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Abstract. In this paper, a plant pest mathematical model is presented with integrated pest man-
agement through impulse. Two control measures: Biological(Natural Enemies) and Chemical
pesticides are taken in consideration in the model through impulse. Boundedness and the suffi-
cient conditions of existence of the positive periodic solutions is established. Further, the local
stability of the pest extinction equilibrium point is studied using Floquet’s theory. It is proved
that the pest extinction equilibrium point is globally stable at T < Tmax and the system is perma-
nent for T > Tmax . Numerical data per week are taken to illustrate the theoretical results using
MATLAB software.

1. Introduction

For years, discussion on the rivalry over plants and pests has gained the major
cause of attention. Farmer used all possible methods to tackle with the pests for the
conservation of plants, humans, revenue and the capitalism of the the country. As the
time passed on, new technologies stepped in to take control over deadly pests. Pests not
only affects the plants but also affects the ecological balance of the biosphere [1, 2, 3, 4].
Our only focus was on to suppress the pests for better results and for the conservation
of the biosphere.

To overcome the deadly pests destroying the plants, natural enemies were only
the way agriculturists came through. They released the natural enemies impulsively
and they could see the benefits over the method they applied. Example: Mirid bugs,
plays the key role in suppressing the pests [6]. Mirid bugs prey on spider mites, aphids,
leafhoppers, scale insects harming the growth of the plants. But these natural enemies
has to cross life stages which transform them from immature to mature stage as gener-
ally mature natural enemies can only feed the pest.

With the advancement in technologies, farmers found it difficulty on dealing with
the pests by releasing of the natural enemy due to their decreasing rate. Again, at this
phase farmers had to face the situation of how to overcome the rate of pests without
the help of natural enemies. Then, they introduced the new technology of control-
ling the pests by releasing of the man made chemical pesticides. Chemical pesticides
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kills the pests destroying plants which let the farmers tension free. But the farmers
came up with the drawbacks of using the chemical pesticides which led the farmers to
ponder over such situation. Chemical pesticides such as Organophosphate pesticides,
Organochlorine insecticides, Carbamate pesticides etc were few of the pesticides used
by the farmers which not only destroys the pests but also has an adverse effect on the
environment. So such chemical pesticides with time had to be removed and were re-
placed by the pesticides which were harmful only to the pests and not the plants or the
biosphere. Bio-pesticides were the advantageous method practised by the agriculturists
which benefitted both ecologically and biologically to the ecosystem. Thus the farm-
ers thought of a new technique called integrated pest management which involves both
biological and chemical control measures impulsively to prevent the plant population.
Many mathematical models have been studied by the authors [5, 7, 8, 9, 10, 11, 12] for
biological and chemical control of pest population.

Keeping in view of the above discussions we have developed a mathematical
model to show the hybrid approach of pest control by impulsive release of natural ene-
mies and chemical pesticides which are not hazardous to the ecosystem. The interaction
between the plant and pest population is by Holling Type-2 functional response as it in-
corporate the time taken by the pest to process the food and searching of prey which
differentiates it from Holling Type-1 functional response and given better result. The
sequence of paper is as follows: In section 2, mathematical model is formulated. A pre-
liminary section of definition is discussed in section 3. In section 4, boundedness of the
system is studied. The local stability of pest extinction equilibrium point is studied in
section 5. In section 6, global attractivity of the system is analysed. Permanence of the
system is studied in the section 7. In the last section of this paper numerical simulation
with the hypothetical parameters is analysed.

2. Formulation of mathematical model

In this section,the model is formulated with the following assumptions:

1. The plant population x(t) is growing logistically with growth rate r and carrying
capacity k . The per capita rate at which pest population y(t) captures plant
population x(t) is represented by the term bx(t)/(β + x(t)) . Thus, the evolution
equation is:

dx(t)
dt

= rx(t)
(

1− x(t)
k

)
−b

x(t)y(t)
β + x(t)

(1)

2. y(t) is the density of pest population in that region of consideration at time t .
It is also assume that only mature natural enemy can harvest the pest popula-
tion. Further, d is the natural death rate of pest population. Thus, the evolution
equation is:

dy(t)
dt

= b
x(t)y(t)
β + x(t)

−dy(t)−αy(t)z2(t) (2)

3. The growth rate of immature natural enemy population z1(t) is depend on mature
natural enemy z2(t) . The death rate and maturity rate of natural enemy is d3 and
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m . Thus, the evolution model is:

dz1(t)
dt

= αy(t)z2(t)− (d3 +m)z1(t) (3)

4. The mature enemy population z2(t) are growing due to immature enemy popula-
tion z1(t) at a rate m . Further, d3 is the death rate of mature enemy population.
Thus, the evolution model is:

dz2(t)
dt

= mz1(t)−d3z2(t) (4)

We will extend this model by releasing amount of immature and mature natural
enemies μ1 and μ2 at a fixed moment and a impulsive harvesting rate of pests δ . T is
the impulsive period.

