
D ifferential
Equations

& Applications

Volume 10, Number 4 (2018), 369–386 doi:10.7153/dea-2018-10-25

EXISTENCE AND MULTIPLICITY SOLUTIONS FOR

A NONLOCAL EQUATION OF KIRCHHOFF TYPE

LIN LI AND JIJIANG SUN

(Communicated by Chun-Lei Tang)

Abstract. In this paper, we study the nonlinear Kirchhoff equation

−
(

1+b
∫

R3
|∇u|2dx

)
Δu+V(x)u = g(x,u) in R

3,

where the potential V and the primitive of g are allowed to be sign-changing and g is local
superlinear. Under some assumptions on V and g , we get at least one nontrivial solution and in-
finitely many nontrivial solutions for this equation. Recent results in the literature are generalized
and significantly improved.

1. Introduction and Main Results

In this paper, we study the following equation

−
(

1+b
∫

R3
|∇u|2dx

)
Δu+V(x)u = g(x,u) in R

3. (K )

Problems related to (K ) model several physical and biological systems, where u de-
scribes a process, which depends on the average of itself, such as the population density,
see e.g. [6] and the references therein.

Let us recall some recent results in the literature on the nonlinear Kirchhoff equa-
tion (K ). To our best knowledge, when the potential V is positive, Wu [15] was the
first one who considering problem (K ). Four existence results for nontrivial solutions
and a sequence of high energy solutions for problem (K ) were obtained by using a
symmetric mountain pass theorem. Later the existence of infinitely many high energy
solutions for problem (K ) with the subcritical nonlinearity which needs not to satisfy
the usual Ambrosetti-Rabinowitz-type growth conditions was established by Liu and
He [12]. Ye and Tang [16] obtained infinitely many large-energy and small-energy so-
lutions for (K ), which unify and sharply improve the results of Wu [15]. The existence
of nontrivial solutions for problem (K ) when the nonlinearity term is asymptotically
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linear or 4-superlinear at infinity was obtained by Cheng [5]. By some special tech-
niques, Li and Wu [10] proved the existence and multiplicity of nontrivial solutions
of problem (K ) with a widely class of superlinear nonlinearities, which improves and
unites Theorems 1–4 in [15]. In [9], Huang and Liu obtained some existence and nonex-
istence results by using variational methods and also discussed the “energy doubling”
property of nodal solutions. When the potential V may sign-changing, Chen and Liu
[4] got at least one solution and infinitely many solutions by using local linking and
fountain theorem, respectively. Zhang, Tang and Zhang [17] also considered the sign-
changing case. A natural question is whether equation (K ) admits nontrivial solutions
if the potential V and the primitive of g are both allowed to be sign-changing, and g is
local superlinear. Our idea is mainly from [11, 3].

Firstly, we consider the potential is positive. The conditions list as follows:

(V1) V ∈C(R3,R) and infx∈R3 V (x) � a0 > 0, where a0 is a positive constant.

(V2) There exists a constant b0 > 0 such that

lim
|y|→∞

meas({x ∈ R
3 : |x− y|� b0,V (x) � M}) = 0, ∀M > 0,

where meas(·) denotes the Lebesgue measure in R
3 .

(G1) g ∈C(R3 ×R,R) , and there exist c1 > 0, 4 < q < 2∗ = 6 such that

|g(x,u)| � c1(|u|+ |u|q−1), ∀(x,u) ∈ R
3×R.

(G2) There exists an open subset Λ1 of R
3 with 0 < meas(Λ1) < ∞ such that

lim
|u|→∞

G(x,u)
|u|4 = +∞ uniformly for x ∈ Λ1,

where G(x,u) =
∫ u
0 g(x,s)ds .

(G3) There exit η � 4, 0 � ς < η−2
2η , k0 > 1 and 0 < δ < 2 such that

1
η

g(x,u)u−G(x,u) � −ςV (x)|u|2−m1(x)
|u|2

ln(k0 + |u|) −m2(x)|u|δ −m3(x),

for all (x,u) ∈ R
3 ×R, where m1, m2, m3 : R

3 → R are positive measurable

functions such that m1 ∈ L1(R3)∩L2(R3) , m2 ∈ L
2

2−δ (R3) and m3 ∈ L1(R3) .

(G4) There exist 0 < k1 < a0 and ζ > 0 such that

|g(x,u)| � k1|u|,∀(x,u) ∈ R
3 ×R, |u|� ζ .

(G5) g(x,−u) = −g(x,u) for any (x,u) ∈ R
3 ×R .

The main results are the following:
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THEOREM 1. Suppose that (V1),(V2),(G1)–(G4)are satisfied. Then equation (K )
has at least one nontrivial solution.

THEOREM 2. Suppose that (V1),(V2),(G1)–(G3) and (G5) are satisfied. Then
equation (K ) has infinitely many nontrivial solutions.

REMARK 1. Because of the local superlinear condition (G2), we show that our
theorem 1 and 2 generalize the results in [5, 10, 12, 15, 16].

REMARK 2. It is worth mentioning that we give much weaker conditions to show
the (PS) sequence or Cerami sequence of the corresponding functional is bounded. In
[15], the authors use the following conditions.

(WU1) There exist μ > 4 and r > 0 such that infx∈R3,|u|=r G(x,u) > 0 and μG(x,u) �
g(x,u)u for all x ∈ R

3 and |u| � r .

