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ON LINEAR AND NONLINEAR FRACTIONAL

HADAMARD BOUNDARY VALUE PROBLEMS
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Abstract. We establish new Lyapunov-type inequalities for linear Hadamard fractional differ-
ential equations with pointwise boundary conditions. Furthermore, we employ the contraction
mapping principle to obtain the criterion of the existence of a unique solution for a nonlinear
fractional Hadamard type boundary value problem.

1. Introduction

For the second-order linear differential equation

x′′ +q(t)x = 0 on (a,b) (1.1)

with q ∈ C([a,b],R) , the following result is known as the Lyapunov inequality, see
[15, 2].

THEOREM 1.1. Assume Eq. (1.1) has a nontrivial solution x(t) satisfying x(a) =
x(b) = 0 and x(t) �= 0 for t ∈ (a,b) . Then

∫ b

a
|q(t)|dt >

4
b−a

. (1.2)

It was first noticed by Wintner [18] and later by several other authors that inequal-
ity (1.2) can be improved by replacing |q(t)| by q+(t) := max{q(t),0} , the nonnegative
part of q(t) , to become ∫ b

a
q+(t)dt >

4
b−a

. (1.3)

The Lyapunov inequality was extended by Hartman [11, Chapter XI] to the more gen-
eral equation

(r(t)x′)′ +q(t)x = 0, (1.4)

where q,r ∈C ([a,b] ,R) such that r (t) > 0 for t ∈ [a,b] , as follows:
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THEOREM 1.2. Assume Eq. (1.4) has a nontrivial solution x(t) satisfying x(a) =
x(b) = 0 and x(t) �= 0 for t ∈ (a,b) . Then

∫ b

a
q+ (t)dt >

4∫ b
a r−1 (t)dt

.

These Lyapunov inequalities have been used as an important tool in oscillation,
disconjugacy, control theory, eigenvalue problems, and many other areas of differential
equations. Due to their importance in applications, they have been extended in various
directions by many authors. For more on Lyapunov-type inequalities, we refer the
reader to [5, 6] for the higher order linear case, and [3, 4] for higher order half-linear
case and the references cited therein.

Recently, the fractional differential equations have gained considerable importance
and attention for their applications in many engineering and scientific disciplines as the
mathematical modeling of systems and processes in the fields of physical, mechanics,
chemistry, aerodynamics etc. Due to its useful applications in the boundary value prob-
lems (BVPs), a subsequent search for the Lyapunov-type inequalities has also began in
the direction of fractional calculus. Ferreira first obtained Lyapunov-type inequalities
for fractional differential equations with pointwise boundary conditions (BCs) in [9, 8].
The former is with Riemann-Liouville fractional derivative and the latter is with Ca-
puto fractional derivative. In this paper, without further mention, we let 1 < α � 2 and
denote RLDα

a+x,CDα
a+x and HDα

a+x as the Riemann-Liouville, Caputo and Hadamard
fractional derivative of a function x(t) , respectively. We summarize the main results
from [9, 8] in the following theorem.

THEOREM 1.3. (a) Consider

RLDα
a+x+q(t)x = 0. (1.5)

Assume q ∈C([a,b],R) and Eq. (1.5) has a nontrivial solution x(t) satisfying x(a) =
x(b) = 0 . Then ∫ b

a
|q(t)|dt > Γ(α)

( 4
b−a

)α−1
. (1.6)

(b) Consider
CDα

a+x+q(t)x = 0. (1.7)

Assume q ∈C([a,b],R) and Eq. (1.7) has a nontrivial solution x(t) satisfying x(a) =
x(b) = 0 . Then ∫ b

a
|q(t)|dt >

Γ(α)αα

[(α −1)(b−a)]α−1 . (1.8)

In [7, Theorem 2.3], the authors improved (1.6) by replacing q(t) with q+(t) . It is
clear when α = 2, the results lead to the classical Lyapunov inequality (1.2). For more
on Lyapunov-type inequalities in the fractional setting, we refer the reader to [7, 12, 17]
and the references cited therein.

It is to be noted that most of the work in the literature regarding Lyapunov-type
inequalities, in the sense of fractional derivative, involves either the Riemann-Liouville
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or the Caputo definition. To the best of our knowledge, there is only one reference
[16], where the authors studied the problem with Hadamard fractional derivative. We
summarize the main results from [16] in the following theorem.

