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A REMARK FOR SPATIAL ANALYTICITY AROUND STRAINING FLOWS
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(Communicated by Šárka Nečasová)

Abstract. Time-local existence of unique smooth solutions to the Navier-Stokes equations in the
whole space with linearly growing initial data has been established, via smoothing properties of
Ornstein-Uhlenbeck semigroup. It has also been shown that the solution is real-analytic in spatial
variables around rotating flows. This note is devoted to prove the spatial analyticity for cases of
straining flows and shear flows. It is estimated the size of radius of convergence of Taylor series,
due to estimates for higher order derivatives and Cauchy-Hadamard theorem.

1. Introduction

We consider the Navier-Stokes equations which describe incompressible, viscous
fluid flows in the whole space R

n for n ∈ N , � 2:

∂tU −ΔU +U ·∇U + ∇P=F in R
n×(0,T ),

∇ ·U=0 in R
n×(0,T ), (1.1)

U |t=0=U0 in R
n.

Here, U = (U1(x, t), . . . ,Un(x,t)) and P = P(x,t) stand for the unknown velocity and
the unknown pressure at x ∈ R

n and t ∈ (0,T ) , respectively; U0 = (U1
0 (x), . . . ,Un

0 (x))
is a given initial velocity, and F = (F1(x,t), . . . ,Fn(x, t)) is a given external force. We
have used the notation of differentiation; ∂t := ∂/∂ t , Δ := ∑n

i=1 ∂ 2
i , ∂i := ∂/∂xi for i =

1, . . . ,n , ∇ := (∂1, . . . ,∂n) , ∇ ·U := ∑n
i=1 ∂iUi . It is always imposed the compatibility

condition, that is, ∇ ·U0 = 0.
There is huge literature on time-local well-posedness (i.e., existence, uniqueness,

smoothness and equi-continuity of solutions) to (1.1) ; see e.g. [5, 6, 9, 14, 16]. In their
results, it is assumed that velocities decay at |x| → ∞ . Dealing with nondecaying ve-
locities, in [8] Giga and his collaborators have established time-local well-posedness in
BUC as well as L∞ . In fact, one can construct time-local unique smooth mild solutions,
when U0 is bounded uniformly continuous; see also [2, 3, 15]. For the case of linearly
growing velocities, in [12] Hieber and the second author of this note constructed time-
local smooth solutions for

U0(x) = −Mx+u0(x)
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at x ∈ R
n with M = (mi j)1�i, j�n ∈ R

n×n and u0 ∈ Lq(Rn) for q ∈ [n,∞) satisfying
the trace-free condition trM = 0 and the divergence-free condition ∇ ·u0 = 0. It might
be supposed that U = −Mx is a stationary solution to (1.1) with some P and F , thus
we are required to investigate time-evolution of disturbance from the initial disturbance
u0 . In the cases of more general situation, the reader can find the existence results in
[11, 21].

In [12] the spatial real analyticity was also proved, provided M is skew-symmetric.
The aim of this note is to show that U is real analytic in x for the cases of general M ,
including straining flows and shear flows.

In n = 3, typical examples of M are as follows:

R =

⎛
⎝0 −a 0

a 0 0
0 0 0

⎞
⎠ , J =

⎛
⎝−b 0 0

0 −b 0
0 0 2b

⎞
⎠ , S =

⎛
⎝0 0 0

c 0 0
0 0 0

⎞
⎠

for a,b,c ∈ R , and these sum. Note that R , J and S correspond to rotating, straining
and shear flows, respectively.

Substituting u := U +Mx , (1.1) are rewritten as

∂tu−Δu+u ·∇u−Mx ·∇u−Mu+∇p=0 in R
n×(0,T ),

∇ ·u=0 in R
n×(0,T ), (1.2)

u|t=0=u0 in R
n.

