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SQUARE MEAN ALMOST AUTOMORPHIC SOLUTION OF STOCHASTIC

EVOLUTION EQUATIONS WITH IMPULSES ON TIME SCALES
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(Communicated by Sotiris K. Ntouyas)

Abstract. In this paper, we study the existence, uniqueness and exponential stability of the
square-mean almost automorphic solution for stochastic evolution equation with impulses on
time scales. For this purpose, we introduce the concept of equipotentially square-mean almost
automorphic sequence and square-mean almost automorphic functions with impulses on time
scales. At the end, a numerical example is given to illustrate the effectiveness of the obtained
theoretical results.

1. Introduction

Almost automorphy is a natural generalization of almost periodicity and intro-
duced by Bochner. In [1, 2, 3], the theory of almost automorphic functions and their
applications to differential equations are given by authors. Existence, uniqueness and
stability of almost automorphic solutions of differential equations have been studied
at a large scale by several authors, we refer to [4, 5, 6, 7] and references therein. On
the other hand, there are many phenomenons in nature whose states change suddenly at
certain moments and therefore can be described by impulsive system. The theory of im-
pulsive differential equations are useful for mathematical modeling of many real-world
phenomena, such as the neural networks [8] and population dynamic system [9, 10, 11].

Stochastic dynamic equations theory has been developed follows the work of It ô
[12, 13, 14] and others. In the authentic world, lots of dynamic systems have variable
structures subject to stochastic sudden and unexpected changes. Stochastic processes
have played a significant role in various engineering disciplines like power systems,
robotics, automotive technology, signal processing, manufacturing systems, semicon-
ductor manufacturing, communication networks, wireless networks etc. Due to these
reasons, the study of stochastic differential equations become consequential. The exis-
tence of almost periodic solutions to some stochastic differential equations have been
considered in many publications such as [15, 16, 17, 18] and the references therein. Fu
and Liu [19], introduced a new concept of square-mean almost automorphic stochastic
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processes with some basic properties. There are several publication on continuous sys-
tem related to square-mean almost automorphic stochastic process in which existence,
uniqueness, stablity and others properties are investigated.

Generally, one study the continuous and discrete cases discretely and there are
many discrete sets which are very utilizable. Ergo, this is an arduous task that we study
discretely for all cases, so for evading this type quandary Hilger, during his Ph.D in
1988, [20] introduce time scales theory which cumulates continuous and discrete anal-
ysis. This theory present a potent implement for applications to population models,
economics and quantum physics among others. Ergo, dealing with quandaries of dif-
ferential equations on time scales becomes very consequential and purposeful in the
research field of dynamic systems. The books [21, 22] and papers [23, 24, 25, 26, 27]
present a nice description about the theory of time scales and its application.

More recently, there are few authors which have been worked on existence of al-
most periodic and almost automorphic [28, 29, 30, 31, 32, 33] solution for stochastic
equations on time scales. There are some papers [34, 35, 36, 37] which are most use-
ful to study for stochastic calculus on time scale. In [38, 39, 40, 41], the existence of
piecewise mean-square almost periodic solution for different types of models on time
scales are discussed. As per our knowledge, there is no paper which discuss the al-
most automorphy of stochastic process with evolution system and impulses on time
scales. Motivated by the above discussion, we consider the following non-autonomous
stochastic differential equations with impulsive on time scales in the abstract form,

Δu(t) = (A(t)u(t)+P(t,u(t)))Δt +Q(t,u(t))ΔW(t), t ∈ T, t �= ti, i ∈ Z, (1.1)

u(t+i )−u(t−i ) = Ii(u(ti)), (1.2)

where T is an almost periodic time scale and Δu denotes Δ-stochastic differential of
u. A(t) : D(A(t)) ⊂ L2(P,K) → L2(P,K) is a family of linear operator. {W (t) : t ∈
T} is a Brownian motion indexed by time scale or a standard Wiener process defined
on a complete probability space (Ω,F ,P) with a natural filtration {{Ft}t�0, t ∈ T}
generated by W (t) and denoted by F , the associated σ−algebra generated by W(t)
with the probability measure P . u(t+i ) = limh→0+ u(ti + h),u(t−i ) = limh→0+ u(ti − h)
represent the right and left limits of u(t) at t = ti in the sense of time scale. P,Q : T×
L2(P,K)→ L2(P,K) and Ii : L2(P,K)→ L2(P,K) are appropriate functions described
later.