Hence, the proposed model is:

dx(t)
dt = rx(t)(1− x(t)

k )−b x(t)y(t)
β+x(t)

dy(t)
dt = b x(t)y(t)

β+x(t) −dy(t)−αy(t)z2(t)
dz1(t)

dt = αy(t)z2(t)− (d3 +m)z1(t)
dz2(t)

dt = mz1(t)−d3z2(t)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

t �= nT (A)

x(t+) = x(t)
y(t+) = (1− δ )y(t)
z1(t+) = z1(t)+ μ1

z2(t+) = z2(t)+ μ2

⎫⎪⎪⎬
⎪⎪⎭

t = nT (B)

3. Preliminaries

In this section, we give some notations, definitions and Lemmas which will be
useful for our main results.

Let us consider f = ( f1, f2, f3, f4)T , defined by the right hand side of the first four
equation of system (A−B) and let V0 =V (t,x) : R+×R4

+ → R+ , where R+ = [0,+∞) ,
R4

+ = (x ∈ R4 : x � 0) then V is said to belong to class V0 if
(1) V continuous in (nT,(n+1)T ]×R4

+ and for each x ∈ R4
+ , n ∈ N ,

lim
(t,u)→(nT+,x)

V (t,u) = V (nT+,x)

exists.
(2) V is locally Lipschitzian in x .

DEFINITION 3.1. Let V ∈V0 , then for (t,x) ∈ ((nT,(n+1)T ]×R4
+ , n ∈ N . The

upper right derivatives of V (t,x) with respect to the impulsive differential system (A−
B) is defined as

D+V (t,x) = lim
h→0+

sup
1
h
[V (t +h,x+h f (t,x)]−V(t,x)]
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REMARK. The smoothness properties of f guarantee the global existence and
uniqueness of the solutions of system (A−B) [13, 14].

DEFINITION 3.2. The system (A−B) is permanent if there exist M � m > 0 such
that, for any solution (x(t),y(t),z1(t),z2(t)) of system (A−B) with x0 > 0, y0 > 0,
z10 > 0, z20 > 0

m � lim
t→∞

infx(t) � lim
t→∞

sup x(t) � M.

m � lim
t→∞

infy(t) � lim
t→∞

sup y(t) � M.

m � lim
t→∞

infz1(t) � lim
t→∞

sup z1(t) � M.

m � lim
t→∞

infz2(t) � lim
t→∞

sup z2(t) � M.

4. Boundedness of the system

In this section, we will discuss the boundedness of the system.

THEOREM 1. For each solution (x(t),y(t),z1(t),z2(t)) of (A−B) their exists a
constant M > 0 such that x(t) � M, y(t) � M, z1(t) � M and z2(t) � M with t being
sufficiently large enough.

Proof. Let (x(t) , y(t) , z1(t) , z2(t)) be the solution of (A−B)
We define a function V (t) = x(t)+ y(t)+ z1(t)+ z2(t) . Let 0 < d < min(d,d3)

then for t �= nT , we obtain that

D+V (t)+ dV (t) � (r+ d)x(t)− r
k
x2(t) � M0

where

M0 =
k(r+ d)2

4r
when t =nT , V (t+ )=V (t)+μ1 + μ2 . For t ∈ (nT,(n+1)T ] , we have

V (t) � V (0)exp(−dt)+
∫ t

0
M0 exp(−d(t− s))ds+ ∑

0<nT<t

(μ1 + μ2)exp(−d(t −nT))

= V (0)exp(−dt)+
M0(1− exp(−dt))

d

+(μ1 + μ2)
exp(−d(t −T))− exp(−d(t − (n+1)T))

1− exp(dT )

< V (0)exp(−dt)+
M0

d
(1− exp(−dt))

+
μ1 + μ2 exp(−d(t−T ))

1− exp(dT )
+

μ1 + μ2 exp(−dT )

exp(dT )−1

→ M0

d
+

(μ1 + μ2)exp(dT )

exp(dT )−1
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as t → ∞ .
Thus, V (t) is a uniformly bounded. Hence, by the definition of V (t) , their exist

a constant M := (M0/d)+(μ1 + μ2)exp(dT )/(exp(dT )−1) > 0 such that x(t) � M ,
y(t) � M , z1(t) � M , z2(t) � M , for all t large enough. This completes the proof. �

LEMMA 1. Consider the following impulsive system

du
dt

= c−du(t), t �= nT (5)

u(t+) = u(t)+ μ , t = nT, n = 1,2,3, . . .

