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Abstract. The differential equation with cubic nonlinearity x′′ = −ax + bx3 is considered to-
gether with the boundary conditions x(−1) = x(1) = 0 . In the autonomous case, b = const > 0 ,
the exact number of solutions for the boundary value problem is given. For nonautonomous case,
where b = β(t) is a step-wise function, the existence of additional solutions is detected. The
reasons for such behaviour are revealed. The example considered in this paper is supplemented
by a number of visualizations.

1. Introduction

The classic questions studied by the theory of nonlinear boundary value problems
are the existence and uniqueness of solutions. Many mathematical models of nonlinear
phenomena have multiple solutions, however.

There are still lacking general methods and techniques for studying the problem of
multiple solutions. In this paper, we consider problems in which nonlinearity interacts
with linearity.

One of the articles that addresses this issue is [8]. When considering superlinear
differential equations by variational methods, the authors asked whether this equation
can have multiple solutions satisfying the given boundary conditions. They constructed
the example of a superlinear equation with three solutions. Their approach was de-
veloped in [2], in which the existence of an infinite number of solutions in the same
problem was proved.

Developing this approach, we consider a second-order nonlinear differential equa-
tion with cubic nonlinearity. First, we consider the autonomous equation and the respec-
tive Dirichlet boundary value problem. Equations of this type often arise in applications
(for example, in the theory of superconductivity by Ginsburg-Landau ([7]). We prove
the result on the exact number of solutions of this boundary value problem. Further, a
nonautonomous case is considered. In this case, the equation with a cubic nonlinearity
is given on the side intervals, and in the middle interval the equation is linear. How
does this affect the number of solutions to this boundary value problem? We consider
these questions and prove a series of results.
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In this problem, we consider the effect of three parameters a,b and δ on the
number of solutions. There are a significant number of articles devoted to the study
of differential equations, combined from several equations defined on nonintersecting
subintervals of the main interval. Using constructions of this type, convenient examples
of boundary value problems that have multiple solutions, can be provided. In the article
by R. Moore and Z. Nehari [8] the equation of the form

x′′ = −p(t)|x|2εx (1.1)

was studied. The coefficient p(t) is a step-wise function which is equal to a given
positive number in the left and the right subintervals of the interval [a,b] and p(t)
is zero in the middle subinterval. It was shown that for appropriate choice of p(t)
the equation has three solutions satisfying the boundary conditions x(a) = 0 = x(b).
Inspired by this example, in the work [2] the problem

x′′ = −q(t)x3, x(−1) = 0, x(1) = 0 (1.2)

is considered where q is

q(t) =

{ 2, t ∈ [−1,−1+ ε],
0, t ∈ (−1+ ε,1− ε),
2, t ∈ [1− ε,1].

(1.3)

It was shown that for any ε ∈ (0,1) there are infinitely many solutions of the prob-
lem. Similar type problems were studied in the papers [1], [6], where the second order
differential equations with step-wise coefficients were considered.

We want to compare solutions of the equation (1.6) with solutions of a similar
autonomous equation

x′′ = −ax+bx3 (1.4)

with respect to boundedness of solutions. Next, we consider boundary value problems
for both equations (1.6) and (1.4), in which the boundary conditions are

x(−1) = 0, x(1) = 0. (1.5)

We want to study both problems and compare the number of their solutions. The dif-
ferential equation (1.4) contains only cubic nonlinearity. The equation (1.6) is also
nonlinear with cubic nonlinearity turned off on the middle subinterval.

In this article we study the equation

x′′ = −ax+ β (t)x3, a > 0, (1.6)

where β (t) is a step-wise function

β (t) :=

{b, t ∈ [−1,−1+ δ ] =: I1,
0, t ∈ (−1+ δ ,1− δ ) =: I2,
b, t ∈ [1− δ ,1] =: I3, b > 0, 0 < δ < 1.