Here, p is a scalar function satisfying ∇p = ∇P−F +M2x . It is rather easy to prove the
existence of weak solutions to (1.2); see e.g. [1, 4]. However, for solving (1.1) by the
converse transformation U = −Mx+ u , we are forced to construct classical solutions
to (1.2) . For this purpose, we select a semigroup approach. Hence, (1.2) is formally
equivalent to the integral equation

(INT) u(t) = etAu0−
∫ t

0
e(t−s)A

P{u(s) ·∇u(s)−2Mu(s)}ds

with u0 ∈ Lq
σ (Rn) for q ∈ [n,∞) , since −A generates the Ornstein-Uhlenbeck semi-

group {etA}t�0 in Lq
σ . Here, we have used the Helmholtz projection P = (δi j +

RiR j)1�i, j�n onto the solenoidal subspace Lq
σ of the Lebesgue space Lq for q ∈ (1,∞)

associated with Kronecker’s delta δi j and the Riesz transform Ri defined as Ri :=
∂i(−Δ)−1/2 for i = 1, . . . ,n as well as Av := Δv+Mx ·∇v−Mv with domain D(A) :=
{v∈W 2,q∩Lq

σ ;Mx ·∇v ∈ Lq} . Note that A and P commute, since ∇ ·Av = 0 provided
∇ · v = 0. The solution u ∈ C([0,T ];Lq

σ (Rn)) to the integral equation (INT) is often
called a mild solution, so we use the terminology.

The aim of this note is to show the real analyticity of a mild solution u with respect
to spatial variables x , whence it exists. We will establish the L∞ -norm estimates of
higher order derivatives, and appeal to the Cauchy-Hadamard theorem for estimating
the size of radius of convergence of Taylor series. Besides, in [17, 18] Masuda discussed
the real analyticity of solutions to (1.1) in t and x from a different approach; his proof
is based on the implicit function theory. The reader can find recent improvement of his
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method in e.g. [7] and references therein. It however looks hard to apply his method
into our situation, at least directly. The difficulty comes from the fact that the semigroup
{etA}t�0 is not analytic, this means that arguments of the maximal regularity do not
work, so it is not clear how to obtain certain a priori estimates.

This note is organized as follows. In section 2 we state the main results. Section 3
is to recall smoothing properties of the Ornstein-Uhlenbeck semigroup and Kahane’s
lemma for bilinear estimates. We will give a complete proof of our main results in
section 4.

Throughout this note, we denote positive constants by C the value of which may
differ from one occasion to another.

Acknowledgment. The authors would like to express their hearty gratitude to Pro-
fessor Hideo Kozono for letting them know a gap of proofs in previous version and for
giving them beneficial suggestions. The authors would also like to express their thanks
to Professor Takahito Kashiwabara for letting them know the recent article [7].

2. Main Results

This section is devoted to state the main results of this note. We first recall the
time-local existence and uniqueness results for mild solutions.

THEOREM 1. ([12]) Let n � 2 , k ∈ N , q ∈ [n,∞) . If M ∈ R
n×n , trM = 0 and

u0 ∈ Lq
σ (Rn) , then there exist Tk > 0 and a unique mild solution u ∈C([0,Tk];L

q
σ (Rn))

such that
tk/2+(1/q−1/r)n/2∇ku ∈C([0,Tk];Lr(Rn)) for r ∈ [q,∞].

To prove this theorem, one may argue by successive approximation as in [9, 14].
When n = 2, it is easy to obtain a time-global unique mild solution. It seems to be hard
to gain a time-global solution even for small initial u0 ∈ Ln

σ (Rn) . For the case when
q = ∞ , because there is a lack of boundedness of P in L∞ , we need some restriction,
for example, u0 ∈ Ḃ0

∞,1 ⊂ L∞ for dealing with nondecaying data; see [21]. Remark
that Tk must be chosen small for large k ∈ N . Indeed, when q > n , by the iteration
scheme, we deduce Tk � Ck−k/‖u0‖2−2n/q

q with some C depending only on n , q and
M . Nevertheless, the mild solution u is unique as long as it exists, one can extend
the existence time of the mild solution up to T1 having bounds for k -th derivatives.
We hence confirm that u(t) ∈ Ck(Rn) for all k ∈ N and t ∈ (0,T1] , which means that
u(t) ∈C∞(Rn) , whence the mild solution exists.