Liu and He [12] assume that the following conditions:

(LH) For a.e. x ∈ R
3 , ∀(s,t) ∈ R

+ ×R
+ , s � t , there holds F(x,s) � F(x,t) , where

F(x,s) := 1
4g(x,s)s−G(x,s) .

Actually, by (LH) and the assumptions of Liu and He, we obtain

1
4
g(x,u)−G(x,u) � 0

for all x ∈ R
3 and u ∈ R . This condition is also considered by Li and Wu [10]. Later

Cheng [5] generalizes this condition to

(C) 4G(x,u) � g(x,u)u+αu2 for all (x,u)∈R
3×R , where α is a positive constant.

Very recently, Ye and Tang [16] use the local condition

(YT) There exists L > 0 such that ug(x,u)−4G(x,u) � 0 for all x ∈ R
3 and |u| � L .

It is easy to check that our condition (G3) is weaker than all the conditions mentioned
above (see e.g. [3]).

Now, we consider the case that potential V may be sign-changing, we will use the
following conditions instead of (V1), (G2) and (G3), respectively.

(V1’) V ∈C(R3,R) is bounded from below.

(G2’) lim|u|→∞
G(x,u)
|u|4 = +∞ for a.e. x ∈ R

3 .

(G3’) There exist μ � 4, ι0 > 0, 0 � ι1 < μ−2
2μ and 0 < σ < 2 such that

1
μ

g(x,u)u−G(x,u)�−(ι0+ι1V (x))|u|2− l1(x)|u|σ − l2(x),∀(x,u)∈R
3×R, |u|� ν,

where l1 , l2 : R
3 →R are positive measurable functions such that l1 ∈ L

2
2−σ (R3)

and l2 ∈ L1(R3) .
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Our next results are the following:

THEOREM 3. Suppose that (V1’),(V2),(G1),(G2’),(G3’) and (G4) are satisfied.
Then equation (K ) has at least one nontrivial solution.

THEOREM 4. Suppose that (V1’),(V2),(G1),(G2’),(G3’) and (G5) are satisfied.
Then equation (K ) has infinitely many nontrivial solutions.

REMARK 3. Our theorem 3 and 4 generalize the results in [4, 17] because of the
local superlinear condition (G2’),.

REMARK 4. Chen and Liu [4] use the following condition

(CL) There exists h > 0 such that 4G(x,u) � ug(x,u)+hu2 for all (x,u) ∈ R
3×R

to show the boundedness of (PS) sequence.
Zhang et al. [17] use

(ZTZ1) there exists β > 0 such that G(x,u) � 1
4 f (x,u)u+ βu2 , for all (x,u) ∈ R

3×R ;

(ZTZ2) there exists r1 such that G(x,u) � 1
4g(x,u)u for all x ∈ R

3 and |u| � r1 ;

(ZTZ3) G(x,u) � 0 for all (x,u) ∈R
3×R and F(x,s) � F(x,t) , whenever (s, t) ∈R

+×
R

+ and s � t , where F(x,u) = 1
4g(x,u)u−G(x,u) ;

to show the boundedness of (PS) sequence. It is easy to see that our condition (G3’) is
weaker than the above conditions. Moreover, after a careful calculus, we notice that in
[17], g̃(x,u) := g(x,u)+V0u do not satisfy conditions (ZTZ2) and (ZTZ3).

The remainder of this paper is organized as follows. In Section 2, we derive a
variational setting for problem (K ) and give some preliminary lemmas. In Section 3,
we will prove Theorems 1 and 2. Finally, we will prove Theorems 3 and 4 in Section 4.

2. Preliminaries

We will present some definitions and lemmas that will be used in the proof of our
results.

Firstly, by (V1’), there exist constants d0 > 0 and a0 > 0 such that

inf
x∈R3

(V (x)+d0) � a0 > 0. (2.1)

Now, define the function space

H1(R3) :=
{
u ∈ L2(R3) : ∇u ∈ L2(R3)

}
with the usual norm

‖u‖H1 :=
(∫

R3
(|∇u|2 +u2)dx

)1/2

.
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Let

E :=
{

u ∈ H1(R3) :
∫

R3
(|∇u|2 +(V(x)+d0)u2)dx < +∞

}

equipped with the norm

‖u‖ :=
(∫

R3
(|∇u|2 +(V(x)+d0)u2)dx

)1/2

, ∀u ∈ E,

and the inner product

(u,v) :=
∫

R3
(∇u ·∇v+(V(x)+d0)uv)dx, ∀u,v ∈ E.

Then E is a Hilbert space. Moreover, we write E∗ for the dual of E and 〈·, ·〉 : E∗ ×
E → R for the dual pairing. Let ‖ · ‖p denote the usual norm on Lp(R3) for p ∈
[1,+∞) . Note that E is continuously embedded in Lp(R3) for p ∈ [2,6] . Therefore,
there exists a constant Dp > 0 such that

‖u‖p � Dp‖u‖, ∀u ∈ E, (2.2)

for any p ∈ [2,6] .

LEMMA 1. ([2]) Under the assumptions (V1) (or (V1’)) and (V2), the embedding
from E into Lp(R3) is compact for any p ∈ [2,6) .