In this paper, we introduce the concept of equipotentially square-mean almost au-
tomorphic sequence and square-mean almost automorphic functions with impulses on
time scales. We establish the existence, uniqueness and exponential stability results of
the square-mean almost automorphic solution to (1.1)-(1.2). This paper is organized
in the following manners, In the first and second section, we give Introduction, basic
definitions, preliminaries and some useful lemmas. In the third section, we establish
the existence and uniqueness of square-mean almost automorphic solution. The fourth
section is devoted to the exponential stability of the solution. In the last section, an
example is given to illustrate the effectiveness of the analytic results.
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2. Preliminaries and Definitions

In this section, we give some basic theory and lemmas for time scales, stochastic
process, square-mean almost automorphy which is required further.
A time scale is a non empty closed subset of real line R , denoted by T. The real
numbers R , integer numbers Z , natural numbers N and any intervals are some trivial
examples of time scales. There are some operators which are important for study of
time scale theory. The forward jump operator denoted by, σ(t), is define by σ(t) =
inf{s ∈ T : s > t}. The backward jump operator ρ(t) is define by ρ(t) =
sup{s ∈ T : s < t}. The graininess function μ : T→ [0,∞) is defined by μ(t) := σ(t)−
t, ∀ t ∈ T . The right dense point is defined be a point t when t < supT and σ(t) = t.
It is called right scattered if σ(t) > t. So a left dense point is defined by the points such
that t > infT and ρ(t) = t. It is called left scattered if ρ(t) < t. The notations Tk =
T\{m} or Tk = T\{m} if T has a left scattered maximum or right scattered minimum
m respectively, otherwise Tk = Tk = T. For any function φ : T → R , we define φσ :
Tk → R by φσ = φoσ . We will denote the interval [a,b]T = {t ∈ T : a � t � b}.
A function φ : T → R is called rd-continuous if it is continuous at right dense points
of T and its left-side limits exist at left dense points and the set of all rd-continuous
functions φ : T → R will be denoted by Crd(T,R).
Let φ is rd-continuous; if ΦΔ(t) = φ(t), then delta integral is defined by,∫ r

s
φ(t)Δt = Φ(r)−Φ(s), ∀ r,s ∈ T.

DEFINITION 1. ([21]) Let φ : T → R and t ∈ Tk . Then delta derivative, φΔ(t) is
the number (when it exists) such that given any δ > 0, there is a neighborhood N of t
such that ∣∣∣[φ(σ(t))−φ(s)]−φΔ(t)[σ(t)− s]

∣∣∣� δ |σ(t)− s|, ∀ s ∈ N.

DEFINITION 2. ([21]) A function p : T→R is said to be regressive if 1+μ(t)p(t)
�= 0, ∀ t ∈ T . The set of all regressive function is denoted by R . If 1 + μ(t)p(t) >
0, ∀ t ∈ T , the function is said to be positive regressive function and denoted by R+.

DEFINITION 3. The exponential function is defined as

ep(t,s) = exp

(∫ t

s
ξμ(τ)(p(τ))Δτ

)
, t,s ∈ T, p ∈ R,

for h > 0,

ξh(z) =
1
h
Log(1+ zh),

where Log is the principal logarithm function. For h = 0, ξ0(z) = z .
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LEMMA 1. ([22]) Assume that φ and ψ are two delta differential function at
t ∈ T; then:

(i) (φ ±ψ)Δ(t) = φΔ(t)±ψΔ(t);

(ii) (φψ)Δ(t) = φΔ(t)ψ(t)+ φ(σ(t))ψΔ(t) = φ(t))ψΔ(t)+ φΔ(t)ψ(σ(t));

(iii) If ψ(t)ψ(σ(t)) �= 0, then ( φ
ψ )Δ(t) = φ Δ(t)ψ(t)+φ(t)ψΔ(t)

ψ(t)ψ(σ(t)) ;

(iv) (
∫ t
a φ(t,s)Δs)Δ = φ(σ(t),t)+

∫ t
a φΔ(t,s)Δs.

DEFINITION 4. ([22]) Let p,q : T → R are regressive function, define

p⊕q = p+q+ μ pq, 	p =
−p

1+ μ p
, p	q = p⊕ (	q).

LEMMA 2. ( [22]) Assume that p,q : T → R are regressive function. Then:
(i) e0(t,s) = 1, ep(t,t) = 1;

(ii) ep(σ(t),s) = (1+ μ(t)p)ep(t,s);

(iii) ep(t,s) = 1/ep(s,t) = e	p(s,t);

(iv) ep(t,s)eq(t,s) = ep⊕q(t,s);

(v) ep(t,s)ep(s,r) = ep(t,r);

(vi) (1/ep(t,s))Δ = −p(t)/ep(σ(t),s).