(1.7)
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The equation (1.6) includes the equation (1.4), which was previously studied and
is often discussed in textbooks. We are not aware, however, of the results on exact
estimates of the number of solutions in boundary value problems for this equation.
Such an estimate is given in subsection 3.1. Then we study the problem (1.6), (1.5), in
which the equation (1.6) is an equation of the type (1.4) in the two side subintervals I1
and I3 (see (3.16)) and it is a linear equation on the middle subinterval of I2 .

2. Boundedness of solutions

Consider the autonomous equation (1.4) with positive coefficients a , b . There are
three critical points of equation (1.4) at x1 = −√a/b , x2 = 0, x3 =

√
a/b . The origin

is a center and x1,3 = ±√a/b both are saddle points. Two heteroclinic trajectories
connect the two saddle points, Fig. 1.

Consider the phase portrait for equation (1.4) depicted in Fig. 1. Introduce the
notation G3 for the region bounded by two heteroclinic orbits. It is clear that any
trajectory with a points in this region stays in G3 eventually and the respective solutions
are bounded. Solutions with a point outside G3 are unbounded.

Figure 1: The phase portrait of equation (1.4),
region G3

Figure 2: The phase portrait of equa-
tion x′′ = −200x + 200x3 and x′′ = −200x
(dashed)

Consider now equation (1.6), where β (t) is given by (1.7). It appears that for some
choices of a, b and δ solutions of the Cauchy problem (1.6), (3.1) escape the region
G3. This is possible if after the first stage (t ∈ [−1,−1+ δ ]) the respective trajectory
switches to a trajectory (dashed) of the equation x′′ = −ax (recall that β (t) = 0 for t ∈
(−1+δ ,1−δ )) and leaves the region G3 (Fig. 2). Then on the third stage (t � 1−δ )
the trajectory of equation (1.6) stays outside the region G3 eventually and is therefore
unbounded.

The example of such behaviour is given in Fig. 15 and Fig. 16, where a = 200,
b = 200, δ = 0.95.
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3. Boundary value problem

Consider now both equations (1.4) and (1.6), given in the interval [−1,1] together
with the boundary conditions (1.5). Let us discuss BVPs (1.4), (1.5) and (1.6), (1.5).

3.1. The autonomous equation

Proof. Equation (1.4) has an integral x′2(t) = −ax2(t)+ 1
2bx4(t)+C, where C is

an arbitrary constant and solutions x(t;α) of the Cauchy problem (1.4), (3.1)

x(−1) = 0, x′(−1) = α (3.1)

satisfy the relation

x′2(t) = −ax2 +
1
2
bx4 + α2. (3.2)

The upper heteroclinic solution satisfies x′(−1) = a/
√

2b =: αmax . The time needed
for a solution x(t;α) (with α ∈ (0,αmax)) to pass from x(−1) = 0 to the maximal

value xα =
√

(a−√
a2−2bα2)/b is given by

Tα =
∫ xα

0

dx√
1
2bx4−ax2 + α2

, where α2 = ax2
α − 1

2
bx4

α . (3.3)

Therefore

x′2(t) = −ax2(t)+
1
2
bx4(t)+ax2

α − 1
2
bx4

α , (3.4)

dx
dt

= ±
√
−ax2(t)+

1
2
bx4(t)+ax2

α − 1
2
bx4

α . (3.5)

One has, by the variable change ξ = xx−1
α , that

Tα =
xα∫
0

dx√
−ax2 + 1

2bx4 − 1
2bx4

α +ax2
α

=
1∫

0

dξ√
a

(
1−ξ 2

)
− 1

2bx2
α
(
1−ξ 4

) . (3.6)

Compare Tα1 =
1∫
0

dξ/
√

a (1− ξ 2)−1/2bx2
α1

(1− ξ 4) and

Tα2 =
1∫
0

dξ/
√

a(1− ξ 2)−1/2bx2
α2

(1− ξ 4). If xα1 < xα2 then Tα1 < Tα2 . �

LEMMA 1. The function Tα monotonically increases from π/(2
√

a) to +∞ as α
changes from zero to αmax (α ∈ (0,αmax)) .
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The number of solutions of the BVP (1.4), (1.5) depends only on a parameter a .
The exact number of solutions is given by Theorem 1.