Proof. One can proof this lemma as the same way in [2, Lemma 3.1] by using
(2.1).We omit the details.
The natural functional of problem (K ) is

Φ(u) =
1
2
‖u‖2− d0

2

∫
R3

|u|2dx+
b
4

(∫
R3

|∇u|2dx

)2

−
∫

R3
G(x,u)dx. (2.3)

The functional is C1 and its derivative is given by

〈Φ′(u),v〉 =
∫

R3
[∇u ·∇v+(V(x)+d0)uv]dx+b

∫
R3

|∇u|2dx
∫

R3
∇u ·∇vdx (2.4)

−
∫

R3
(d0uv+g(x,u)v)dx,∀v∈ E.

As in [15], if u ∈ E is a critical point of Φ , then u is a solution of equation (K ). The
following Lemma is already got in [15].

LEMMA 2. Set Ψ(u) =
∫
R3 |∇u|2dx . Then Ψ is weakly lower semicontinuous on

E .

LEMMA 3. If {un} ⊂ E is a bounded sequence with Φ′(un) → 0 , then {un} ⊂ E
has a convergent subsequence.
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Proof. In view of the boundedness of {un} , there is a subsequence, still denoted
by {un} , such that un ⇀ u in E. Next, we will verify that {un} strongly converges to
u ∈ E . By Lemma 1, un → u in Ls(R3) for any s ∈ [2,6) .

We observe that

〈Φ′(un)−Φ′(u),un−u〉 (2.5)

=‖un−u‖2 +b
∫

R3
|∇un|2dx

∫
R3

|∇(un−u)|2dx

−b

(∫
R3

|∇u|2dx−
∫

R3
|∇un|2dx

)∫
R3

∇u ·∇(un−u)dx

−d0

∫
R3

|un−u|2dx−
∫

R3
[g(x,un)−g(x,u)](un−u)dx

�‖un−u‖2−b

(∫
R3

|∇u|2dx−
∫

R3
|∇un|2dx

)∫
R3

∇u ·∇(un−u)dx

−d0

∫
R3

|un−u|2dx−
∫

R3
[g(x,un)−g(x,u)](un−u)dx.

Then, (2.5) implies that

‖un−u‖2 � 〈Φ′(un)−Φ′(u),un−u〉 (2.6)

+b

(∫
R3

|∇u|2dx−
∫

R3
|∇un|2dx

)∫
R3

∇u ·∇(un−u)dx

+d0‖un−u‖2
2 +

∫
R3

[g(x,un)−g(x,u)](un−u)dx.

By Lemma 2 and un ⇀ u in E , one has
∫
R3 ∇u ·∇(un −u)dx → 0 as n → ∞ . Conse-

quently, by the boundedness of {un} , we get

b

(∫
R3

|∇u|2dx−
∫

R3
|∇un|2dx

)∫
R3

∇u ·∇(un−u)dx→ 0, n → +∞. (2.7)

It is clear that
〈Φ′(un)−Φ′(u),un −u〉→ 0. (2.8)

By virtue of (G1) and the Hölder’s inequality, we have

∫
R3

(g(x,un)−g(x,u))(un−u)dx �
∫

R3
[c(|un|+ |u|)+ c(|un|q−1 + |u|q−1)]|un−u|dx

�c(‖un‖2
2 +‖u‖2

2)‖un−u‖2
2

+ c(‖un‖q−1
q +‖u‖q−1

q )‖un−u‖q.

Then by un → u in Ls(R3) for any s ∈ [2,6) , we obtain

‖un−u‖2
2 → 0,

∫
R3

(g(x,un)−g(x,u))(un−u)dx→ 0 (2.9)
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as n → ∞ . Consequently, (2.7), (2.8) and (2.9) imply that

un → u in E, as n → ∞.

This completes the proof.

LEMMA 4. ([13]) Assume that Ω ⊂ R
3 is an open set. Then, for any closed set

Θ ⊂ Ω , there exists a function φ ∈ C∞
0 (R3) such that φ(x) = 0 for all x ∈ R

3 \Ω ,
φ(x) = 1 for all x ∈ Θ and 0 � φ(x) � 1 for all x ∈ Ω\Θ .

Let A = {u ∈ E : ‖u‖2 = 1} and A be the class of symmetric subsets of A . Set
Fn = {B ∈ A : Index(B) � n} and

λn = inf
B∈Fn

sup
u∈B

‖u‖2, n ∈ N. (2.10)

LEMMA 5. ([11]) Assume that (V1’) and (V2) are satisfied. Then 0 � λ1 � λ2 �
· · · and λn → ∞ as n → ∞ .

By Lemma 5, choose an integer m � 1 such that max
{

a0d0
a0−k1

,λm

}
< λm+1 , where k1

is given in (G4). Define

C− = {u ∈ E : ‖u‖2 � λm‖u‖2
2}, C+ = {u ∈ E : ‖u‖2 � λm+1‖u‖2

2}. (2.11)

LEMMA 6. ([11]) Assume that (V1’) and (V2) are satisfied. Then C− and C+ are
two symmetric closed cones in E, C−∩C+ = {0} and

Index(C− \{0}) = Index(E \C+) = m.

In order to prove Theorem 3, we shall use the following critical point theorem.
First, recall that Φ ∈C1(E,R) satisfies (C) c -condition if any sequence {un} ⊂ E such
that

Φ(un) → c,‖Φ′(un)‖(1+‖un‖) → 0

has a convergent subsequence.