Then system (5) has a positive periodic solution ũ(t) and for any solution u(t) of the
system (5) , we have

|u(t)− ũ(t)| → 0, as t → ∞,

where,for t ∈ (nT,(n+1)T ]

ũ(t) =
c
d

+
μ exp(−d(t−nT))

1− exp(−dT )

with
ũ(0+) =

c
d

+
μ

1− exp(−dT )

Proof. We can easily verify that ũ(t) is a positive periodic solution (5) with the
given initial values. Suppose that u(t) is an arbitrary solution of (5) , then we can solve
that

u(t) = (u(0+)− ũ(t))e−dt + ũ(t), t ∈ (nT,(n+1)T ]

Thus, limt→∞ |u(t)− ũ(t)| = 0. This completes the proof. �

Again for the pest extinction we can obtain the following impulsive system:

dz1(t)
dt

= −(d3 +m)z1(t), t �= nT (6)

z1(t+) = z1(t)+ μ1, t = nT (7)

dz2(t)
dt

= mz1(t)−d3z2(t), t �= nT (8)

z2(t+) = z2(t)+ μ2, t = nT (9)

For the system (6) , using the lemma (1) , it is obtained that

z̃1(t) =
μ1 exp(−(d3 +m)(t−nT ))

1− exp(−(d3 +m)T )

with
z̃1(0+) =

μ1

1− exp(−(d3 +m)T )
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is a positive periodic solution of the system(6) , which is globally asymptotically stable.
Substituting z̃1(t) into (8) , we obtain the following subsystem:

dz2(t)
dt

= mz̃1(t)−d3z2(t), t �= nT (10)

z2(t+) = z2(t)+ μ2, t = nT

Integrating the first equation of (10) over the interval t ∈ (nT,(n+1)T ] , we have

z2(t) =
μ1(exp(−d3(t −nT))− exp(−(d3 +m)(t−nT)))

1− exp(−(d3 +m)T )

+z2(nT+)exp(−d3(t −nT)), nT < t � (n+1)T.

After successive pulse,we can obtain the following stroboscopic map of (10) :

z2((n+1)T+) =
μ1(exp(−d3(t −nT))− exp(−(d3 +m)(t−nT)))

1− exp(−(d3 +m)T )
(11)

+z2(nT+)exp(−d3(t−nT))+ μ2 � f (z2(nT+))

It is easy to check that (11) has a unique positive fixed point

z∗2 =
μ1 exp(−d3T )(1− exp(−mT ))

1− exp(−(d3 +m)T )(1− exp(−d3T ))
+

μ2

1− exp(−d3T )
,

which satisfies z2 < f (z2) < z∗2 if 0 < z2 < z∗2 and z∗2 < f (z2) < z2 if z2 > z∗2 . Thus the
corresponding periodic solution of the system (10) in the interval (nT,(n+1)T ] is

z̃2(t) = −μ1 exp(−(d3 +m)(t−nT))
1− exp(−(d3 +m)T )

+
(μ1 + μ2)exp(−d3(t−nT))

1− exp(−d3T )

with initial value

z̃1(0+) = − μ1

1− exp(−(d3 +m)T )
+

(μ1 + μ2)
1− exp(−d3T )

which is globally asymptotically stable.
Moreover, due to pest eradication we can also consider the following subsystem

of (A−B) :
dx(t)
dt

= rx(t)
(

1− x(t)
k

)
(12)

Which is a logistic differential equation, thus from well known properties of logistic
differential equation (12) , there exists a unstable equilibrium x = 0 and a globally
asymptotically stable equilibrium x = k . Hence the system (A−B) has following two
periodic solutions: plant-pest-extinction periodic solution (0,0, z̃1(t), z̃2(t)) and pest-
extinction periodic solution (k,0, z̃1(t), z̃2(t)) .
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5. Local stability

In this section, we will be discussing the local stability of plant-pest eradication
periodic solution and pest eradication periodic solution of the system (A−B) in the
following theorem.

THEOREM 2. Let (x(t),y(t),z1(t),z2(t)) be any solution of equation (A−B) then,
(i) The plant-pest eradication periodic solution (0,0, z̃1(t), z̃2(t)) is unstable.
(ii) The pest eradication periodic solution (k,0, z̃1(t), z̃2(t)) is locally asymptoti-

cally stable if and only if T < Tmax , where

Tmax =
1(

b
β+k −d

)
(

αd3μ2 +mα(μ1 + μ2)
d3(d3 +m)

− log(1− δ )
)

provided b
β+k > d .

Proof. (i) For the local stability of periodic solution (0,0, z̃1(t), z̃2(t)) , we define
x(t) = φ1(t) , y(t) = φ2(t) , z1(t) = z̃1(t)+φ3(t) , z2(t) = z̃2(t)+φ4(t) where φi(t) , i =
1,2,3,4 are small amplitude perturbation of the solution respectively, then the system
(A−B) can be expanded in the following linearized form:

dφ1(t)
dt = φ1(t)

dφ2(t)
dt = −(d + α z̃2(t))φ2(t)

dφ3(t)
dt = α z̃2(t)φ2(t)− (d3 +m)φ3(t)

dφ4(t)
dt = mφ3(t)−d3φ4(t)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

t �= nT (C)

φ1(t+) = φ1(t)
φ2(t+) = (1− δ )φ2(t)

φ3(t+) = φ3(t)
φ4(t+) = φ4(t)

⎫⎪⎪⎬
⎪⎪⎭

t = nT (D)