LEMMA 3. ([22]) Let a,b,c ∈ T and p ∈ R , then∫ b

a
p(t)ep(c,σ(t))Δt = ep(c,a)− ep(c,b).

LEMMA 4. ([4]) If ω > 0, then e	ω(t,s) � 1, for all t,s ∈ T where t � s.

For more details on time scales see [21, 22, 23, 24].
Throughout this paper, (K, || · ||) is assume to be real Hilbert space. Let (Ω,F ,P) be
a complete probability space. L2(P,K) stands for the space of all K -valued random
variables u such that

E||u||2 =
∫

Ω
||u||2dP < ∞.

L2(P,K) is Hilbert space with the norm

||u||2 = (E||u||2) 1
2 .

L2(P,K) is Banach space with the norm

||u||PC = sup
t∈T

(E||u||2) 1
2 .
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DEFINITION 5. ([42]) A Brownian motion indexed by a time scale T is an adapted
stochastic process W = {W (t) : t ∈ T}, defined on a probability space (Ω,F ,P) with
the following properties:
(i) W (t0) = 0, a.s.;

(ii) if t0 � s < t and s,t ∈ T , then the increment W (t)−W(s) is independent of F (s)
and is normally distributed with mean zero and variance t− s.

DEFINITION 6. ([43]) One can say that the random process f : T×Ω → R be-
longs to the class L2([0,1]T) if the following conditions hold:
(i) f is adapted, i.e., f (t, ·) is Ft measurable for all t ∈ T.

(ii) P

(∫ 1
0 | f (t,ω)|2Δt < ∞

)
= 1.

LEMMA 5. ([42]) Δ-stochastic integral has the following properties:
(i) If f, g ∈ L2([0,1]T) and c1,c2 ∈ R; then∫ 1

0
(c1 f (t)+ c2g(t))ΔW (t) = c1

∫ 1

0
f (t)ΔW (t)+ c2

∫ 1

0
g(t)ΔW (t).

(ii) E
(∫ 1

0 | f (t)|2Δt
)

< ∞, then E
(∫ 1

0 f (t)ΔW (t)
)

= 0 and the It ô - isometry holds;

that is,

E

((∫ 1

0
f (t)ΔW (t)

)2
)

= E
(∫ 1

0
f 2(t)Δt

)
.

DEFINITION 7. A stochastic process u(t) : T → L2(P,K) is said to be stochasti-
cally continuous whenever

lim
t→s

E||u(t)−u(s)||2 = 0.

DEFINITION 8. A stochastic process u(t) : T → L2(P,K) is said to be stochasti-
cally bounded whenever there exist a positive number M such that

E||u(t)||2 < M, ∀ t ∈ T.

SBC(T,L2(P,K)) denotes the collection of all the stochastically bounded and continu-
ous processes.

REMARK 1. SBC(T,L2(P,K)) is Banach space with respect to the norm,

||u||PC = sup
t∈T

(
E||u(t)||2

) 1
2
.

DEFINITION 9. ([28]) A time scale T is said to almost periodic if

Π := {τ ∈ R : t ± τ ∈ T,∀t ∈ T} �= {0}.
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Let ð be a collection of subsets of R . A time scale T is called almost periodic with
respect to ð if

ð
∗ = {±τ ∈

⋂
a∈ð

a : t± τ ∈ T,∀t ∈ T} �= /0

and ð
∗ is called the smallest almost periodic set of T.

DEFINITION 10. ([38]) A function f : T → L2(P,K) is said to be rd-piecewise
continuous with respect to a sequence {tk} ⊂ T satisfying tk < tk+1,k ∈ Z if f (t) is
continuous on [tk, tk+1)T and rd-continuous on T\{tk}. Furthermore, [tk,tk+1)T are
called intervals of continuity of the function f .

PCrd(T,L2(P,K)) denotes the set of all piecewise continuous functions with respect to
a sequence {tk},k ∈ Z.
Now, we introduce a set

ℑ =
{
{tk},tk ∈ T : tk < tk+1,k ∈ Z, lim

k→±∞
tk = ±∞

}
.

This set denotes all unbounded increasing sequences of real numbers. let ℑ be the set
consisting of all sequences {tk},k ∈ Z such that infk∈Z(tk+1 − tk) > 0.

DEFINITION 11. ([44]) Let {tk} ∈ ℑ,k ∈ Z, we say {t j
k} is a derivative sequence

of {tk} and denoted

{t j
k} = tk+ j − tk, k, j ∈ Z.