LEMMA 7. ([7, 11]) Let E be a real Banach space and C− , C+ be two symmetric
cones in E such that C+ is closed, C− ∩C+ = {0} and

Index(C− \{0}) = Index(E \C+) < ∞,

where Index is the Z2 -cohomological index of [8]. Let r− > r+ > 0 and e1 ∈ E \C−
with ‖e1‖ = 1 . Define the following four sets

S1 = {u ∈C− : ‖u‖ � r−},
K+ = {u ∈C+ : ‖u‖ = r+},

S = {u+ se1 : u ∈C−,s � 0,‖u+ se1‖ � r−},
S2 = {u+ se1 : u ∈C−,s � 0,‖u+ se1‖ = r−}.
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Then (S,S1∪S2) links K+ cohomologically in dimension m+1 over Z2.
Hence, suppose Φ∈C1(E,R) satisfies (C)c -condition for all c > 0 , and infx∈K+ Φ(x)>

supx∈S1∪S2
Φ(x) , supx∈S Φ(x) < ∞, then Φ has critical point with value c0 � infK+ Φ >

0 .

At last, we use the assumptions on g to deduce a useful estimate. By (G1), we have

|g(x,u)| � c1|u|+ c1|u|q−1 �
(

c1

ζ q−2 + c1

)
|u|q−1,∀(x,u) ∈ R

3 ×R, |u|� ζ . (2.12)

Combining (G4) with (2.12), we obtain

|G(x,u)| � k1

2
|u|2 + c2|u|q,∀(x,u) ∈ R

3×R (2.13)

where c2 =
(

c1
ζ q−2 + c1

)
/q .

3. Positive potential case

We will prove Theorem 1 by using Mountain Pass Theorem [14]. Note that in this
case, d0 = 0 in (2.3). Firstly, we give the following three useful lemmas.

LEMMA 8. Assume that (V1), (V2), (G1) and (G3) hold. Then Φ satisfies the (PS)
condition.

Proof. Let {un} be a (PS) sequence, that is, {Φ(un)} is bounded, and Φ′(un)→ 0
as n → ∞ . We only need to show that {un} is bounded in E , because of Lemma 3. By
(2.2), (G3) and the Hölder’s inequality, there holds

c3 +
1
η

c2‖un‖ �Φ(un)− 1
η
〈Φ′(un),un〉 (3.1)

=
(

1
2
− 1

η

)
‖un‖2 +b

(
1
4
− 1

η

)(∫
R3

|∇un|2dx

)2

+
∫

R3

[
1
η

g(x,un)un−G(x,un)
]
dx

�η −2
2η

‖un‖2−
∫

R3

(
ςV (x)|un|2 +m2(x)|un|δ +m3(x)

)
dx

−
∫

R3
m1(x)

|un|2
ln(k0 + |un|)dx

�
(

η −2
2η

− ς
)
‖un‖2−‖m2‖ 2

2−δ
‖un‖δ

2 −‖m3‖1

−
∫
{x∈R3:|un(x)|�

√
‖un‖}

m1(x)
|un|2

ln(k0 + |un|)dx
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−
∫
{x∈R3:|un(x)|�

√
‖un‖}

m1(x)
|un|2

ln(k0 + |un|)dx

�
(

η −2
2η

− ς
)
‖un‖2−Dδ

2‖m2‖ 2
2−δ

‖un‖δ −‖m3‖1

− ‖m1‖2‖un‖2
4

ln(k0 +
√‖un‖)

− ‖m1‖1

lnk0
‖un‖

�
(

η −2
2η

− ς
)
‖un‖2−Dδ

2‖m2‖ 2
2−δ

‖un‖δ −‖m3‖1

− D2
4‖m1‖2‖un‖2

ln(k0 +
√‖un‖)

− ‖m1‖1

lnk0
‖un‖,

for some c3 > 0. We obtain that {un} is bounded in E , by 0 < δ < 2 and 0 � ς < η−2
2η .

Due to Lemma 3, {un} has a convergent subsequence in E. Hence, Φ satisfies the (PS)
condition.

LEMMA 9. Assume that (V1), (V2), (G1) and (G4) are satisfied. Then there exist
constants ρ , α1 > 0 such that Φ|∂Bρ (0) � α1.

Proof. By (2.3), (V1), (G4), (2.13) and (2.2), we have

Φ(u) =
1
2
‖u‖2 +

b
4

(∫
R3

|∇u|2dx

)2

−
∫

R3
G(x,u)dx

�1
2
‖u‖2−

(
k1

2
‖u‖2

2 + c2‖u‖q
q

)

�1
2

(
1− k1

a0

)
‖u‖2− c2D

q
q‖u‖q.

The assertion is true follows by 1− k1
a0

> 0 and q > 4.

LEMMA 10. Suppose that (V1), (V2) and (G2) are satisfied. Then, there exists
e ∈ E \Bρ(0) such that Φ(e) � 0.