THEOREM 1.4. Consider

HDα
a+x−q(t)x = 0. (1.9)

Assume q ∈ C([a,b],R) and (1.9) has a nontrivial solution x(t) satisfying x(1) =
x(e) = 0 . Then ∫ e

1
|q(t)|dt >

Γ(α)eλ

[λ (1−λ )]α−1 , (1.10)

where λ = 1
2 [2α −1−√4(α −1)2 +1] .

We note that the authors in [16] choose the interval [1,e] instead of a general [a,b]
with a < b in order to avoid some complicated calculations in their proof. In this paper,
we remove the restriction and provide some variation of Lyapunov-type inequalities.
Furthermore, we consider a nonlinear fractional BVP in the form

HDα
a+x+ f (t,x(t)) = 0, x(a) = 0, x(b) = k2 (1.11)

where f : [a,b]×R → R satisfies a uniform Lipschitz condition with respect to the
second variable, i.e.,

| f (t,x)− f (t,y)| � K|x− y|
for all (t,x), (t,y)∈ [a,b]×R and K > 0 is the Lipschitz constant. We use the contrac-
tion mapping theorem to establish the existence of a unique solution for BVP (1.11) for
a class of functions f . This result is an extension of Kelly and Peterson [14, Theorem
7.7]. Similar extensions were done by Ferreira [10] for the Riemann-Liouville frac-
tional derivative operator and Ahmed [1] for the Caputo fractional derivative operator.
We believe that our results are new and provide useful supplemental tools in the study
of this type of problems.

This paper is organized as follows. After this introduction, we recall some basic
definitions of fractional calculus and prove some auxiliary lemmas in Section 2. Section
3 contains the main results regarding the Lyapunov-type inequalities and the existence
of a unique solution of the nonlinear BVP (1.11).

2. Background materials and preliminaries

For the convenience of the reader, here we present the necessary definitions and
lemmas from fractional calculus theory in the sense of Hadamard. These results can be
found in the monograph [13].

DEFINITION 2.1. The Hadamard fractional integral of order α > 0 of a function
x(t) for all t > a > 0 is defined by

HIα
a+x =

1
Γ(α)

∫ t

a

(
ln

t
s

)α−1 x(s)
s

ds,
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where Γ(α) =
∫ ∞
0 tα−1e−tdt is the gamma function, provided the right side is pointwise

defined on R
+ .

DEFINITION 2.2. The Hadamard fractional derivative of order α > 0 of a func-
tion x(t) for all t > a > 0 is defined by

HDα
a+x =

1
Γ(n−α)

(
t
d
dt

)n ∫ t

a

(
ln

t
s

)n−α−1 x(s)
s

ds,

where n = �α�+1 with �α� is the integer part of α .

REMARK 2.1. As a basic example, we show for λ > −1,

HDα
a+

(
ln

t
a

)λ
=

Γ(λ +1)
Γ(n+ λ +1−α)

(
t
d
dt

)n(
ln

t
a

)n+λ−α
.

In particular, HDα
a+

(
ln t

a

)α−m = 0, m = 1,2, . . . ,n , where n is the smallest integer
greater than or equal to α .

In fact, for λ > −1,

HDα
a+

(
ln

t
a

)λ
=

1
Γ(n−α)

(
t
d
dt

)n ∫ t

a

(
ln

t
s

)n−α−1(
ln

s
a

)λ ds
s

. (2.1)

Introducing the change of variable as u = (ln s
a )/ ln( t

a ) , we obtain from (2.1) that

HDα
a+

(
ln

t
a

)λ
=

1
Γ(n−α)

(
t
d
dt

)n(
ln

t
a

)n+λ−α ∫ 1

0
uλ (1−u)n−α−1du

=
Γ(λ +1)

Γ(n+ λ +1−α)

(
t
d
dt

)n(
ln

t
a

)n+λ−α
.

Hence,

HDα
a+

(
ln

t
a

)α−m
=

Γ(α +1−m)
Γ(n+1−m)

(
t
d
dt

)n(
ln

t
a

)n−m
= 0 for m = 1,2, . . . ,n.

From Definition 2.2 and Remark 2.1, we obtain the following lemma.

LEMMA 2.1. Assume that x∈C(a,b) and α > 0 . Then the equality
(

HDα
a+x
)

(t)
= 0 is valid if and only if

x(t) =
n

∑
i=1

ci

(
ln

t
a

)α−i
,

where n = �α�+1 with �α� is the integer part of α and ci ∈ R for i = 1,2, . . . ,n are
arbitrary constants.

The proof is straightforward hence omited.