DEFINITION 12. ([44]) Let {t j
k} = tk+ j − tk, k, j ∈ Z . We say {t j

k} is equipo-
tentially almost automorphic on an almost periodic time scale T if for every sequence
{sn}∞

n=1 ⊂ Z , we can extract a subsequence {τn}∞
n=1 such that, for some sequence

{γk} ⊂ Π and for each tk ∈ ℑ ,

lim
n→∞

tτn
k = γk and lim

n→∞
γ−τn
k = tk,

hold simultaneously.

DEFINITION 13. A stochastic process u∈ PCrd(T,L2(P,K)) is said to be square-
mean almost automorphic if sequences of impulsive {tk} satisfying the derived se-
quence {t j

k} is equipotentially almost automorphic and for every sequence of real num-
bers {sn}∞

n=1 ⊂Π , we can extract a subsequence {τn}∞
n=1 such that, for some stochastic

process u∗(t) : T→ L2(P,K) , limn→∞ E||u(t +τn)−u∗(t)||2 = 0 and limn→∞ E||u∗(t−
τn)−u(t)||2 = 0 simultaneously hold for each t ∈ T.

The collection of all the square-mean almost automorphic processes u(t) : T →
L2(P,K) is denoted by SAA(T,L2(P,K)).
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REMARK 2. SAA(T,L2(P,K)) is a closed subspace of SBC(T,L2(P,K)) . Hence,
it is also Banach space with norm

||u||PC = sup
t∈T

(
E||u(t)||2

) 1
2
.

DEFINITION 14. A stochastically process u(t,x)∈PCrd(T×L2(P,K),L2(P,K)) ,
which is jointly continuous, is said to be square-mean almost automorphic in t ∈ T and
for all x ∈ L2(P,K) if sequences of impulsive {tk} satisfying the derived sequence
{t j

k} is equipotentially almost automorphic and for every sequence of real numbers
{sn}∞

n=1 ⊂ Π , if we can subtract a subsequence {τn}∞
n=1 such that, for some stochastic

process u∗(t,x) : T×L2(P,K)→ L2(P,K) , limn→∞ E||u(t +τn,x)−u∗(t,x)||2 = 0 and
limn→∞ E||u∗(t − τn,x)− u(t,x)||2 = 0 simultaneously hold for each t ∈ T and x ∈
L2(P,K).

The collection of all such type process is denoted by SAA(T×L2(P,K),L2(P,K)).

LEMMA 6. ([19]) If u1 and u2 are two square-mean almost automorphic stochas-
tic process then these three properties hold true,

1. u1 +u2 is square-mean almost automorphic stochastic process.

2. λu1 is square-mean almost automorphic for every λ ∈ R.

3. u1 is bounded in L2(P,K) , i.e., there exist a positive number M such that
||u1||PC < M.

Now, we prove some important lemmas which are useful to establish the main results.

LEMMA 7. Let p : T×L2(P,K) → L2(P,K),(t,u) → p(t,u) be square-mean al-
most automorphic in t ∈ T for each u ∈ L2(P,K) and assume that p satisfies Lipschitz
condition in the following sense,

E||p(t,u)− p(t,u∗)||2 � LE||u−u∗||2,

for all u,u∗ ∈ L2(P,K) and for each t ∈T, where L > 0 is independent from t. Then the
stochastic process P : T → L2(P,K) given by P(·) = p(·,u(·)) is square-mean almost
automorphic provided u : T → L2(P,K) is square-mean almost automorphic.

Proof. Since p ∈ SAA(T× L2(P,K),L2(P,K)) , we can extract a subsequence
{τn}∞

n=1 ⊂ Π of {sn}∞
n=1 and a stochastic process p∗ : T×L2(P,K) → L2(P,K) such

that

lim
n→∞

E||p(t+τn,u)− p∗(t,u)||2 = 0 and lim
n→∞

E||p∗(t−τn,u)− p(t,u)||2 = 0, (2.1)
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for all t ∈T and u∈ L2(P,K). On the other hand, u : T→ L2(P,K) is also square mean
almost automorphic, so we can extract a common subsequence {τn}∞

n=1 of {sn}∞
n=1 and

a stochastic process u∗ ∈ L2(P,K) such that

lim
n→∞

E||u(t + τn)−u∗(t)||2 = 0 and lim
n→∞

E||u∗(t − τn)−u(t)||2 = 0, (2.2)

for all t ∈ T. Now, let us consider the function P∗ : T → L2(P,K), defined by P∗(t) =
p∗(t,u∗(t)), t ∈ T . Hence, we have