Proof. By (G2), for any c4 > 0 there exists c5 = c5(c4) > 0 such that

G(x,u) � c4|u|4,∀x ∈ Λ1, |u| � c5. (3.2)

For any ε > 0, there exist a closed set Λ2 and an open set Λ3 such that Λ2 ⊂ Λ1 ⊂ Λ3

and
meas(Λ2) > 0, meas(Λ3 \Λ1) < ε, meas(Λ1 \Λ2) < ε. (3.3)

It follows from Lemma 4 that there exists a function φ ∈ C∞
0 (R3) such that φ(x) = 0

for all x∈R
3 \Λ3 , φ(x) = 1 for all x ∈ Λ2 and 0 � φ(x) � 1 for all x∈ Λ3 \Λ2 . Thus,
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φ ∈ E . In view of (G1), (G4) and (3.2), there exists R1 = R1(c4) > 0 such that for all
x ∈ Λ1 , 0 < |u| < c5 , we have

|g(x,u)u|
|u|2 � R1. (3.4)

Combining (3.4) and the equality G(x,u) =
∫ 1
0 g(x,su)uds , we obtain

|G(x,u)| � R1

2
|u|2 (3.5)

for all x ∈ Λ1 , |u| < c5 . In view of (3.2) and (3.5), we have

G(x,u) � c4|u|4−R2|u|2,∀(x,u) ∈ Λ1×R, (3.6)

where R2 = c4c2
5 + R1

2 . Taking e(x) = δφ(x) and ε = 1

δ
q−2 , where δ > 0. By (2.2),

(2.13) and (3.6), one has

Φ(e) =
1
2
‖e‖2 +

b
4

(∫
R3

|∇e|2dx

)2

−
∫

R3
G(x,e)dx (3.7)

� 1
2
‖e‖2 +

b
4
‖e‖4−

∫
Λ2

G(x,e)dx−
∫

Λ3\Λ2

G(x,e)dx

� 1
2
‖e‖2 +

b
4
‖e‖4−

∫
Λ2

(c4|e|4−R2|e|2)dx+
∫

Λ3\Λ2

(
k1

2
|e|2 + c2|e|q

)
dx

�
(

1
2

+R2D
2
2 +

k1

2
D2

2

)
‖e‖2 +

b
4
‖e‖4− c4

∫
Λ2

|e|4dx+ c2

∫
Λ3\Λ2

|e|qdx

�
(

1
2

+R2D
2
2 +

k1

2
D2

2

)
δ

2‖φ‖2 +
b
4

δ
4‖φ‖4− c4δ

4
meas(Λ2)+2c2δ

q
ε

=
(

1
2

+R2D
2
2 +

k1

2
D2

2

)
δ

2‖φ‖2 +
b
4

δ
4‖φ‖4− c4δ

4
meas(Λ2)+2c2δ

2
.

Choosing c4 sufficiently large such that

b
4
‖φ‖4− c4meas(Λ2) < 0.

Then, when c4 is fixed, we can choose a large enough δ such that ‖e‖> ρ and Φ(e) �
0.

Proof. [Proof of Theorem 1] Φ satisfies all conditions of Mountain Pass Theorem
[14] by Lemmas 8-10. Therefore, equation (K ) has at least one nontrivial solution.

Proof. [Proof of Theorem 2] By (G5) and Lemma 8, Φ ∈ C1(E,R) is even and
satisfies (PS) condition. Now, we just need to show Φ satisfies other conditions of
Fountain Theorem [1].

For any k ∈N , we can choose k+1 disjoint open sets {ϒi : i = 0,1, ...k} such that

k

∑
i=0

ϒi ⊂ Λ1, and meas(ϒi) > 0, i = 0,1, ...,k.
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For any ε > 0 and ϒi , there exists a closed set Ai such that Ai ⊂ ϒi and

meas(Ai) > 0, meas(ϒi \Ai) < ε. (3.8)

For every ϒi (i = 0,1, ...,k) , it follows from Lemma 4 that there exists a function
φi ∈ C∞

0 (R3) such that φi(x) = 0 for all x ∈ R
3 \ ϒi , φ(x) = 1 for all x ∈ Ai and

0 � φi(x) � 1 for all x ∈ ϒi \Ai . Let vi = φi
‖φi‖ , then vi ∈ E . Because E is a Hilbert

space, v0 , v1 ,...,vk ,... can expended to be an orthonormal basis {vn} of E . Define
Xj = Rv j , and set

Yk = ⊕k
j=0Xj, Zk = ⊕∞

j=kXj, k ∈ N.

For 2 � t < 6, we define

λk(t) = sup
u∈Zk,‖u‖=1

‖u‖t, k = 1,2, · · · .

Since E is compactly embedded into Ls(R3) for [2,6) , we have λk(t) → 0 as k → ∞
([16]).

Step 1. By (2.3), (G1) and Lemma 5, we obtain

Φ(u) =
1
2
‖u‖2 +

b
4

(∫
R3

|∇u|2dx

)2

−
∫

R3
G(x,u)dx (3.9)

� 1
2
‖u‖2− c1(‖u‖2

2 +‖u‖q
q)

� 1
2
‖u‖2− c1λ 2

k (2)‖u‖2− c1λ q
k (q)‖u‖q.