Because the semigroup {etA}t�0 is not analytic, it is impossible to control Lr -
norm of ∂t u , at least directly. In fact, u /∈ C1(0,T1;Lq) , that is, u can not be a strong
solution. However, it might be shown that u is smooth in t , using the notion of weak
solutions; see [21]. We finally reach to u∈C∞(Rn×(0,T1]) . Therefore, u is a classical
solution to (1.2) associated with

p =
n

∑
i, j=1

RiR ju
iu j −2(−Δ)−1∂imi ju

j.
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We thus construct a time-local classical solution to (1.1) by U = −Mx+u and suitable
choice of P .

In [12], the real analyticity of mild solutions in x is also shown for skew-symmetric
M . In this note, we relax the condition on M to obtain the spatial analyticity. For mak-
ing short of this note, we deal with the case when u0 ∈ Ln , and estimate for ‖∇ku(t)‖∞ ,
only. Note that the same assertion holds when u0 ∈ Lq for q ∈ (n,∞) or u0 ∈ Ḃ0

∞,1 .

THEOREM 2. Let n � 2 , M ∈ R
n×n , trM = 0 , u0 ∈ Ln

σ (Rn) , T > 0 , and let u be
a mild solution in [0,T ] . Assume further that there exist constants L1 and L2 such that

sup
0�t�T

‖u(t)‖n � L1 and sup
0<t�T

t1/2‖u(t)‖∞ � L2. (2.1)

Then there exist constants K1 and K2 depending only on n, M , T , L1 and L2 such
that

‖∇ku(t)‖∞ � K1(K2k)kt−k/2−1/2 for t ∈ (0,T ], k ∈ N. (2.2)

When M = 0, the same assertion was proved in [10] with u0 ∈ Lq(Rn) for q ∈
[n,∞] ; with u0 ∈BMO−1 see [20]. One may take L1 and L2 in (2.1) as finite quantities,
whence the mild solution exists up to T . Consequently, it follows from (2.2) that the
mild solution u(t) is real analytic in x as long as it exists. More precisely, the size of
radius of convergence of Taylor series (=: ρ ) is estimated from below by

ρ = ρ(t) = liminf
k→∞

(‖∇ku(t)‖∞

k!

)−1/k

� e
K2

√
t, t ∈ (0,T ].

Here, we use Stirling’s formula (3.3) in section 3 below and the Cauchy-Hadamard
theorem. This assertion implies that the propagation speed is infinite as well as the heat
equation, that is, even if the support of initial data is compact, the support of solutions
coincides the whole space, instantaneously. It is open whether u is real analytic in t .

By (2.1) , it is easy to see that

sup
0<t�T

t1/2‖∇u(t)‖n � L3 (2.3)

with some constant L3 depending only on n , M , L1 and L2 .
Similarly, sup0<t�T tk/2‖∇ku(t)‖n is bounded for each finite k ∈ N .
The assumption on L2 may be relaxed slightly. In fact, instead of assuming on L2 ,

we are allowed to suppose

sup
0<t�T

t(1/q−1/s)n/2‖u(t)‖s � L4 for some s ∈ (q,∞],

since bounds of L2 and L3 are ensured by those of L1 and L4 . Notice that the uniform
bound of L2 (or L3 , L4 ) in t , up to T = ∞ in particular, is still open for n � 3, even if
M = 0 and ‖u0‖n is small.
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3. Ornstein-Uhlenbeck Semigroup

Let n∈N . For q∈ [1,∞] , Lq = Lq(Rn) denote by the usual Lebesgue spaces in R
n

with norm ‖ f‖q := (
∫
Rn | f (x)|q dx)1/q for q < ∞ , and ‖ f‖∞ := ess.supx∈Rn | f (x)| . We

often omit the notation (Rn) , if no confusion occurs likely; we sometimes do not dis-
tinguish the vector valued function and scalar as well as function spaces. The Sobolev
space stands for Wm,q for q∈ [1,∞] and m∈N0 , where N0 := N∪{0} . The solenoidal
subspace of Lq denotes by Lq

σ for q ∈ (1,∞) .
Secondly, we recall properties of the Ornstein-Uhlenbeck semigroup.