E||P(t + τn)−P∗(t)||2
= E||p(t + τn,u(t + τn))− p(t + τn,u

∗(t))+ p(t + τn,u
∗(t))− p∗(t,u∗(t))||2

� 2E||p(t+τn,u(t+τn))− p(t+τn,u
∗(t))||2 +2E||p(t+τn,u

∗(t)− p∗(t,u∗(t))||2.
(2.3)

By (2.1), we get
lim
n→∞

E||p(t + τn,u
∗(t))− p∗(t,u∗(t))||2 = 0. (2.4)

Using the Lipschitz condition on p, we get

E||p(t + τn,u(t + τn))− p(t + τn,u
∗(t))||2 � LE||u(t + τn)−u∗(t)||2.

Using (2.2) , we get

lim
n→∞

E||p(t + τn,u(t + τn))− p(t + τn,u
∗(t))||2 = 0. (2.5)

From (2.4), (2.5) and (2.3) , we get

lim
n→∞

E||P(t + τn)−P∗(t)||2 = 0.

Similarly, using the same method as above, we can prove that limn→∞ E||P∗(t − τn)−
P(t)||2 = 0 for each t ∈ T, which prove that P(t) is square-mean almost automorphic.
This completes the proof. �

LEMMA 8. If u ∈ PCrd(T,L2(P,K)) is a square-mean almost automorphic func-
tion. {tk} ⊂ T is equipotentially almost automorphic satisfying infi∈Z tqi > 0,q ∈ Z

then {u(tk)} is a square-mean almost automorphic sequence in L2(P,K).

Proof. t j
i = ti+ j − ti, i, j ∈ Z. Obviously, from the definition of Π , it is easy to

know that t j
i ∈ Π. Since u ∈ SAA(T,L2(P,K)) and {tk} ⊂ T , using definitions 12 and

13, for any sequence {sn} ⊂ Z , we find that there exists a subsequence {τn} such that

lim
n→∞

E||u(tk+τn)−u∗(tk)||2 = lim
n→∞

E||u(tk + tτn
k )−u∗(tk)||2

= E||u(tk + γk)−u∗(tk)||2
= 0.
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Similarly, we can prove that limn→∞ E||u∗(tk−τn)−u(tk)||2 = 0 for each {tk} ⊂T . This
completes the proof. �

DEFINITION 15. A sequence of continuous functions, Ik : L2(P,K) → L2(P,K)
is square-mean almost automorphic, if for integer sequence {k′

n} , there exists a sub-
sequence {kn} such that limn→∞ E||Ik+kn(u)− I∗k (u)||2 = 0 and limn→∞ E||I∗k−kn

(u)−
Ik(u)||2 = 0 for each k ∈ Z and u ∈ L2(P,K).

LEMMA 9. Let Ik : L2(P,K) → L2(P,K) is a sequence of square-mean almost
automorphic function and u ∈ SAA(T,L2(P,K)). If Ik satisfies Lipschitz condition i.e.,

E||Ik(x)− Ik(y)||2 � LE||x− y||2, ∀x,y ∈ L2(P,K), ∀ k ∈ Z,

L > 0 is Lipschitz constant, then the sequence {Ik(u(tk))} is square-mean almost au-
tomorphic.

Proof. Using Definition 15 and Lemma 8, we get,

E||Ik+kn(u(tk+kn))− I∗k (u(tk))||2
� 2E||Ik+kn(u(tk+kn))− Ik+kn(u(tk))||2 +2E||Ik+kn(u(tk))− I∗k (u(tk))||2
� 2LE||u(tk+kn)−u(tk)||2 +2E||Ik+kn(u(tk))− I∗k (u(tk))||2,

in the last inequality, first term tends to zero as u ∈ SAA(T,L2(P,K)) and second term
also tend to zero as Ik ∈ SAA(L2(P,K),L2(P,K)), when n → ∞ . Hence

lim
n→∞

E||Ik+kn(u(tk+kn))− I∗k (u(tk))||2 = 0.

Similarly, using the same method as above, we can prove that

lim
n→∞

E||Ik+kn(u(tk+kn))− I∗k (u(tk))||2 = 0.

The proof is now complete. �

DEFINITION 16. The equation (1.1)-(1.2) is said to be exponentially stable if, for
all ε > 0, there exist λ = λ (ε) > 0 and L > 0 such that if ||u(a)− v(a)|| � ε, then,
for all t � a ,

E||u(t)− v(t)||2 � LE||u(a)− v(a)||2e	λ (t,a).