Equation (1.4) written in polar coordinates

x(t) = ρ(t)sinφ(t), x′(t) = ρ(t)cosφ(t) (3.7)

turns to a system (3.8):{
φ ′(t) = cos2 φ(t)+asin2 φ(t)−ρ2(t) b sin4 φ(t),
ρ ′(t) = 1

2ρ(t)sin2φ(t)
(
1−a+ ρ2(t) b sin2 φ(t)

)
.

(3.8)

Denote φα(t) the polar function for a solution x(t,α).
The values (x(1,α), x′(1,α)) form a spiral around the origin and the respective values
φα(1) decrease to zero as α changes from zero to αmax (α ∈ (0,αmax)) .

Consider any solution of equation (1.4) with the initial conditions (x(t0),x′(t0)) ∈
G3. Let the initial conditions be written as

φ(t0) = φ0, ρ(t0) = ρ0, (φ0,ρ0) ∈ G3, ρ0 > 0. (3.9)

LEMMA 2. The angular function of any solution of (1.4), (3.9) is monotonically
increasing.

Proof. Consider the first equation of system (3.8) multiplied by ρ2(t)

ρ2 (t)φ ′(t) = ρ2(t)cos2 φ(t)+aρ2(t)sin2 φ(t)−bρ4(t) sin4 φ(t). (3.10)

Returning to (x,y) coordinates

ρ2(t)φ ′(t) = y2(t)+ax2(t)−bx4(t), (3.11)

ρ2(t)φ ′(t) = y2(t)+ x2(t)(a−bx2(t)) > 0. (3.12)

Since x2(t) < a
b for any solution of (1.4), (3.9) the angular function φ(t) is increas-

ing. �
Consider the problem (1.4), (1.5). Due to Lemma 1 the following statement is

true.

THEOREM 1. Let i be a positive integer such that i π/2 <
√

a < (i+1)π/2 . The
Dirichlet problem (1.4), (1.5) has exactly 2i nontrivial solutions such that x(−1) = 0 ,
x′(−1) = α, −αmax < α < αmax , α �= 0 .

Proof. We consider the Cauchy problem (1.4), (3.1):

x′′ = −ax+bx3, x(−1) = 0, x′(−1) = α, 0 < α < αmax, α �= 0. (3.13)

It is known [3] that solutions of the equation of variations with respect to the trivial one

y′′ = −ay (3.14)
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given with the initial conditions (3.1) approximate solutions of the Cauchy problem
(3.13) x(t,α) . Solutions of the problem (3.14), (3.1) are given by

y(t) =
α√
a

sin
√

a(t +1). (3.15)

Due to the assumption i π/2 <
√

a < (i + 1)π/2 solutions y(t) along with solutions
x(t,α) (for small enough α ) have exactly i zeros in the interval (−1,1). These zeros
move monotonically to the right as α increases due to Lemma 1. Solutions x(t,α) with
0 < α < αmax and close enough to αmax have not zeros in (−1,1] since the respective
trajectories are close to the upper heteroclinic (and the “period” of a heteroclinic solu-
tion is infinite). Therefore there are exactly i solutions of the problem (1.4), (1.5). The
additional i solutions are obtained considering solutions with α ∈ (−αmax,0) due to
symmetry arguments. Hence the proof. �

REMARK 1. The idea of the proof is to compare the behaviour of solutions with
the initial data (3.1) where α varies from 0 to αmax. This approach was employed, for
example, in the articles [9], [4], [5].

3.2. The nonautonomous equation

We study solutions of boundary value problem (1.6), (1.5) where β (t) is a step-
wise function given by (1.7). Hence we have the problems

x′′1 = −ax1 +b x3
1, x1(−1) = 0, x′1(−1) = α, t ∈ I1, α > 0,

x′′2 = −a x2, x2(−1+ δ ) = x1(−1+ δ ), x2(1− δ ) = x3(1− δ ), t ∈ I2,
x′′3 = −ax3 +b x3

3, x3(1) = 0, x′3(1) = −γ, t ∈ I3, γ > 0.
(3.16)

To find solutions of the problems we use the Jacobian elliptic functions sn(u,k) , cn(u,k) ,
dn(u,k) [10], where u is amplitude and k is elliptic modulus.