PROPOSTION 1. ([12, 19]) (a) Let n ∈ N , � 2, q ∈ (1,∞) , M ∈ R
n×n , trM = 0.

Put A := Δ + Mx ·∇−M with domain D(A) := {v ∈ W 2,q ∩ Lq
σ ;Mx ·∇v ∈ Lq} , −A

generates a non-analytic (C0)-semigroup {etA}t�0 on Lq
σ . Further, it has the following

explicit formula

etAv(x) :=
e−tM

(4π)n/2(detQt)1/2

∫
Rn

v(etMx− y)e−Q−1
t y·y/4dy

for x ∈ R
n , t > 0 and v ∈ Lq

σ , where Qt :=
∫ t
0 esMesMT

ds .
(b) Let T > 0, r ∈ [q,∞] . Thus, there exist constants C > 0 depending only on n , q ,
r , M and ω � 0 depending only on M such that

‖∇ketAv‖r � Ceωkt t−(1/q−1/r)n/2‖∇kv‖q (3.1)

for t > 0, k ∈ N0 and v ∈Wk,q as well as

‖∇ketAv‖r � C(Ck)k/2eωkt t−k/2−(1/q−1/r)n/2‖v‖q (3.2)

for t > 0, k ∈ N0 and v ∈ Lq .

This proposition is based on the results by Metafune and his collaborators in [19].
The proofs of above estimates are precisely shown in [12], so we omit them in this note.
Remark that the semigroup {etA}t�0 is neither analytic nor commutative to ∇ . Indeed,
it holds that

∇etAv = etMetA∇v for v ∈ (W 1,q)n.

From above, it is clear that ω essentially depends only on the maximum of absolute
value of real part of eigenvalues of M . If M is skew-symmetric, then ω = 0, since etM

is unitary and Qt = tI .
We recall Kahane’s lemma for control the bilinear terms.

LEMMA 1. ([13]) Let n ∈ N . Put |α| := ∑n
i=1 αi and α! := Πn

i=1(αi!) for α =
(α1, . . . ,αn) ∈ N

n
0 . Denote β � α by βi � αi for all i , and

(α
β
)

:= α!
β !(α−β )! . Assume

that multi-sequences {Sα} , {Tα} satisfy

|S0| � σ , |T0| � θ , |Sα | � σ |α||α |−δ and |Tα | � θ |α||α |−δ ′
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for α ∈ N
n
0 , 
= 0 , where δ ,δ ′ ∈ R , σ ,θ � 0 are constants. If δ ,δ ′ > 1/2 , then there

exists γ > 0 depending only on n, δ and δ ′ such that
∣∣∣∣∣ ∑
β�α

(
α
β

)
Sβ Tα−β

∣∣∣∣∣ � γσθ |α||α |−min{δ ,δ ′} for α ∈ N
n
0, 
= 0.

This lemma follows from Stirling’s formula

k! ∼
√

2πk(k/e)k for large k ∈ N. (3.3)

4. Proof

We give the proof of Theorem 2. For M = 0, it was obtained by [10] that mild
solution is real analytic in x . We modify their proof. It suffices to show the following
assertion essentially equivalent to (2.2) .