Let φ(t) be the fundamental matrix of (C−D) , then φ(t) must satisfy

dφ(t)
dt

=

⎡
⎢⎢⎣

1 0 0 0
0 −(d + α z̃2(t)) 0 0
0 α z̃2(t) −(d3 +m) 0
0 0 m −d3

⎤
⎥⎥⎦φ(t) = Aφ(t) (13)

Thus, the monodromy matrix of (C−D) is

M =

⎡
⎢⎢⎣

1 0 0 0
0 1− δ 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦φ(t)
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From (13) , we obtain that φ(T ) = φ(0)exp(
∫ T
0 Adt) , where φ(0) is the identity

matrix. Then the monodromy matrix M have the following eigen values:

λ1 = exp(T ) > 1

λ2 = (1− δ )exp

(
−

∫ T

0
(d + α z̃2(t))dt

)
< 1

λ3 = exp(−(d3 +m)T) < 1

λ4 = exp(−d3T ) < 1

Thus from the Floquet theory of impulsive differential equation,the plant pest eradica-
tion periodic solution of the system (C−D) is unstable since |λ1| > 1.

(ii) The local stability of periodic solution (k,0, z̃1(t), z̃2(t)) may be establish in the
similar manner as in the previous case. Now, we define x(t) = 1+ φ1(t) , y(t) = φ2(t) ,
z1(t) = z̃1(t)+ φ3(t) , z2(t) = z̃2(t)+ φ4(t) , then the system (A−B) can be expanded
in the following linearized form:

dφ1(t)
dt = −rφ1(t)− b

β+kφ2(t)
dφ2(t)

dt = ( b
β+k −d−α z̃2(t))φ2(t)

dφ3(t)
dt = α z̃2(t)φ2(t)− (d3 +m)φ3(t)

dφ4(t)
dt = mφ3(t)−d3φ4(t)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

t �= nT (E)

φ1(t+) = φ1(t)
φ2(t+) = (1− δ )φ2(t)

φ3(t+) = φ3(t)
φ4(t+) = φ4(t)

⎫⎪⎪⎬
⎪⎪⎭

t = nT (F)

The fundamental matrix φ(t) of (E −F) must satisfy

dφ(t)
dt

=

⎡
⎢⎢⎣
−r −b

β+k 0 0

0 ( b
β+k −d−α z̃2(t)) 0 0

0 α z̃2(t) −(d3 +m) 0
0 0 m −d3

⎤
⎥⎥⎦φ(t) (14)

Thus, the monodromy matrix of (E −F) is given as:

M =

⎡
⎢⎢⎣

1 0 0 0
0 1− δ 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦φ(T ),

which has the eigenvalues

λ1 = exp(−rT ) < 1,

λ2 = (1− δ )exp

(∫ T

0

(
b

β + k
−d−α z̃2(t)

)
dt

)
,
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λ3 = exp(−(d3 +m)T ) < 1,

λ4 = exp(−d3T ) < 1.

Therefore,according to the Floquet theory of impulsive differential equation, the pest
eradication periodic solution of the system (E −F) is locally asymptotically stable if
and only if |λ2| � 1, i.e, T � Tmax ,since correspondance to λ2 , Tmax expression has a
simple elementary divisor. Hence the proof of the theorem. �

6. Global attractivity

In this section, we will be discussing the global attractivity of pest eradication
periodic solution in the following theorem.

THEOREM 3. Let (x(t),y(t),z1(t),z2(t)) be any solution of equation (A − B) .
Then, the pest extinction periodic solution (k,0, z̃1(t), z̃2(t)) of (A−B) is globally at-
tractive provided that T < Tmax holds.

Proof. If (x(t),y(t),z1(t),z2(t)) is any solution of (A−B) , then equation (1) can
be rewritten as

dx(t)
dt

� rx(t)
(

1− x(t)
k

)

which implies that limt→∞ supx(t) = k . Thus there exists an integer k1 > 0 such that if
t > k1 then x(t) < k+ ε0 . Now, if we consider third and fourth equation of the system
A,

dz1(t)
dt

� −(d3 +m)z1(t), t �= nT, (15)

z1(t+) = z1(t)+ μ1, t = nT

Then by considering the following comparison system:

dw1(t)
dt

= −(d3 +m)w1(t), t �= nT, (16)

w1(t+) = w1(t)+ μ1, t = nT (17)

Using the lemma (1), we obtain that the system (16)–(17) has a periodic solution

w̃1(t) =
μ1 exp(−(d3 +m))(t−nT)

1− exp(−(d3 +m)T )
, nT < t � (n+1)T, n ∈ Z+,

which is globally asymptotically stable. In view of lemma (1) and comparison theorem
of impulsive equation [13], we have z1(t) � w1(t) and w1(t) → w̃1(t) as t → ∞ . Then
there exists an integer k2 > k1 , t > k2 such that

z1(t) � w1(t) > z̃1(t)− ε0, nT < t < (n+1)T, n > k2. (18)
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Incorporating (18) with the equation (3) , we obtain the following subsystem:

dz2(t)
dt

� m

(
μ1 exp(−(d3 +m))(t−nT )

1− exp(−(d3 +m)T )
− ε0

)
−d3z2(t), t �= nT, (19)

z2(t+) = z2(t)+ μ2, t = nT.