The elliptic sine function sn t can be defined as t =
sn t∫
0

ds/
√

(1− s2)(1− k2s2)

in the interval

[
0,

1∫
0

ds/
√

(1− s2)(1− k2s2)
]

and extended to infinity by periodicity.

The period is 4T , where T =
1∫
0

ds/
√

(1− s2)(1− k2s2) .

A solution of the Cauchy problem

x′′ = −ax+bx3, x(0) = 0, x′(0) = μ for a2−2b μ2 > 0 (3.17)

is

x(t,μ) = sign μ

√
a−
√

a2 −2bμ2

b
sn

⎛
⎝
√

a+
√

a2 −2bμ2

2
t,

√
a−
√

a2 −2bμ2

a+
√

a2 −2bμ2

⎞
⎠ . (3.18)
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Then, using the change of the independent variable, solutions of the problems

x′′ = −ax+bx3, x(−1) = 0, x′(−1) = α, (3.19)

x′′ = −ax+bx3, x(1) = 0, x′(1) = γ (3.20)

are respectively

x1(t,α) = sign α

√
a−

√
a2 −2bα2

b
sn

(√
a+

√
a2 −2bα2

2
(t +1),

√
a−

√
a2 −2bα2

a+
√

a2 −2bα2

)
(3.21)

and

x3(t,γ) = sign γ

√
a−
√

a2 −2bγ2

b
sn

(√
a+
√

a2 −2bγ2

2
(t−1),

√
a−
√

a2 −2bγ2

a+
√

a2 −2bγ2

)
,

(3.22)
where a2 − 2bα2 > 0 and a2 − 2bγ2 > 0 (this means that trajectories x1(t) and x3(t)
are located in G3). In equation (3.22) the sign is “−′′ if solutions with even number of
zeros in (−1,1) are considered, and, respectively, “+′′ for solutions with odd number
of zeros [2].

Denote a solution in the middle interval x2(t) . This solution is a sum of trigono-
metric functions that connects smoothly solutions x1(t) and x3(t) .

Introduce

A(α) =
√

a−√
a2−2bα2, B(α) =

√
a+

√
a2−2bα2,

A(γ) =
√

a−
√

a2−2bγ2, B(γ) =
√

a+
√

a2−2bγ2.
(3.23)

Consider solutions of (1.6), (1.5) which have even number of zeros. Then

x1(t,α) = A(α)√
b

sn

(
B(α)√

2
(t +1), A(α)

B(α)

)
,

x3(t,α) = −A(γ)√
b

sn

(
B(γ)√

2
(t−1), A(γ)

B(γ)

) (3.24)

and x′1(−1) = α , x′3(1) = −γ .
In order x(t) to be C2 -function both solutions x1 and x3 are to be smoothly con-

nected by a middle function x2(t) :

x2(t) = C1 sin
√

at +C2 cos
√

at. (3.25)

The following relations are to be satisfied:⎧⎪⎪⎨
⎪⎪⎩

x1(−1+ δ ) = x2(−1+ δ ),
x′1(−1+ δ ) = x′2(−1+ δ ),
x3(1− δ ) = x2(1− δ ),
x′3(1− δ ) = x′2(1− δ ).

(3.26)
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A(α)√
b

sn
(B(α)√

2
δ ,

A(α)
B(α)

)
= C1 sin

√
a(δ −1)+C2 cos

√
a(δ −1),

α cn
(B(α)√

2
δ ,

A(α)
B(α)

)
dn
(B(α)√

2
δ ,

A(α)
B(α)

)
= C1

√
acos

√
a(δ −1)−C2

√
asin

√
a(δ −1),

A(γ)√
b

sn
( B(γ)√

2
δ ,

A(γ)
B(γ)

)
= −C1 sin

√
a(δ −1)+C2 cos

√
a(δ −1),

−γ cn
( B(γ)√

2
δ , A(γ)

B(γ)

)
dn
(B(γ)√

2
δ , A(γ)

B(γ)

)
= C1

√
acos

√
a(δ −1)+C2

√
asin

√
a(δ −1).