PROPOSTION 2. Suppose that the assumptions of Theorem 2 are satisfied. Let
δ ∈ (1/2,1] . Then there exist positive constants K1 and K2 depending only on n , M ,
L1 , L2 , T and δ such that

‖∇ku(t)‖∞ � K1(K2k)k−δ t−k/2−1/2, t ∈ (0,T ], k ∈ N. (4.1)

Proof. We may assume that u is smooth, i.e., u∈C∞(Rn×(0,T ]) by construction.
It is used an induction argument with respect to k ∈ N . For k = 0 and 1, we see that
tk/2+1/2−n/2r∇ku(t) is uniformly bounded in [0,T ] with valued in Lr(Rn) for r∈ [n,∞] ,
using L1 and L2 as (2.3) . This means that (4.1) holds for k = 1, taking K1 �C′

1 with
some large C′

1 > 0 and K2 = 1. Similarly, assuming that for k∗ � 2 determined later,
(4.1) holds for k � k∗ with some large K1 � C1 � C′

1 and K2 = 1.
Let k � k∗+1. Suppose that (4.1) hold from 1 to k−1. We now claim that (4.1)

holds for k with suitable K1 and K2 . Put ε ∈ (0,1) , we divide the integral in (0,t) of
(INT) into two parts to have

‖∇ku(t)‖∞ � ‖∇ketAu0‖∞

+
(∫ (1−ε)t

0
+

∫ t

(1−ε)t

)
‖∇ke(t−s)A

Pu ·∇u(s)‖∞ds

+
(∫ (1−ε)t

0
+

∫ t

(1−ε)t

)
‖∇ke(t−s)A

P2Mu(s)‖∞ds

=: I1 + I2 + I3 + I4 + I5.

We shall estimate I1, . . . , I5 above, separately.
In what follows, for the sake of simplicity, let T � 1, and then t � 1. For estimat-

ing I1 , by the smoothing estimate (3.2) it holds that

I1 � C♠(C♥k)k/2eωkt t−k/2−1/2‖u0‖n for t ∈ (0,T ]
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with some C♠ and C♥ independent of k . By Stirling’s formula (3.3) ,

I1 � C′
2(C

′
3k)

k−δ t−k/2−1/2

for all k � 2 with constants chosen as C′
3 := C♥e3ω and C′

2 := 2C♠L1C′
3 .

It is also easy to derive the estimate to I2 . Indeed, for t ∈ (0,T ]

I2 �
∫ (1−ε)t

0
C(Ck)k/2ekω(t−s)(t− s)−k/2−1‖u(s) ·∇u(s)‖n/2ds

� C(Ck)k/2ekωt
∫ (1−ε)t

0
(t− s)−k/2−1‖u(s)‖n‖∇u(s)‖nds

� C(Ck)k/2ekωtε−k/2−1(1− ε)1/2t−k/2−1/2.

Here, we have used the Hölder inequality and (2.3) . Similarly as I2 ,

I4 �
∫ (1−ε)t

0
C(Ck)k/2ekω(t−s)(t− s)−k/2−1/2‖u(s)‖nds

� C(Ck)k/2ekωtε−k/2−1(1− ε)t−k/2+1/2

hold. Hereafter, we choose ε := η/k for η � 1 and k � η +1. So,

I2 + I4 � C♦Ck/2
♣ kk+1ekω η−k/2−1t−k/2−1/2 � C′′

2 (C′′
3 k)k−δ t−k/2−1/2

are satisfied with constants C♦ and C♣ ; we have chosen C′′
2 :=C♦ , C′′

3 := max{1,C♣}
and η � e2ω+2 , since k/2 � k−δ for k � 2 and δ � 1 as well as k2 � ek . Hence, one
can see

I1 + I2 + I4 � C2(C3k)k−δ t−k/2−1/2

for k � η +1 with η := e2ω+2 , C2 := C′
2 +C′′

2 and C3 := max{C′
3,C

′′
3} .

The estimate for I5 is as follows. By (3.1) we shift ∇k to u , then

I5 �
∫ t

(1−ε)t
Cekω(t−s)‖∇ku(s)‖∞ds � Cekωεt

∫ t

(1−ε)t
‖∇ku(s)‖∞ds.