It is well known that for all x(t) ∈C(a,b) , we have
(

HDα
a+

(
HIα

a+x
))

(t) = x(t) .
Then using Lemma 2.1, we derive the following law of composition.
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LEMMA 2.2. Assume that x(t) ∈C(a,b) and α > 0 . Then(
HIα

a+

(
HDα

a+x
))

(t) = x(t)+
n

∑
i=1

ci

(
ln

t
a

)α−i
,

where n = �α�+1 with �α� is the integer part of α and ci ∈ R for i = 1,2, . . . ,n are
arbitrary constants.

In the following, we present the Green’s function of fractional BVP in the sense
of Hadamard fractional derivative.

LEMMA 2.3. Assume that h ∈C(a,b) and 1 < α � 2 . Then the unique solution
of the BVP

HDα
a+x+h(t) = 0, x(a) = x(b) = 0 (2.2)

is

x(t) =
∫ b

a
G(t,s)h(s)ds, (2.3)

where

G(t,s) =
1

sΓ(α)

⎧⎪⎪⎨
⎪⎪⎩

(ln t
a )

α−1(ln b
s )

α−1

(ln b
a )

α−1 − (ln t
s

)α−1
, a � s � t � b,

(ln t
a )

α−1(ln b
s )

α−1

(ln b
a )

α−1 , a � t � s � b.
(2.4)

Proof. We apply Lemma 2.2 to reduce equation of (2.2) to an equivalent integral
equation

x(t) = − 1
Γ(α)

∫ t

a

(
ln

t
s

)α−1 h(s)
s

ds+ c1

(
ln

t
a

)α−1
+ c2

(
ln

t
a

)α−2
,

for some c1,c2 ∈ R . Using the BCs, we have c2 = 0 and

c1 =
1

Γ(α)
(
ln b

s

)α−1

∫ b

a

(
ln

b
s

)α−1 h(s)
s

ds.

Therefore, the unique solution of BVP (2.2) is

x(t) = − 1
Γ(α)

∫ t

a

(
ln

t
s

)α−1 h(s)
s

ds+

(
ln t

a

)α−1

Γ(α)
(
ln b

s

)α−1

∫ b

a

(
ln

b
s

)α−1 h(s)
s

ds

=
1

Γ(α)

[∫ t

a

{(
ln t

a

)α−1 (
ln b

s

)α−1

(
ln b

a

)α−1 −
(
ln

t
s

)α−1
}

h(s)
s

ds

+
∫ b

t

(
ln t

a

)α−1 (
ln b

s

)α−1

(
ln b

a

)α−1

h(s)
s

ds

]

=
∫ b

a
G(t,s)h(s)ds.

The proof is complete. �
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LEMMA 2.4. Let G(t,s) be given by (2.4). Then

∫ b

a
G(t,s)ds � (α −1)α−1

αα Γ(α +1)

(
ln

b
a

)α
. (2.5)

Proof. Using the expression of G(t,s) in (2.4), it follows that

∫ b

a
G(t,s)ds =

1
Γ(α)

[(
ln t

a

)α−1(
ln b

a

)α−1

∫ b

a

(
ln

b
s

)α−1 ds
s
−
∫ t

a

(
ln

t
s

)α−1 ds
s

]
. (2.6)

A simple calculation lead to

(
ln t

a

)α−1

(
ln b

a

)α−1

∫ b

a

(
ln

b
s

)α−1 ds
s

=
1
α

(
ln

t
a

)α−1
ln

b
a
, (2.7)

and ∫ t

a

(
ln

t
s

)α−1 ds
s

=
1
α

(
ln

t
a

)α
. (2.8)

Substituting (2.7) and (2.8) in (2.6) we see that

∫ b

a
G(t,s)ds =

1
Γ(α +1)

(
ln

t
a

)α−1
ln

b
t

� 1
Γ(α +1)

max
t∈[a,b]

[(
ln

t
a

)α−1
ln

b
t

]
. (2.9)

Define g(t) :=
(
ln t

a

)α−1
ln b

t . Clearly g(a) = g(b) = 0 and g(t) > 0 on (a,b) .
By Rolle’s Theorem, there exists t∗ ∈ (a,b) such that g(t∗) = maxg(t) for t ∈ (a,b) ,
i.e., g′(t∗) = 0. Note that

g′(t) =
(ln t

a )α−2

t

[
(α −1) ln

b
t
− ln

t
a

]
.

Using the facts that 1 < α � 2 and 0 < a < s < b , it is easy to see that g′(t) = 0 only

at t = t∗ = (abα−1)
1
α . Hence g(t) has a unique maximum at t∗ given by

max
t∈[a,b]

g(t) = g(t∗) =
(α −1)α−1

αα

(
ln

b
a

)α
. (2.10)

Using (2.10) in (2.9) we see that (2.5) holds. �
We define H(t,s) = sG(t,s) . Here we prove three properties of the function H

which will be essential to prove our main theorems.