(3.27)

Solving the system (3.27) with respect to constants C1 and C2 we get

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
acos

√
a(δ −1)(A(α)√

b
sn
(B(α)√

2
δ , A(α)

B(α)

)− A(γ)√
b

sn
(B(γ)√

2
δ , A(γ)

B(γ)

)
)

= sin
√

a(δ −1)(α cn
(B(α)√

2
δ ,

A(α)
B(α)

)
dn
(B(α)√

2
δ ,

A(α)
B(α)

)
− γ cn

(B(γ)√
2

δ ,
A(γ)
B(γ)

)
dn
( B(γ)√

2
δ ,

A(γ)
B(γ)

)
),

−√
asin

√
a(δ −1)

( A(α)√
b

sn
( B(α)√

2
δ ,

A(α)
B(α)

)
+ A(γ)√

b
sn
(B(γ)√

2
δ ,

A(γ)
B(γ)

))
= cos

√
a(δ −1)(α cn

(B(α)√
2

δ ,
A(α)
B(α)

)
dn
(B(α)√

2
δ ,

A(α)
B(α)

)
+ γ cn

(B(γ)√
2

δ , A(γ)
B(γ)

)
dn
( B(γ)√

2
δ , A(γ)

B(γ)

)
).

(3.28)

Introduce new notation

Φ(α,γ) =
√

acos
√

a(δ −1)
(

A(α)√
b

sn

(
B(α)√

2
δ ,

A(α)
B(α)

)
− A(γ)√

b

×sn

(
B(γ)√

2
δ ,

A(γ)
B(γ)

))
− sin

√
a(δ −1)

(
α cn

(
B(α)√

2
δ ,

A(α)
B(α)

)

×dn

(
B(α)√

2
δ ,

A(α)
B(α)

)
− γ cn

(
B(γ)√

2
δ ,

A(γ)
B(γ)

)
dn

(
B(γ)√

2
δ ,

A(γ)
B(γ)

))
,

(3.29)

Ψ(α,γ) = cos
√

a(δ −1)
(

α cn

(
B(α)√

2
δ ,

A(α)
B(α)

)
dn

(
B(α)√

2
δ ,

A(α)
B(α)

)

+γ cn

(
B(γ)√

2
δ ,

A(γ)
B(γ)

)
dn

(
B(γ)√

2
δ ,

A(γ)
B(γ)

))
+
√

asin
√

a(δ −1)

×
(

A(α)√
b

sn

(
B(α)√

2
δ ,

A(α)
B(α)

)
+

A(γ)√
b

sn

(
B(γ)√

2
δ ,

A(γ)
B(γ)

))
. (3.30)

Then system (3.28) can be rewritten as

{
Φ(α,γ) = 0,
Ψ(α,γ) = 0.

(3.31)

We are interested in the number of solutions of boundary value problem (1.6), (1.5).
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PROPOSITION 1. For a, b and δ given positive solution (α > 0,γ > 0) of the
system (3.31) produces a solution with even number of zeros in (−1,1) of the Dirichlet
problem (1.6), (1.5).