The following lemma can be easily prove.

LEMMA 10. If u ∈ PCrd(T,(L2(P,K)) satisfies the following inequality

u(t) � ζ +
∫ t

a
p(s)u(s)Δs+ ∑

tk<t
βku(tk), ∀t ∈ T,

then
u(t) � ζ ∏

tk<t
(1+ βk)ep(t,a), ∀t ∈ T.
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DEFINITION 17. A two parameter family S(t,s) : T×T → L2(P,K) is said to be
linear evolution operator if it satisfies the following conditions:
(i) S(t, t) = Id, where Id is identity operator in L2(P,K).
(ii) S(t,s)S(s,r) = S(t,r).
(iii) The mapping (t,s) → S(t,s)u is continuous for each u ∈ L2(P,K).

DEFINITION 18. A stochastic process u(t)∈ PCrd(T,L2(P,K)) is said to be mild
solution of problem (1.1)− (1.2) on T if it satisfies the following integral equation,

u(t) = S(t,a)u(a)+
∫ t

a
S(t,σ(s))P(s,u(s))Δs+

∫ t

a
S(t,σ(s))Q(s,u(s))ΔW (s)

+ ∑
a<ti<t

S(t,ti)Ii(u(ti)), ∀t � a.

3. Existence and uniqueness

To prove our main result, we consider the following assumptions:
[HA]. The family {A(t) : t ∈ T} of operators generates an exponential stable evolution
system {S(t,s) : t � s} i.e., there exist a K0 > 0 and ω > 0 such that

||S(t,s)|| � K0e	ω(t,s) t � s

and for any sequence {sn}∞
n=1 ⊂ Π, there exist a subsequence {τn}∞

n=1 such that for
any ε > 0,∃N ∈ N such that

||S(t + τn,s+ τn)−S(t,s)||� εe	ω(t,s)

and
||S(t− τn,s− τn)−S(t,s)||� εe	ω(t,s),

for all n > N, for each t,s ∈ T,t � s.
[HP]. The function P ∈ PCrd(T×L2(P,K),L2(P,K)) is square-mean almost automor-
phic in t ∈ T for each x ∈ L2(P,K) and satisfy Lipschitz condition in x uniformly in t,
i.e., there exist a positive number LP such that

E||P(t,x)−P(t,y)||2 � LPE||x− y||2,
for all t ∈ T and x,y ∈ L2(P,K).
[HQ]. The function Q∈PCrd(T×L2(P,K),L2(P,K)) is square-mean almost automor-
phic in t ∈ T for each x ∈ L2(P,K) and satisfy Lipschitz condition in x uniformly in t,
i.e., there exist a positive number LQ such that

E||Q(t,x)−Q(t,y)||2 � LQE||x− y||2,
for all t ∈ T and x,y ∈ L2(P,K).
[HI]. Ii ∈ PCrd(L2(P,K),L2(P,K)) is square-mean almost automorphic sequence and
satisfy Lipschitz condition i.e., there exist a positive number LI such that

E||Ii(x)− Ii(y)||2 � LIE||x− y||2.
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To investigate the existence and uniqueness of a square-mean almost automorphic so-
lution to (1.1)− (1.2) , we need the following lemmas:

LEMMA 11. Assume that condition (HA) holds, p ∈ SAA(T,L2(P,K)) and u :
T → L2(P,K) is defined by:

u(t) =
∫ t

−∞
S(t,σ(s))p(s)Δs, t � σ(s),

then u ∈ SAA(T,L2(P,K)).

Proof. Since p(·) ∈ SAA(T,L2(P,K)) , there exist a subsequence {τn}∞
n=1 of

{sn}∞
n=1 ⊂ Π and a stochastic process p∗ ∈ L2(P,K) such that

lim
n→∞

E||p(t + τn)− p∗(t)||2 = 0 and lim
n→∞

E||p∗(t− τn)− p(t)||2 = 0. (3.1)

Moreover, if we let u∗(t) =
∫ t
−∞ S(t,σ(s))p∗(s)Δs, t � σ(s) , using Cauchy-Schwartz

inequality, we have

E||u(t + τn)−u∗(t)||2 = E
∥∥∥∫ t+τn

−∞
S(t + τn,σ(s))p(s)Δs−

∫ t

−∞
S(t,σ(s))p∗(s)Δs

∥∥∥2

= E
∥∥∥∫ t

−∞
S(t + τn,σ(s)+ τn)p(s+ τn)Δs−

∫ t

−∞
S(t,σ(s))p∗(s)Δs

∥∥∥2

� 2E
∥∥∥∫ t

−∞

[
S(t + τn,σ(s)+ τn)−S(t,σ(s))