LEMMA 2.5. The function H(t,s) defined above satisfies the following condi-
tions:
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1. H(t,s) � 0 on [a,b]× [a,b] .

2. maxt∈[a,b] H(t,s) = H(s,s).

3. H(s,s) has a unique maximum given by

max
s∈[a,b]

H(s,s) = H
(√

ab,
√

ab
)

=

(
ln b

a

)α−1

4α−1Γ(α)
.

Proof. (1) We define two functions as

h1(t,s) =

(
ln t

a

)α−1 (
ln b

s

)α−1

(
ln b

a

)α−1 −
(
ln

t
s

)α−1
, a � s � t � b;

and

h2(t,s) =

(
ln t

a

)α−1 (
ln b

s

)α−1

(
ln b

a

)α−1 , a � t � s � b.

It is clear that h2(t,s) � 0. Now, regarding the function h1(t,s) , we observe that

h1(t,s) =

(
ln t

a

)α−1 (
ln b

s

)α−1

(
ln b

a

)α−1 −
(
ln

t
s

)α−1

=

(
ln t

a

)α−1(
ln b

a

)α−1 (lnb− lns)α−1−
(
ln t

a

)α−1(
ln b

a

)α−1

{
lnb−

(
lna+

ln s
a ln b

a

ln t
a

)}α−1

.

Note that

lna+
ln s

a ln b
a

ln t
a

� lns ⇔ lna ln t
a + ln s

a ln b
a

ln t
a

� lns

⇔ lns ln
b
t

� lna ln
b
t

⇔ s � a,

and hence h1(t,s) � 0. This concludes the proof of (1).
(2) To prove maxt∈[a,b] H(t,s) = H(s,s) , we only need to differentiate h1(t,s) with

respect to t for every fixed s . Then, a similar analysis as discussed in the proof of (1)
shows that h1(t,s) is a decreasing function of t and h2(t,s) is an increasing function
of t . We leave the details to the reader.

(3) Let

H(s,s) := h(s) =
1

Γ(α)

[
ln s

a ln b
s

ln b
a

]α−1

, s ∈ [a,b].

Clearly h(a) = h(b) = 0 and h(s) > 0 on (a,b) . By Rolle’s Theorem, there exists
s∗ ∈ (a,b) such that h(s∗) = maxh(s) on (a,b) , i.e., h′(s∗) = 0. Note that

h′(s) =
α −1
sΓ(α)

[
ln s

a ln b
s

ln b
a

]α−2[
lnab− lns2

ln b
a

]
.
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Using the facts that 1 < α � 2 and 0 < a < s < b , it is easy to see that h′(s) = 0 only
at s = s∗ =

√
ab . Hence h(s) has a unique maximum at s∗ given by

max
s∈[a,b]

h(s) = h(s∗) =

(
ln b

a

)α−1

4α−1Γ(α)
.

The proof is now complete. �

REMARK 2.2. Recall that G(t,s) = 1
s H(t,s) . Since H(t,s) � 0 and s ∈ [a,b] ⊂

R
+ , we conclude that G(t,s) � 0 on [a,b]× [a,b] .

3. Main results

In this section, we consider the following fractional differential equations

HDα
a+x+ tq(t)x = 0, 0 < a � t � b, (3.1)

and
HDα

a+x+q(t)x = 0, 0 < a � t � b, (3.2)

where q ∈C(a,b) ; with the Dirichilet BC

x(a) = x(b) = 0. (3.3)

We first present a Lyapunov-type inequality for BVP (3.1), (3.3).

THEOREM 3.1. Assume Eq. (3.1) has a nontrivial solution x(t) satisfying (3.3)
and x(t) �= 0 on (a,b) . Then

∫ b

a
q+(t)dt >

4α−1Γ(α)(
ln b

a

)α−1 . (3.4)

Proof. It follows from Lemma 2.3 with h(t) = tq(t)x(t) that a solution to the
fractional BVP (3.1), (3.3) satisfies the integral equation

x(t) =
∫ b

a
sG(t,s)q(s)x(s)ds =

∫ b

a
H(t,s)q(s)x(s)ds.