Compatibility of the system (3.31) is shown in the sequel.
Consider solutions of (1.6), (1.5) which have odd number of zeros in (−1,1) . Like

before we get

Φ1(α,γ) =
√

acos
√

a(δ −1)
(

A(α)√
b

sn

(
B(α)√

2
δ ,

A(α)
B(α)

)
+

A(γ)√
b

×sn

(
B(γ)√

2
δ ,

A(γ)
B(γ)

))
− sin

√
a(δ −1)

(
α cn

(
B(α)√

2
δ ,

A(α)
B(α)

)

×dn

(
B(α)√

2
δ ,

A(α)
B(α)

)
+ γ cn

(
B(γ)√

2
δ ,

A(γ)
B(γ)

)
dn

(
B(γ)√

2
δ ,

A(γ)
B(γ)

))
,

(3.32)

Ψ1(α,γ) = −cos
√

a(δ −1)
(
−α cn

(
B(α)√

2
δ ,

A(α)
B(α)

)
dn

(
B(α)√

2
δ ,

A(α)
B(α)

)

+γ cn

(
B(γ)√

2
δ ,

A(γ)
B(γ)

)
dn

(
B(γ)√

2
δ ,

A(γ)
B(γ)

))
+
√

asin
√

a(δ −1)

×
(

A(α)√
b

sn

(
B(α)√

2
δ ,

A(α)
B(α)

)
− A(γ)√

b
sn

(
B(γ)√

2
δ ,

A(γ)
B(γ)

))
. (3.33)

Then we have the system {
Φ1(α,γ) = 0,
Ψ1(α,γ) = 0.

(3.34)

PROPOSITION 2. For a, b and δ given positive solution (α > 0,γ > 0) of the
system (3.34) produces a solution with odd number of zeros in (−1,1) of the Dirichlet
problem (1.6), (1.5).

Solvability of the system (3.34) is discussed in the sequel.
If b in the equation (1.4) is replaced by β (t) in the equation (1.6) we can state the

following assertion.

PROPOSITION 3. Let i be a positive integer such that i π/2 <
√

a < (i+ 1)π/2
and δ < 1 . For δ close to 1 the Dirichlet problem (1.6), (1.5) has at least 2i nontrivial
solutions such that x(−1) = 0 , x′(−1) = α , −αmax < α < αmax , α �= 0 . For δ close
to 0 the problem (1.6), (1.5) has no solutions.

For δ ∼ 1 equation (1.6) is essentially that of (1.4) and the estimate of Theorem 1
is valid for the number of solutions to the problem (1.6), (1.5). If δ ∼ 0 equation (1.6)
is essentially the linear one x′′ = −ax and, since a is not an eigenvalue of the linear
problem, there are no solutions of (1.6), (1.5).
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Let δ → 0. At δ = 0 the function Φ(α,γ) and Ψ(α,γ) in (3.29), (3.30) are
respectively (α − γ)sin

√
a and (α + γ)cos

√
a . The system (3.31) looks for δ = 0 as{

(α − γ)sin
√

a = 0,
(α + γ)cos

√
a = 0,

(3.35)

where
√

a �= iπ/2, i−positive integer. Then the system (3.35) has only the trivial
solutions α = γ = 0 and the BVP has no solutions for δ sufficiently small.

REMARK 2. It was observed numerically that for large enough values of a (for
example, a = 200) and δ ∼ 1 BVP (1.6), (1.5) has more than 2i solutions. If δ →
1 then the equation (1.6) tends to the equation (1.4). By Theorem 1 the number of
solution of BVP (1.4), (1.5) is 2i for

√
a between i π/2 and (i + 1)π/2. We have

observed however that already for δ = 0.95 this is not the case and the number of
nontrivial solutions is greater than 2i . The reason why the exact number of solutions
as in Theorem 1 cannot be guaranteed for the problem (1.6), (1.5) is that the functions
t1(α) = 2Tα , t2(α) = 4Tα and so on, where ti are the i-th zeros of a solution x(t;α) of
the Cauchy problem (1.6), (3.1), can be non-monotone. Equation (1.6) written in polar
coordinates (3.7) takes the form:{

φ ′(t) = cos2 φ(t)+asin2 φ(t)−ρ2(t) β (t) sin4 φ(t),
ρ ′(t) = 1

2 ρ(t)sin2φ(t)
(
1−a+ρ2(t) β (t) sin2 φ(t)

)
.