Now, we consider the comparison system of (19) as follows:

dw2(t)
dt

= m

(
μ1 exp(−(d3 +m))(t−nT)

1− exp(−(d3 +m)T )
− ε0

)
−d3w2(t), t �= nT, (20)

w2(t+) = w2(t)+ μ2, t = nT.

In the previous manner, we obtain that the system (19)–(20) has a periodic solution

w̃2(t) = −μ1 exp(−(d3 +m))(t−nT )
1− exp(−(d3 +m)T )

+
(μ1 + μ2)exp(−d3(t−nT))

1− exp(−d3T )
− αmε0

d3
,

nT < T � (n+1)T,

which is globally asymptotically stable. By using comparison theorem of impulse
equation[13], we have z2(t) � w2(t) and w2(t) → w̃2(t) as t → ∞ . Thus there ex-
ists an integer k3 > k2 , t > k3 such that

z2(t) � w2(t) > z̃2(t)− ε0, nT < t < (n+1)T, t > k3. (21)

From the system (A−B) , we get

dy(t)
dt

� y(t)
[
bε0

β
−d−α(z̃2(t)− ε0)

]
, t �= nT, (22)

y(t+) = (1− δ )y(t), t = nT

Integrating the equation (22) between the pulse, we have

y(t) � y(nT+)exp

(∫ (n+1)T

nT

[
bε0

β
−d−α(z̃2(t)− ε0)

]
dt

)

After the successive pulse, we can obtain the following stroboscopic map

y((n+1)T+) � (1− δ )y(nT+)exp

(∫ (n+1)T

nT

[
bε0

β
−d−α(z̃2(t)− ε0)

]
dt

)
(23)

= (1− δ )y(nT+)σ (24)

where

σ = exp

(∫ (n+1)T

nT

[
bε0

β
−d−α(z̃2(t)− ε0)

]
dt

)
< 1,
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as T < Tmax , therefore, for ε0 > 0, we get that

(1− δ )exp

((
bε0

β
−d +

αmε0

d3
+ αε0

)
T +

αμ1

d3 +m
− α(μ1 + μ2)

d3

)
< 1

Thus y(nT+) � (1− δ )y(0+)σn and y(nT+) → 0 as n → ∞ . Therefore y(t) → 0 as
n → ∞ . Therefore, there exists an ε1 > 0 (sufficiently small) such that 0 < y(t) < ε1

for all t large enough.
Again, for (A−B) , we have

dx(t)
dt

� x

(
r− rx(t)

k
− bε1

β

)
, t �= nT

which implies that limt→∞ infx(t) = k i.e x(t) → k as t → ∞ . Thus from the equation
(A−B) , we have

dz1(t)
dt

� αε1M− (d3 +m)z1(t), t �= nT, (25)

z1(t+) = z1(t)+ μ1, t = nT

In the previous manner, using the comparison theorem for impulsive equations [13] and
lemma (1) , there exists an ε2 > 0 (sufficiently small) such that

z1(t) <
αε1M
d3 +m

+
μ1 exp(−(d3 +m))(t−nT)

1− exp(−(d3 +m)T )
− ε2

for t large enough. From the equation (A−B) , we obtain the following subsystem

dz2(t)
dt

� m

(
αε1M
d3 +m

+
μ1 exp(−(d3 +m))(t−nT )

1− exp(−(d3 +m)T )
− ε2

)
−d3z2(t), t �= nT (26)

z2(t+) = z2(t)+ μ2, t = nT

In the similar, we obtain that there exists an ε3 > 0 such that

z2(t) < −μ1 exp(−(d3 +m))(t−nT)
1− exp(−(d3 +m)T )

+
(μ1 + μ2)exp(−d3(t −nT))

1− exp(−d3T )
(27)

+
m
d3

(
αε1M
d3 +m

+ ε2

)
+ ε3,

nT < t � (n+ 1)T , t > k3 . Which evidences that z1(t) → z̃1(t) and z2(t) → z̃2(t) as
t → ∞ . This completes the proof. �
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7. Permanence

The permanence of the system is (A−B) is stated below with the theorem:

THEOREM 4. The system (A−B) is permanent if T > Tmax .

