2
j=1
∫ 1
0 x( j−1)(t)dω2 j(t)

⎤
⎦

is a bijection from its domain onto C ×R
2 then the boundary value problem would have

a solution provided the Lipschitz constants for η1,η2 , and ψ are sufficiently small. The
magnitude of the linear integral boundary conditions is completely irrelevant.

We would now like to point out that the map G that we have just described can be
generated in a variety of ways. For example G could be of the form

G(x)(t) = g(x(t))

where g : R → R is continuous or of the type

G(x)(t) =
∫ 1

0
k(t,x(s))ds

where k : R
2 → R .

In addition to the advantages that we have just discussed, we would like to point
out that if the nonlinearities ηi appearing above are of the form

ηi =
N

∑
j=1

fi, j(x(t j))

then in order to use results appearing in [12] or [13] it must be assumed that the operator
G is compact. This restriction is no longer present when using the results that we have
just presented.
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[9] J. RODRÍGUEZ, Nonlinear differential equations under Stieltjes boundary conditions, Nonlinear
Anal.: Theory, Methods & Applications 7, 1 (1983), 107–116.
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