(3.36)

Denote φα(t) the polar function for a solution x(t;α) . The values (x(1;α), x′(1,α))
form a right spiral around the origin in case of the equation (1.4) and more complicated
spiral-like curve in case of equation (1.6). Both curves are depicted for particular values
of parameters in Fig. 15 and Fig. 16 respectively. Any point of intersection of these
curves with the axis x = 0 corresponds to a solution of the BVP (1.6), (1.5).

3.3. Example

Consider equation (1.6) with a = 200, b = 200:

x′′ = −200x+β (t)x3, β (t) :=

⎧⎨
⎩

200, t ∈ [−1,−1+δ ] =: I1,
0, t ∈ (−1+δ ,1−δ ) =: I2,
200, t ∈ [1−δ ,1] =: I3.

(3.37)

In what follows we are changing the parameter δ in this way regulating the width of the
interval I2. We are tracing changes in the number of solutions of BVP and discussing
reasons for that. We have observed that when δ = 0.95 then the number of solutions
exceeds that predicted by Theorem 1 ( i = 9 in this case because 9 π/2 <

√
200 <

10π/2).
If δ = 1 and initial conditions are x(−1) = 0, x′(−1) = α �= 0, −αmax < α <

αmax , then equation (3.37) is equation with cubic nonlinearity x′′ =−200x+200x3 and
the number of solutions satisfying the boundary conditions (1.5) is 18. For positive
initial conditions 0 < α < αmax the number of solutions is nine.
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Figure 3: The trajectory
of Φ = 0 (solid), Ψ = 0
(dashed), the points which
correspond to solutions of
system (3.31) and, conse-
quently, to the BVP (3.37),
(1.5), δ = 0.7 .
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Figure 4: The symmetric so-
lutions which correspond to
the points (0.52954,0.52954)
and (9.55986,9.55986) (da-
shed) in Fig. 3, δ = 0.7 .
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Figure 5: The asymmetric
solutions which correspond to
the points (8.61987,9.80176)
and (9.80176,8.61987) (da-
shed) in Fig. 3, δ = 0.7 .

Now we look for solutions of the system (3.31) which are intersection points of
graphs Φ(α,γ) = 0 (solid line) and Ψ(α,γ) = 0 (dashed line) (Fig. 3).

Let δ = 0.7. There are four solutions of the system (3.31). There are two sym-
metric solutions of BVP (3.37), (1.5) with even number of zeros on the bisectrix. These
solutions are depicted in Fig. 4, but Fig. 5 shows asymmetric solutions that relate to
two side points in Fig. 3. Therefore the system (3.31) and problem (3.37), (1.5) have 2
symmetric and 2 asymmetric solutions with even number of zeros in (−1,1) .
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Figure 6: The trajectory
of Φ1 = 0 (solid), Ψ1 = 0
(dashed), the points which cor-
respond to solutions of sys-
tem (3.34) and to the problem
(3.37), (1.5), δ = 0.7 .
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Figure 7: The symmetric so-
lution which corresponds to
the point (7.68865,7.68865)
in Fig. 6, δ = 0.7 .
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Figure 8: The symmetric so-
lution which corresponds to
the point (9.87437,9.87437)
in Fig. 6, δ = 0.7 .
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In Fig. 6, Fig. 7, Fig. 8 the case of solutions of BVP (3.37), (1.5) with odd
number of zeros in (−1,1) is illustrated. Therefore the system (3.31) has 4 solutions,
the system (3.34) has 2 solutions. Totally the problem (3.37), (1.5) has 6 solutions (with
α > 0). Fig. 7 and Fig. 8 show solutions of BVP that relate to points in Fig. 6.

2 4 6 8 10
Α

2

4

6

8

10

Γ

Figure 9: The trajectory of
Φ = 0 (solid), Ψ = 0 (dashed),
the points which correspond to
solutions of the system (3.31)
and, respectively, to the BVP
(3.37), (1.5), δ = 0.95 .
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Figure 10: The trajectory
of Φ1 = 0 (solid), Ψ1 = 0
(dashed), the points which cor-
respond to solutions of the sys-
tem (3.34) and, respectively, to
BVP (3.37), (1.5), δ = 0.95 .
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Figure 11: The symmetric so-
lution which correspond to the
points (0.455712,0.455712) ,
(8.99365,8.99365) (dashing
tiny), (9.541,9.541) (dashing
large) in Fig. 9, δ = 0.95 .