Proof. Suppose (p(t),q(t),r1(t),r2(t)) is the solution of the system (A − B) .
From the boundedness of the solution, we saw that x(t) � M , y(t) � M , z1(t) � M
and z2(t) � M for all large t. From equation (1) , we have dx

dt � (r− bM
β − rx

k )x which

implies that x(t) > r− bM
β � m1 for all t large enough. For sufficiently small ε4 > 0,

we choose m1 = r− ε4 > 0 and also define

m2 =
−μ1 exp(−(d3 +m)(t−nT))

1− exp(−(d3 +m)T )
− ε4 > 0

m3 =
−μ1 exp(−(d3 +m)(t−nT))

1− exp(−(d3 +m)T )
+

(μ1 + μ2)exp(−d3(t−nT))
1− exp(−d3T )

− ε4m
d3

− ε4 > 0

Now, the system can be rewritten as:

dz1(t)
dt

= −(d3 +m)z1(t), t �= nT (28)

dz2(t)
dt

= mz1(t)−D3z2(t), t �= nT (29)

z1(t+) = z1(t)+ μ1, t = nT, n = 1,2,3 . . . (30)

z2(t+) = z2(t)+ μ2, t = nT, n = 1,2,3 . . . (31)

The system (28)–(31) is same as (6)–(9) . Thus, using the same approach, we can
easily obtain that z1(t) > m2 and z2(t) > m3 for all t large enough. Therefore, for the
permanence of the system, we only need to find m4 > 0, such that q(t) � m4 for large
enough t. We prove this result in two steps.

Step 1. Firstly assume that y(t)� m4 is not true, then there exists a t1 ∈ (0,∞) such
that y(t) < m4 for all t > t1 . Using this assumption, we get the following subsystem of
the system (A−B) :

dz1(t)
dt

� αMm4 − (d3 +m)z1(t), t �= nT

z1(t+) = z1(t)+ μ1, t = nT, n = 1,2,3 . . .

Consider the following Comparison system:

dw1(t)
dt

� αMm4 − (d3 +m)w1(t), t �= nT (32)

w1(t+) = w1(t)+ μ1, t = nT, n = 1,2,3 . . . (33)
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Using lemma (1) , the system (32)–(33) has a periodic solution

w̃1(t) =
αm4M
d3 +m

+
μ1 exp(−(d3 +m)(t−nT))

1− exp(−(d3 + μ0)T )

which is globally asymptotically stable. Then, there exists an ε5 > 0 such that

z1(t) � w̃1(t) <
αm4M
d3 +m

+
μ1 exp(−(d3 +m)(t−nT))

1− exp(−(d3 +m)T )
+ ε5 > 0

for t large enough. Thus we obtain the following subsystem of (A−B) :

dz2(t)
dt

= μ0

(
αm4M
d3 +m

+
μ1 exp(−(d3 +m)(t−nT))

1− exp(−(d3 +m)T )
+ ε5

)
(t)−d3z2(t), t �= nT

(34)
z2(t+) = z2(t)+ μ2, t = nT, n = 1,2,3 . . . (35)

Consider the comparison system (34)–(35) as follows:

dw2(t)
dt

= m

(
αm4M
d3 +m

+
μ1 exp(−(d3 +m)(t−nT ))

1− exp(−(d3 +m)T )
+ ε5

)
(t)−d3w2(t), t �= nT

(36)
w2(t+) = w2(t)+ μ2, t = nT, n = 1,2,3 . . . (37)

In the similar manner, the system (36)–(37) also has a periodic solution

w̃2(t) <
−μ1 exp(−(d3 +m)(t−nT))

1− exp(−(d3 +m)T )
+

(μ1 + μ2)exp(−d3(t−nT))
1− exp(−d3T )

(38)

+
m
d3

(
αm4M exp(−d1τ)

(d3 +m)
+ ε5

)

which is globally asymptotically stable and there exists an ε6 > 0 such that,

z2(t) < w̃2(t) <
−μ1 exp(−(d3 +m)(t−nT))

1− exp(−(d3 +m)T )
+

(μ1 + μ2)exp(−d3(t−nT))
1− exp(−d3T )

+
m
d3

(
αm4M

(d3 +m)
+ ε5

)
+ ε6.

It follows that there exists a T1 > 0 such that for nT < t � (n + 1)T , we have the
following subsystem of (A−B) :

dy(t)
dt

�
[
bm1

β
−d−α(w̃2(t)+ ε6)

]
y(t), t �= nT (39)

y(t+) = (1− δ )q(t), t = nT, and, t > T1 (40)

Integrating the equation (39) on (nT,(n+ 1)T ] , n � N1 (here, N1 is the nonnegative
integer and N1T � T1 ), then we obtain that

y((n+1)T) � (1− δ )q(nT+)exp

(∫ (n+1)T

nT

(
bm1

β
−d−α(w̃2(t)+ ε6)dt

))

= q(nT+)σ
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where σ = (1− δ )exp(
∫ (n+1)T
nT ( bm1

β −d−α(w̃2(t)+ ε6)dt) > 1, as, T > Tmax , there-
fore, for ε5 , where, ε5 > 0, it is obtained that,
(

bm1

β
−d−αε6

)
T−αm

d3

(
αm4M
d3+m

+ε5

)
T−α

(
μ1+μ2

d3
− m1

d3+m

)
− log

(
1

1−δ

)
> 1.