]
p(s+ τn)Δs

∥∥∥2

+2E
∥∥∥∫ t

−∞
S(t,σ(s))

[
p(s+ τn)− p∗(s)

]
Δs
∥∥∥2

� 2ε2E
(∫ t

−∞
e	ω(t,σ(s))||p(s+ τn)||Δs

)2

+2K2
0E
(∫ t

−∞
e	ω(t,σ(s))||p(s+ τn)− p∗(s)||Δs

)2

� 2ε2
(∫ t

−∞
e	ω(t,σ(s))Δs

)(∫ t

−∞
e	ω(t,σ(s))E||p(s+ τn)||2Δs

)
+2K2

0

(∫ t

−∞
e	ω(t,σ(s))Δs

)(∫ t

−∞
e	ω(t,σ(s))E||p(s+τn)− p∗(s)||2Δs

)
� −2ε2

	ω

(∫ t

−∞
e	ω(t,σ(s))Δs

)
sup
t∈T

E||p(t)||2

+
−2K2

0

	ω

(∫ t

−∞
e	ω(t,σ(s))Δs

)
sup
t∈T

E||p(t + τn)− p∗(t)||2

=
2ε2

(	ω)2 sup
t∈T

E||p(t)||2 +
2K2

0

(	ω)2 sup
t∈T

E||p(t + τn)− p∗(t)||2,
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for all t � s and all n > N . Since p(·) is bounded and satisfies (3.1) , then we obtain
that

lim
n→∞

E||u(t + τn)−u∗(t)||2 = 0.

Similarly, using the same method we can easily get limn→∞ E||u∗(t− τn)−u(t)||2 = 0.
Thus we conclude that u ∈ SAA(T,L2(P,K)). This complete the proof. �

LEMMA 12. Assume that condition (HA) holds, q ∈ SAA(T,L2(P,K)) and u :
T → L2(P,K) is defined by:

u(t) =
∫ t

−∞
S(t,σ(s))q(s)ΔW (s), t � σ(s),

then u ∈ SAA(T,L2(P,K)).

Proof. Since q(·) ∈ SAA(T,L2(P,K)) , there exist a subsequence {τn}∞
n=1 of

{sn}∞
n=1 ⊂ Π and a stochastic process q∗ ∈ L2(P,K)) such that

lim
n→∞

E||q(t + τn)−q∗(t)||2 = 0 and lim
n→∞

E||q∗(t− τn)−q(t)||2 = 0. (3.2)

Let W̃ (r) =W (r+ τn)−W (r) for all r ∈ T . W̃ is also a Brownian motion and has the
same distribution as W. Moreover, if we let u∗(t) =

∫ t
−∞ S(t,σ(s))q∗(s)ΔW (s), t �

σ(s) , by changing of variable r = s− τn and using estimation on Ito integral, we get

E||u(t + τn)−u∗(t)||2

= E
∥∥∥∫ t+τn

−∞
S(t + τn,σ(s))q(s)ΔW (s)−

∫ t

−∞
S(t,σ(s))q∗(s)ΔW (s)

∥∥∥2

= E
∥∥∥∫ t

−∞
S(t + τn,σ(r)+ τn)q(r+ τn)ΔW̃ (r)−

∫ t

−∞
S(t,σ(r))q∗(r)ΔW̃ (r)

∥∥∥2

� 2E
∥∥∥∫ t

−∞

[
S(t + τn,σ(r)+ τn)−S(t,σ(r))

]
q(r+ τn)ΔW̃ (r)

∥∥∥2

+2E
∥∥∥∫ t

−∞
S(t,σ(r))

[
q(r+ τn)−q∗(r)

]
ΔW̃ (r)

∥∥∥2

� 2ε2
∫ t

−∞

(
e	ω(t,σ(r))E||q(r+ τn)||

)2
Δr

+2K2
0

∫ t

−∞

(
e	ω(t,σ(r))E||q(r+ τn)−q∗(r)||

)2
Δr

� 2ε2

(∫ t

−∞

(
e	ω(t,σ(r))

)2
Δr

)
sup
t∈T

E||q(t)||2

+2K2
0

(∫ t

−∞

(
e	ω(t,σ(r))