Without any loss of generaity we may assume x(t) > 0 on (a,b) .
Define m = maxt∈[a,b] x(t) . Using Lemma 2.5 and the facts that 0 � x(t) � m and

x(t) �≡ m on [a,b] and q(t) � q+(t) , we have

m < m
∫ b

a
H(t,s)q+(s)ds � m

∫ b

a
H(s,s)q+(s)ds � m

(
ln b

a

)α−1

4α−1Γ(α)

∫ b

a
q+(s)ds.

Cancelling m from both sides we see that (3.4) holds. �
Next we present another Lyapunov-type inequality for BVP (3.2), (3.3).
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THEOREM 3.2. Assume Eq. (3.2) has a nontrivial solution x(t) satisfying (3.3)
and x(t) �= 0 on (a,b) . Then

∫ b

a

q+(t)
t

dt >
4α−1Γ(α)(
ln b

a

)α−1 . (3.5)

Proof. We define p(t) = q(t)
t for 0 < a � t � b . Then p(t) ∈ C([a,b],R) and is

well-defined. Hence BVP (3.2), (3.3) becomes

HDα
a+x+q(t)x = 0, x(a) = x(b) = 0. (3.6)

Applying Theorem 3.1 for BVP (3.6) we have

∫ b

a
p+(t)dt >

4α−1Γ(α)(
ln b

a

)α−1 .

Substituting p(t) we see that the conclusion follows. �

REMARK 3.1. We note that, for α = 2, RLDα
a+x = CDα

a+x = x′′ . This is why in-
equalities (1.6) and (1.7) reduces to the classical Lyapunov-type inequality (1.2). How-
ever, the same does not hold for HDα

a+x . In fact, From Definition 2.2, it is clear that

α = 2 implies HDα
a+x = t2x′′ . Hence equations (3.1) and (3.2) becomes

tx′′ +q(t)x = 0, 0 < a � t � b,

and
t2x′′ +q(t)x = 0, 0 < a � t � b,

respectively. In this case, we obtain a variation of the classical case from (3.4) and
(3.5).

The following corollary is immediate from Theorems 3.1 and 3.2.

COROLLARY 3.1. (a) Assume

∫ b

a
q+(t)dt � 4α−1Γ(α)(

ln b
a

)α−1 .

Then BVP (3.1), (3.3) has only the trivial solution.
(b) Assume ∫ b

a

q+(t)
t

dt � 4α−1Γ(α)(
ln b

a

)α−1 .

Then BVP (3.2), (3.3) has only the trivial solution.
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Now we extend the result of [14, Theorem 7.7] to the fractional Hadamard case.
We consider the following nonlinear BVP

HDα
a+x+ f (t,x(t)) = 0, x(a) = 0, x(b) = k, (3.7)

for some k ∈ R .

THEOREM 3.3. Assume f : [a,b]×R → R is continuous and satisfies a uniform
Lipschitz condition with respect to the second variable on [a,b]×R with Lipschitz
constant K ; that is

| f (t,x1)− f (t,x2)| � K|x1− x2|, (3.8)

for all (t,x1),(t,x2) ∈ [a,b]×R . If

ln
(b

a

)
<

[
αα Γ(α +1)
K(α −1)α−1

] 1
α

(3.9)

then BVP (3.7) has a unique solution on [a,b] .

Proof. Let B be the Banach space of continuous functions defined on [a,b] with
norm

||x|| = max
t∈[a.b]

|x(t)|.

By Lemma 2.3, x(t) is a solution of BVP (3.7) if and only if x(t) satisfies the
following integral equation

x(t) = k

(
ln( t

a )

ln( b
a )

)α−1

+
∫ b

a
G(t,s) f (s,x(s))ds.

Define the operator T : B → B by

Tx(t) = k

(
ln( t

a )

ln( b
a )

)α−1

+
∫ b

a
G(t,s) f (s,x(s))ds.

Then T is completely continuous. We claim that T has a unique fixed point in B . In
fact, for any x1,x2 ∈ B , we have

|Tx1(t)−Tx2(t)| �
∫ b

a
|G(t,s)|| f (s,x1(s)− f (s,x2(s)))|ds.

Since, G(t,s) � 0 on [a,b]× [a,b] and f satisfies (3.8), we have

|Tx1(t)−Tx2(t)| � K
∫ b

a
G(t,s)|x1(s)− x2(s)|ds � K||x1− x2||

∫ b

a
G(t,s)ds.

From Lemma 2.4 it follows that

|Tx1(t)−Tx2(t)| � K
(α −1)α−1

αα Γ(α +1)

(
ln

b
a

)α ||x1− x2|| < ||x1− x2||,

where we have used (3.9). Hence T is a contraction mapping on B . By the contraction
mapping theorem we get the desired result. �
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