Because λk(2) → 0 as k → ∞ , there exists a positive constant c6 such that

c1λ 2
k (2) � 1

4
, ∀k � c6. (3.10)

By (3.9) and (3.10), we have

Φ(u) � 1
4
‖u‖2− c1λ q

k (q)‖u‖q, ∀k � c6. (3.11)

Choosing rk =
(
8c1λ q

k (q)
)1/(2−q)

, then

bk = inf
u∈Zk,‖u‖=rk

Φ(u) � 1
8
r2
k , ∀k � c6. (3.12)

Because λk(q) → 0 as k → ∞ and q > 2, we obtain

bk → ∞ as k → ∞.
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Step 2. All norms are equivalent in the finite-dimensional space, then there exists
a constant c7 > 0 such that

c7‖u‖ � ‖u‖4, ∀u ∈Yk. (3.13)

By (G1) and (3.2), there exists R3 = R3(c4) > 0 such that

G(x,u) � c4|u|4−R3|u|2, ∀(x,u) ∈ Λ1 ×R. (3.14)

By (2.2), (G1), (3.13) and (3.14), one has

Φ(u) =
1
2
‖u‖2 +

b
4

(∫
R3

|∇u|2dx

)2

−
∫

R3
G(x,u)dx (3.15)

�1
2
‖u‖2 +

b
4
‖u‖4−

∫
Λ1

G(x,u)dx

�1
2
‖u‖2 +

b
4
‖u‖4−

∫
Λ1

(
c4|u|4−R3|u|2

)
dx

�
(

1
2

+R3D
2
2

)
‖u‖2 +

b
4
‖u‖4− c4‖u‖4

4

�
(

1
2

+R3D
2
2

)
‖u‖2 +

b
4
‖u‖4− c4c

4
7‖u‖4

for any u ∈ Yk . Choosing c4 sufficiently large such that

b
4
− c4c

4
7 < 0.

Thus, we can choose ρk large enough (ρk > rk) such that

ak = max
u∈Yk,‖u‖=ρk

Φ(u) � 0.

Now, from Fountain Theorem [1], Φ has a sequence of critical points {uk} ⊂ E such
that Φ(uk) → ∞ as k → ∞ . Hence equation (K ) has infinitely many high-energy
solutions.

4. Sign Changing potentional case

Firstly, we give the following lemmas.

LEMMA 11. Assume that (V1’), (V2), (G1), (G2’) and (G3’) hold. Then Φ satis-
fies (C)c -condition for all c > 0 .

Proof. Let {un} be a sequence in E satisfying

Φ(un) → c, ‖Φ′(un)‖(1+‖un‖) → 0. (4.1)
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We claim that {un} is bounded in E . Otherwise, if ‖un‖→∞ as n→∞ , set vn := un
‖un‖ .

Then ‖vn‖ = 1 and there is v0 ∈ E such that, up to a subsequence

vn ⇀ v0 in E, (4.2)

vn → v0 a.e. in R
3,

vn → v0 in Ls(R3),2 � s < 6

as n → ∞ .
Case 1. v0 = 0. By μ > 4 and (4.1), we have

c8 �Φ(un)− 1
μ
〈Φ′(un),un〉 (4.3)

=
μ −2
2μ

‖un‖2− μ −2
2μ

d0‖un‖2
2 +b

μ −4
4μ

(∫
R3

|∇u|2dx

)2

+
∫

R3

[
1
μ

g(x,un)un−G(x,un)
]
dx

�μ −2
2μ

‖un‖2− μ −2
2μ

d0‖un‖2
2 +

∫
R3

[
1
μ

g(x,un)un−G(x,un)
]
dx

for some c8 > 0 and n large enough. For 0 � c9 < c10 , let

Ωn(c9,c10) = {x ∈ R
3 : c9 � |un(x)| < c10}. (4.4)

By (G2’), there exists ν > 0 such that G(x,u) � 0 for all |u| � ν and a.e. x ∈ R
3 .

We claim that meas(Ωn(ν,∞)) > 0. Arguing indirectly, meas(Ωn(ν,∞)) = 0. By (G1)
and (4.2), one has

∫
Ωn(0,ν)

|Ĝ(x,un)|
‖un‖2 dx � (μ +1)c1

μ

∫
Ωn(0,ν)

|un|2 + |un|q
‖un‖2 dx (4.5)

� (μ +1)c1

μ
(1+ νq−2)

∫
R3

|vn|2dx → 0

as n → ∞ , where Ĝ(x,u) = 1
μ g(x,u)u−G(x,u) . In view of (4.2), (4.3) and (4.5), we

obtain

0 � μ −2
2μ

> 0,

which is a contradiction. Hence the claim is true. By (4.3), (G3’) and the Hölder’s
inequality, one has

c8 �μ −2
2μ

‖un‖2− μ −2
2μ

d0‖un‖2
2 +

∫
R3

Ĝ(x,un)dx (4.6)

�μ −2
2μ

‖un‖2− μ −2
2μ

d0‖un‖2
2−

∫
Ωn(0,ν)

|Ĝ(x,un)|dx

−
∫

Ωn(ν,∞)
(ι0|un|2 + ι1V (x)|un|2 + l1(x)|un|σ + l2(x))dx
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�
(

μ −2
2μ

− ι1
)
‖un‖2−

[
ι0 +

(
μ −2
2μ

− ι1
)

d0

]
‖un‖2

2

−‖l1‖ 2
2−σ

‖un‖σ
2 −‖l2‖1−

∫
Ωn(0,ν)

|Ĝ(x,un)|dx

�
(

μ −2
2μ

− ι1
)
‖un‖2−

[
ι0 +

(
μ −2
2μ

− ι1
)

d0

]
‖un‖2

2

−Dσ
2 ‖l1‖ 2

2−σ
‖un‖σ −‖l2‖1−

∫
Ωn(0,ν)

|Ĝ(x,un)|dx.