Finally consider the case of δ = 0.95. The system (3.31) and problem (3.37), (1.5)
have 3 symmetric (Fig. 11) and four asymmetric solutions with even number of zeros
in (−1,1) and these solution are depicted in Fig. 12, Fig. 13 and corresponding points
in the Fig. 9 are marked.

The system (3.34) and problem (3.37), (1.5) have 3 symmetric (Fig. 14) solutions
with odd number of zeros in the interval (-1,1), corresponding points in the Fig. 10 are
depicted. Therefore if δ = 0.95, then the problem (3.37), (1.5) has 10 solutions (with
α > 0).

In what follows we show how the additional solutions of BVP appear in nonau-
tonomous case comparing with the autonomous one.

The phase trajectories of equations x′′ = −200x + 200x3 and x′′ = −200x are
similar for α small enough but for α large enough trajectories of equation x′′ =−200x
are stretched along the vertical axis (Fig. 2).

In Fig. 15 and Fig. 16 we compare the behaviours of curves of end-points (at
t = 1) for autonomous and nonautonomous case. The birth of two additional solutions
of BVP is reflected in Fig. 16.

The following figures Fig. 17, Fig. 18 are for the case a = b = 200, δ = 0.95.
In Fig. 18 we give the graphs of the polar angle φα (t) for both equations x′′ =

−ax+ β (t)x3 , (dashed) and x′′ = −ax+ bx3 , δ = 0.95 (solid), α = 9.985561. Both
curves do not correspond and a non-monotonicity for φα(t) of equation (1.6) is ob-
served (dashed).
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Figure 12: The asymmetric
solutions which correspond to
the points (8.24265,9.31334)
and (9.31334,8.24265) (da-
shed) in Fig. 9, δ = 0.95 .
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Figure 13: The asymmetric
solutions which correspond to
the points (9.60487,9.98353)
and (9.98353,9.60487) (da-
shed) in Fig. 9, δ = 0.95 .
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Figure 14: The symmetric
solutions which correspond to
the points (6.92452,6.92452) ,
(9.56297,9.56297) (dashing
tiny) and (9.98556,9.98556)
(dashing large) in Fig. 10,
δ = 0.95 .

Figure 15: Curve (x(1;α),x′(1;α))
for equation x′′ = −200x+200x3 , 0 <
α < 10.

Figure 16: Curve (x(1;α),x′(1;α))
for equation x′′ =−200x+β (t)x3 , δ =
0.95, 0 < α < 10.

4. Conclusions

The number of solutions of the autonomous problem (1.4), (1.5) is known pre-
cisely (Theorem 1) and this number depends on the parameter a only.

For nonautonomous case (1.6), (1.5) additional solutions of BVP are detected for
some values of parameters.

It is possible that some solutions of nonautonomous equation (1.6) can escape the
region G3 (between the two heteroclinic trajectories). In our example the coefficient
a = 200 is large enough for a solution to escape G3 during small (δ ∼ 1) middle
interval (−1+ δ ,1− δ ) where the linear equation x′′ = −ax acts.
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Figure 17: Phase trajectory escaping
the region G3. Equation x′′ = −ax +
β (t)x3 , α = 9.985561

Figure 18: Graphs of φα (t) for equations
x′′ =−ax+β (t)x3 (dashed) and x′′ =−ax+bx3

(solid), α = 9.985561

For nonautonomous case it is possible to use the explicit formulas for solutions
and therefore it is possible to evaluate the number of solutions of BVP considering the
auxiliary system (3.31) and (3.34).

Finally the non-autonomity may cause the non-monotonicity of the angular func-
tions (Fig. 18) and the zeros ti(α) and this leads to additional solutions of boundary
value problem (1.6), (1.5) comparing with the autonomous (1.4), (1.5).
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