Thus, y((N1 + k)T ) � y(N1T+)σ k → ∞ as k → ∞ , which is a contradiction of our
assumption that y(t) < m4 , for every t > t2 . Hence there exists a t2 > t1 such that
y(t2) � m4 .

Step 2. If y(t) � m4 for all t � t2 , then our aim will be fulfilled. Otherwise
y(t) < m4 for some t > t2 . Let t∗ = inf{t | y(t) < m4,t > t2} , then there will be two
cases:

Case 1. Let t∗ = n1T , n1 is some positive integer. In this case q(t) � m4 for
t ∈ [t2, t∗) and (1−δ )m4 � y (t∗+ = (1−δ )y(t∗) < m4) . Assume that T2 = n2T +n3T ,
where n2 = n2

′ +n2
′′ , n2

′ , n2
′′ and n3 satisfy the following inequalities:

n2
′T > − 1

D3 + μ0
ln

ε5

M + μ1
,

n2
′′T > − 1

D3 + μ0
ln

ε6

M + μ2
,

(1− δ )n2+n3 exp(ηn2T )exp(n3σ) > 1,

η = bm1
β −d−αM < 0. Now, we claim that there exists a time t2′ ∈ (t∗,t∗ +T2) such

that y(t2′) � m4 , if it is not true, then y(t2′) < m4 , t2′ ∈ (t∗,t∗ + T2) . If the system
(32)–(33) is considered with initial value w1(t∗+) = z1(t∗+) , then using lemma 1 for
t ∈ (nT,(n+1)T ] , we have

w1(t) =
(

w1(t∗+)−αm4M
D3+m

+
μ1

1−exp(−(D3 +m)T )

)
exp(−(D3+m)(t−t∗))+w̃1(t),

for n1 � n � n1 +n2 +n3 .
Which evidences that | w1(t)− w̃1(t) |� (M + μ1)exp(−(D3 +m)(t−n1T )) < ε5 ,

and z1(t) � w1(t) < w̃1(t)+ ε5 for t∗ +n2
′T � t � t∗ +T2 .

Now, we consider the system (32)–(33) with initial values w2(t∗+n2
′T )= q2(t∗+

n2
′T )� 0. Again using lemma 1, we obtain that |w1(t)−w̃1(t) |< (M+μ2)exp(D3(t−

(n1 +N2
′)T )) < ε6 , and r2(t) � w2(t) < w̃2(t)+ε6 for t∗+n2

′T +n2
′′T � t � t∗+T2 ,

which leads that system (39)–(40) holds for [t∗ +n2T,t∗ +T2] .
Integrating system (39)–(40) on [t∗ +n2T,t∗ +T2] , we have,

y((n1 +n2 +n3)T ) � y((n1 +n2)T )(1− δ )n3 exp(n3σ) (41)

In addition from the system, we also have,

dy(t)
dt

�
[
bm1

β
−d−αM

]
y(t), t �= nT (42)
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y(t+) = (1− δ )y(t), t = nT, n = 1,2,3 . . . (43)

On integrating (42)–(43) in the interval [T ∗,(n1 +n2)T ] , it is obtained that,

y((n1 +n2)T ) � m4(1− δ )n2 exp(ηn2T ) (44)

Now substitute (44) into (41) , we get that

y((n1 +n2 +n3)T ) � m4(1− δ )n2+n3 exp(n3σ)exp(ηn2T ) > m4 (45)

which is a contradiction, so there exists a tim t2′ ∈ [t∗,t∗ +T2] such that y2
′ � m4 . Let

t̂ = inf{t | t � t∗,y(t) � m4} , since 0 < δ < 1, y(nT+) = (1− δ )y(nT) < y(nT ) and
y(t) < m4 , t ∈ (t∗, t̂) . Thus, q(t̂) = m4 . Suppose t ∈ (t∗ + (l− 1)T,T∗ + lT ] ( l is a
positive integer) and l � n2 +n3 , from the system (42)–(43) , we have,

y(t) � y(t∗ +(l−1)T)exp(η(t − t∗− (l−1))T )

y(t) � y(nT+)exp(ηT (l−1))(1− δ )l−1 exp(ηT )

y(t) � m4(1− δ )l exp(lηT )

y(t) � m4(1− δ )n2+n3 exp((n2 +n3)ηT ) � m4

for t > t̂ . The same argument can be continued since q(t̂) � m4 . Hence y(t) � m4 for
all t > t2 .