By (4.2), (4.5), (4.6) and (G3’), we obtain

‖v0‖2
2 � μ −2

2μc6
− ι1

c6
> 0, (4.7)

where c6 = ι0 +
(

μ−2
2μ − ι1

)
d0 . That implies v0 �= 0, a contradiction.

Case 2. v0 �= 0. Set ϒ := {x∈ R
3 : v0(x) �= 0} , then meas(ϒ) > 0. For a.e. x ∈ ϒ ,

we have limn→∞ |un(x)| = +∞. Hence ϒ ⊂ Ωn(ν,∞) for large n ∈ N , it follows from
(G2’) that there

lim
|u|→∞

G(x,u)
|u|4 = +∞, a.e. x ∈ ϒ. (4.8)

Because {Φ(un)} is bounded, there exists c11 ∈ R such that

Φ(un) =
1
2
‖un‖2− d0

2
‖un‖2

2 +
b
4

(∫
R3

|∇un|2dx

)2

−
∫

R3
G(x,un)dx � c11. (4.9)

It follows from (4.9) and (2.2) that

∫
R3

G(x,un)
‖un‖4 dx �1+d0D2

2

2‖un‖2 +
c11

‖un‖4 +
b

4‖un‖4

(∫
R3

|∇u|2dx

)2

(4.10)

�1+d0D2
2

2‖un‖2 +
c11

‖un‖4 +
b
4

< ∞.

On the other hand, by (G1), (G2’), (4.8) and Fatou’s Lemma, we have
∫

R3

G(x,un)
‖un‖4 dx =

∫
Ωn(ν,∞)

G(x,un)
‖un‖4 dx+

∫
Ωn(0,ν)

G(x,un)
‖un‖4 dx

�
∫

Ωn(ν,∞)

G(x,un)
|un|4 |vn|4dx−

∫
Ωn(0,ν)

G(x,un)
‖un‖4 dx

�
∫

Ωn(ν,∞)

G(x,un)
|un|4 |vn|4dx−

∫
Ωn(0,ν)

c1(|un|2 + |un|q)
‖un‖4 dx

�
∫

Ωn(ν,∞)

G(x,un)
|un|4 |vn|4dx− c1(1+ νq−2)

∫
Ωn(0,ν)

|un|2
‖un‖4 dx

�
∫

H∩ϒ

G(x,un)
|un|4 |vn|4dx− c1(1+ νq−2)D2

2

‖un‖2 → ∞,
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as n→ ∞ . This contradicts to (4.10). Therefore, {un} is bounded in E. Due to Lemma
3, there exists a convergence subsequence. Hence, Φ satisfies (C) c -condition for all
c > 0.

LEMMA 12. Assume that (V1’), (V2), (G1) and (G4) are satisfied. Then, there
exist constants r+ , d > 0 such that Φ(u) � d for any u ∈C+ with ‖u‖ = r+ .

Proof. In view of (G4), (2.1), (2.2), (2.13), one has

Φ(u) =
1
2
‖u‖2− d0

2

∫
R3

|u|2dx+
b
4

(∫
R3

|∇u|2dx

)2

−
∫

R3
G(x,u)dx

� 1
2
‖u‖2− d0

2λm+1
‖u‖2−

∫
R3

(
k1

2
|u|2 + c2|u|q

)
dx

� λm+1−d0

2λm+1
‖u‖2− k1

2a0

∫
R3

(V (x)+d0)|u|2dx− c2D
q
q‖u‖q

� λm+1(a0− k1)−a0d0

2a0λm+1
‖u‖2− c2D

q
q‖u‖q

for any u ∈C+ . Because [λm+1(a0− k1)−a0d0]/(2a0λm+1) > 0 and q > 4, the asser-
tion follows.

LEMMA 13. Assume that (V1’), (V2), (G1) and (G2’) are satisfied. Let e1 ∈ E \
C− with ‖e1‖ = 1 . Then there exists a constant r− > r+ such that supx∈S1∪S2

Φ(x) � 0
and supx∈S Φ(x) < ∞, where

S1 = {u ∈C− : ‖u‖ � r−},
S = {u+ se1 : u ∈C−,s � 0,‖u+ se1‖ � r−},

S2 = {u+ se1 : u ∈C−,s � 0,‖u+ se1‖ = r−}.

Proof. It is sufficient to show that Φ(u)→−∞ as u ∈C−+R
+e1 with ‖u‖→ ∞ .

Arguing indirectly, we assume that for some sequence {wn + sne1} ⊂C− +R
+e1 with

‖wn + sne1‖→ ∞ , there exists a constant T4 > 0 such that Φ(wn + sne1) � −T4 for all
n ∈ N . Let ωn = wn+sne1

‖wn+sne1‖ = zn + tne1 , then ‖ωn‖ = 1. According to Proposition 2.12

of [7], there is a constant ξ � 1 such that

‖u‖+‖e0‖ � ξ‖u+ e0‖,∀u ∈C−, (4.11)

where e0 ∈ E with −e0 �∈C− . By (4.11) and ‖ωn‖ = 1, we have

‖zn‖+ tn � ‖zn‖+ tn‖e1‖ � ξ‖zn + tne1‖ = ξ . (4.12)

Hence, passing to a subsequence if necessary, assume that tn → t0 � 0, zn ⇀ z in E ,
zn → z a.e. in R

3 , and so, by Lemma 1, zn → z in Ls(R3) for any s ∈ [2,6) . It follows
from (2.11) and ‖ωn‖ = 1 that
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1 = ‖zn + tne1‖ � ‖zn‖+ tn �
√

λm‖zn‖2 + tn →
√

λm‖z‖2 + t0

as n → ∞ . This implies that z+ t0e1 �= 0. Similar to the proof of Case 2 in Lemma 11,
we can obtain a contradiction.