This term remains for applying the Gronwall inequality, later.
For I3 , we shift ∇k−1 to the bilinear terms. It leads us to

I3 �
∫ t

(1−ε)t
Ce(k−1)ω(t−s)(t− s)−1/2

∥∥∥∥∥
k

∑
j=0

(
k
j

)
{∇ ju(s)}∇k− ju(s)

∥∥∥∥∥
∞

ds

� Cekωεt
∫ t

(1−ε)t
(t − s)−1/2‖u(s)‖∞‖∇ku(s)‖∞ds

+Cekωεt
∫ t

(1−ε)t
(t− s)−1/2

k−1

∑
j=1

(
k
j

)
‖∇ ju(s)‖∞‖∇k− ju(s)‖∞ds

=: I�3 + I∗3 .
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For t � 1 and ε := η/k , combining I�3 and I5 , we derive

I�3 + I5 � Ceωη
∫ t

(1−η/k)t
(t− s)−1/2s−1/2‖∇ku(s)‖∞ds.

Put ψ(t) := sup0<τ�t τk/2+1/2‖∇ku(τ)‖∞ . We thus see that

I�3 + I5 � Ceωη
∫ t

(1−η/k)t
(t− s)−1/2s−k/2−1ψ(s)ds

� Ceωη{(1−η/k)t}−k/2−1/2ψ(t)
∫ t

(1−η/k)t
(t − s)−1/2s−1/2ds

� t−k/2−1/2ψ(t)/2 for k � k∗

with some large k∗ � η +1. For the last inequality, the definition of Napier’s constant
leads us to take a constant C∗ independently of k :

(1−η/k)−k/2−1/2 � 2eη/2(1−η/k)−1/2 � C∗.

By assumption of induction and Lemma 1, the last term I∗3 is estimated as follows:

I∗3 � Cekωεt
∫ t

(1−ε)t
(t− s)−1/2

k−1

∑
j=1

(
k
j

)
K1(K2 j) j−δ s− j/2−1/2

·K1{K2(k− j)}k− j−δ s−k/2+ j/2−1/2ds

� CekωεtK2
1Kk−2δ

2

∫ t

(1−ε)t
(t − s)−1/2s−k/2−1ds

·
k

∑
j=0

(
k
j

)
j j−δ (k− j)k− j−δ

� CekωεtK2
1Kk−2δ

2 kk−δ (1−η/k)−k/2−1ε1/2t−k/2−1/2

� C4K
2
1Kk−2δ

2 kk−δ t−k/2−1/2

with some C4 independent of k , since η is fixed. Therefore, we have

tk/2+1/2‖∇ku(t)‖∞ � ψ(t) � 2C2(C3k)k−δ +2C4K
2
1K−δ

2 (K2k)k−δ

for k � k∗ . Finally, we take

K1 := max{C1,4C2} and K2 := max{C3,(4C4K1)1/δ}
to get (4.1) with k . This completes the proof of Proposition 2.
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[19] G. METAFUNE, J. PRÜSS, A. RHANDI AND R. SCHNAUBELT, The domain of the Ornstein-
Uhlenbeck operator on an Lp -space with invariant measure, Ann. Sc. Norm. Super. Pisa Cl. Sci.,
1, (2002), 471–485.

[20] H. MIURA AND O. SAWADA, On the regularizing rate estimates of Koch-Tataru’s solution to the
Navier-Stokes equations, Asymptot. Anal., 49, 1-2 (2006), 1–15.

[21] O. SAWADA AND T. USUI, The Navier-Stokes equations for linearly growing velocity with nondecay-
ing initial disturbance, Adv. Math. Sci. Appl., 19, 2 (2009), 539–564.

(Received May 19, 2018) Seiya Hattori, Okihiro Sawada
Applied Physics Course
Faculty of Engineering

Gifu University
Yanagido 1-1, Gifu, 501-1193, Japan

e-mail: okihiro@gifu-u.ac.jp

Differential Equations & Applications
www.ele-math.com
dea@ele-math.com