Case 2. If t∗ �= nT , then y(t∗) = m4 and y(t) � m4 , t ∈ [t2,t∗] . Suppose t∗
∈ (n1

′T,(n1
′ +1)T ] , we also have two subcases for t ∈ [t∗,(n1

′ +1)T ] as follows:
Case a. q(t) � m4 , t ∈ [t∗,(n1

′ + 1)T ] , we claim that there exists a t3 ∈ [(n1
′ +

1)T,(n1
′ + 1)T +T2] such that y(t3) > m4 . Otherwise, integrating system (42)–(43)

on the interval [(n1
′ +1+n2)T,(n1

′ +1+n2 +n3)T ] , we have

y((n1
′ +1+n2 +n3)T ) � y((n1

′ +1+n2)T )(1− δ )n3 exp(n3σ)

Since y(t) � m4 , t ∈ [t∗,(n1
′+1)T ] , and therefore, (53) holds on [t∗,(n1

′+n2+n3)T ] .
Thus,

y((n1
′ +1+n2)T ) = y(t∗)(1− δ )n2 exp(η(n1

′ +1+n2)T − t∗)

y((n1
′ +1+n2)T ) � m4(1− δ )n2 exp(ηn2T )

and
y((n1

′ +1+n2 +n3)T ) � m4(1− δ )n2+n3 exp(ηn2T )exp(n3σ) > m4

which is a contradiction. Let t̆ = inf{t | y(t) � m4,t > t∗} , then y(t̆) = m4 and q(t) <
m4 , t ∈ (t∗, t̆) . Choose t ∈ (n1

′T + (l′ − 1)T,n1
′T + l′T ] ⊂ (t∗, t̆) , l′ is a positive

integer and l′ < 1+n2 +n3 , we have,

y(t) � y((n1
′ + l′ −1)T+)exp(η(t − (n1

′ + l′ −1)T))

y(t) � (1− δ )l′−1y(t∗)exp(η(t− t∗))
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y(t) � m4(1− δ )n2+n3 exp(η(n2 +n3 +1)T )

so we have y(t) � m4 for t ∈ (t∗, t̆) . For t > t̆ , the same argument can be continued
since y(t̆) � m4 .

Case b. If there exists a t ∈ {t∗,(n1
′ + 1)T} such that y(t) � m4 . Let t̆ = inf{t |

y(t) � m4, t > t∗} , then y(t) < m4 for t ∈ [t∗, t ) and y( t ) = m4 . For t ∈ [t∗, t ) (42)–
(43) holds and integrating (42)–(43) on t∗, t̆ , we have

y(t) � y(t∗) � exp(η(t − t∗)) � m4 exp(ηT ) > m4

Since y(t̂) � m4 for t > t̂ , the same argument can be continued. Hence, we have
y(t) � m4 for all t > t2 . Thus in both cases, we can conclude that y(t) � m4 for all
t � t2 . �

8. Numerical simulation and discussions

In this section, we have taken the data’s per week as we are dealing with insect
population having a very short life cycle. Our aim is to validate our analytical results
numerically. We have considered numerical values for the following set of parameters.
The parameter values are chosen in some natural realistic senses:

p v
r 0.1
K 1
d 0.5
b 0.2
α 0.6
d3 0.4
m 0.2

Then, the threshold point (Tmax) for the parameters per week is Tmax = 0.8. Pest
extinction periodic solution (k,0, z̃1(t), z̃1(t)) is globally stable if T = 0.5 < Tmax as
stated above in the theorem 3 (Fig 1–4). Further, for the permanence of the system
(A−B) is justified as T = 4 > Tmax (Fig 5–8) as stated in theorem 4. Due to Holling
Type 2 functional response the pests are eradicating quiet early in comparison to Holling
Type 1 functional response. Further, if we increase the amount of natural enemies
impulsively then pest population will gradually extinct again.

Additionally, when chemical pesticides are not capable enough to suppress the
pests, then in an adequate amount we release mature and immature natural enemies after
every fixed interval of time with chemical pesticides. Thus, when chemical pesticides
and natural enemies are fused together to release in an integrated form, then there is an
reduction in the pests rather than practicing any of it.
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Figure 1: The graph for the population of plants (x(t)) is stable
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Figure 2: Pest (y(t)) perishes away

0 20 40 60 80 100
0

1

2

3

4

5

6

7

8

9

t

y(
t)

Figure 3: Bifurcating behaviour for the z1(t) depicting the existence of the immature natural
enemy
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Figure 4: Bifurcating periodic solution occurs for mature natural enemy (z2(t))
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Figure 5: Plant population (x(t)) exists for the permanence of the system

0 1 2 3 4 5 6 7 8 9 10
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

t

P
es

t p
op

ul
at

io
n(

y(
t)

)

Figure 6: Pest population (y(t)) survives for the permanence of the system
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Figure 7: For the permanence of the system immature natural enemies (z1(t)) exists
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Figure 8: Bifurcating behaviour occurs for mature natural enemies (z2(t)) depicting the exis-
tence of the solution

9. Conclusion

In this paper, we have studied the dynamics of plant-pest-natural enemy using
functional response 2 and impulsive perturbation. We obtained the threshold point for
pest extinction and permanence of the system depending on the pulse releasing amount
of natural enemies and chemical pesticides. When T < Tmax = 0.8, then the pest extinc-
tion equilibrium point (k,0, z̃1(t), z̃1(t)) is globally stable (Fig 1–4). If T > Tmax = 0.8,
then the system is permanent (Fig 5–8). Thus, we can conclude that various control
measures should be applied collectively for the eradication of pest. This will also help
us economically as it will be more cost efficient.
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