Proof. [Proof of Theorem 3] It follows from Lemmas 11–13 that Φ satisfies all
conditions of Lemma 7. Therefore, equation (K ) has at least one nontrivial solution.

Now, we turn to prove Theorem 4.

LEMMA 14. Assume that (V1’), (V2), (G1) and (G2’) hold. Then for any finite
dimensional subspace Ẽ ⊂ E , there holds

Φ(u) →−∞,as ‖u‖→ ∞,u ∈ Ẽ.

Proof. Arguing indirectly, assume that for some sequence {un} ⊂ E with ‖un‖→
∞ , there exists c12 > 0 such that Φ(u) � c12 for all n ∈ N . Let vn = un

‖un‖ , then ‖vn‖ =
1. Hence, passing to a subsequence if necessary, we can assume that vn ⇀ v in E.
Because Ẽ is finite dimensional, then vn → v ∈ Ẽ in E . vn → v a.e. in R

3 , and so
‖v‖ = 1. Similar to the proof of Case 2 in Lemma 11, we can obtain a contradiction.

Due to Lemma 14, we have the following Corollary.

COROLLARY 1. Assume that (V1’), (V2), (G1) and (G2’) are satisfied. Then for
any finite dimensional subspace Ẽ ⊂ E , there is R = R(Ẽ) > 0 such that

Φ(u) � 0,∀u ∈ Ẽ with ‖u‖ � R.

Let {ϕ j} be a completely orthonormal basis of E and define Ej := Rϕ j,

Ỹk = ⊕k
j=0Ej, Z̃k = ⊕∞

j=kE j, k ∈ N. (4.13)

LEMMA 15. Under assumptions (V1’) and (V2), for 2 � t < 6,

λ̃k(t) = sup
u∈Z̃k,‖u‖=1

‖u‖t → 0, k → ∞.

Proof. Because E is compactly embedded into Ls(R3) for s∈ [2,6) , then λ̃k(t)→
0 as k → ∞ ([16]).
By virtue of Lemma 15, we can choose an integer N � 1 such that

‖u‖2
2 � 1

2(d0 + c1)
‖u‖2, ‖u‖q

q � q
4c1

‖u‖q, ∀u ∈ Z̃N . (4.14)

LEMMA 16. Under assumptions (V1’), (V2) and (G1), there exists ρ , α > 0 such
that Φ|∂Bρ∩Z̃N

� α .
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Proof. In view of (2.2), (G1) and (4.14), we obtain

Φ(u) =
1
2
‖u‖2− d0

2

∫
R3

|u|2dx+
b
4

(∫
R3

|∇u|2dx

)2

−
∫

R3
G(x,u)dx

� 1
2
‖u‖2− d0 + c1

2
‖u‖2

2−
c1

q
‖u‖q

q

� 1
4

(‖u‖2−‖u‖q) =
4q−3−1

4q := α,

for all u ∈ Z̃N , ‖u‖ = 1
4 := ρ .

Proof. [Proof of Theorem 4] Set X = ỸN , Y = Z̃N . Obviously, Φ(0) = 0 and
Φ(u) ∈C1(E,R) are even. It follows from Lemma 11 and 16 and Corollary 1 that Φ
satisfies all conditions of Symmetric Mountain Pass Theorem [14]. Hence, equation
(K ) has infinitely many high-energy solutions.

RE F ER EN C ES

[1] T. BARTSCH, Infinitely many solutions of a symmetric Dirichlet problem, Nonlinear Anal., 20, 10
(1993), 1205–1216.

[2] T. BARTSCH, Z.-Q. WANG, AND M. WILLEM, The Dirichlet problem for superlinear elliptic
equations In “Stationary partial differential equations”, Vol. II, Handb. Differ. Equ., pages 1–55.
Elsevier/North-Holland, Amsterdam, 2005.

[3] H. CHEN AND Z. HE, Existence and multiplicity results for the nonlinear Schrödinger–Maxwell sys-
tems, Math. Methods Appl. Sci. 38, 18 (2015), 5005–5022.

[4] S. CHEN AND S. LIU, Standing waves for 4-superlinear Schrödinger-Kirchhoff equations, Math.
Methods Appl. Sci. 38, 11 (2015), 2185–2193.

[5] B. CHENG, Nontrivial solutions for Schrödinger-Kirchhoff-type problem in RN . Bound. Value Probl.
11 (2013), 2013:250.

[6] M. CHIPOT AND B. LOVAT, Some remarks on nonlocal elliptic and parabolic problems, In “Proceed-
ings of the Second World Congress of Nonlinear Analysts”, Part 7 (Athens, 1996), volume 30, pages
4619–4627, 1997.

[7] M. DEGIOVANNI AND S. LANCELOTTI, Linking over cones and nontrivial solutions for p-Laplace
equations with p-superlinear nonlinearity, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24, 6 (2007),
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