)2
Δr

)
sup
t∈T

E||q(t + τn)−q∗(t)||2
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� 2ε2

(∫ t

−∞
e(	ω)⊕(	ω)(t,σ(r))Δr

)
sup
t∈T

E||q(t)||2

+2K2
0

(∫ t

−∞
e(	ω)⊕(	ω)(t,σ(r))Δr

)
sup
t∈T

E||q(t + τn)−q∗(t)||2

=
−2ε2

(	ω)⊕ (	ω)
sup
t∈T

E||q(t)||2 +
−2K2

0

(	ω)⊕ (	ω)
sup
t∈T

E||q(t + τn)−q∗(t)||2

� 2ε2(1+ μ)2

2ω + μω2 sup
t∈T

E||q(t)||2 +
2K2

0 (1+ μ)2

2ω + μω2 sup
t∈T

E||q(t + τn)−q∗(t)||2,

for all t � s and all n > N , here μ = supt∈T μ(t) and μ = inft∈T μ(t). Since q(·) is
bounded and satisfies (3.2) , then we obtain that

lim
n→∞

E||u(t + τn)−u∗(t)||2 = 0.

Similarly, using the same method we can easily get limn→∞ E||u∗(t− τn)−u(t)||2 = 0.
Thus we conclude that u ∈ SAA(T,L2(P,K)). This complete the proof. �

LEMMA 13. Assume that condition (HA) holds, ti is square-mean almost auto-
morphic sequence; u(ti) ∈ SAA(T,L2(P,K)) and u : T → L2(P,K) is defined by:

u(t) = ∑
ti<t

S(t,ti)u(ti),

then u ∈ SAA(T,L2(P,K)).

Proof. Since u(ti) ∈ SAA(T,L2(P,K)) , there exist a subsequence {τn}∞
n=1 of

{sn}∞
n=1 ⊂ Π and a stochastic process u∗(ti) ∈ L2(P,K) such that

lim
n→∞

E||u(ti + τn)−u∗(ti)||2 = 0 and lim
n→∞

E||u∗(ti − τn)−u(ti)||2 = 0, (3.3)

for all ti ∈ T, i ∈ Z . Moreover, if we let u∗(t) = ∑ti<t S(t,σ(s))u∗(ti),

E||u(t + τn)−u∗(t)||2 = E
∥∥∥ ∑

ti<t+τn

S(t + τn,ti)u(ti)− ∑
ti<t

S(t,ti)u∗(ti)
∥∥∥2

= E
∥∥∥∑

ti<t
S(t + τn,ti + τn)u(ti + τn)− ∑

ti<t
S(t,ti)u∗(ti)

∥∥∥2

� 2E
∥∥∥∑

ti<t

[
S(t + τn,ti + τn)−S(t, ti)

]
u(ti + τn)

∥∥∥2

+2E
∥∥∥∑

ti<t
S(t,ti)

[
u(ti + τn)−u∗(ti)

]∥∥∥2

� 2ε2
(

∑
ti<t

e	ω(t,ti)
)(

∑
ti<t

e	ω(t, ti)E||u(ti + τn)||2
)

+2K2
0

(
∑
ti<t

e	ω(t,ti)
)(

∑
ti<t

e	ω(t, ti)E||u(ti + τn)−u∗(ti)||2
)
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� 2ε2
(

∑
ti<t

e	ω(t,ti)
)2

sup
ti,i∈Z

E||u(ti + τn)||2
)

+2K2
0

(
∑
ti<t

e	ω(t,ti)
)2

sup
ti ,i∈Z

E||u(ti + τn)−u∗(ti)||2

� 2ε2

(1− e	ω(θ ,0))2 sup
ti ,i∈Z

E||u(ti + τn)||2

+
2K2

0

(1− e	ω(θ ,0))2 sup
ti ,i∈Z

E||u(ti + τn)−u∗(ti)||2,

for all ti ∈ Z and all n > N , here θ = infi∈Z(ti+1− ti) > 0. Since e	ω(θ ,0) < 1, u(ti)
is bounded and satisfies (3.3) , then we obtain that

lim
n→∞

E||u(t + τn)−u∗(t)||2 = 0.

Similarly, using the same method we can easily get limn→∞ E||u∗(t− τn)−u(t)||2 = 0.
Thus we conclude that u ∈ SAA(T,L2(P,K)). This complete the proof. �

THEOREM 1. Under the assumptions (HA)−(HI) , the problem (1.1)−(1.2) has
a unique square mean almost automorphic solution u(·) ∈ SAA(T,L2(P,K)), provided

M =

[
3K2

0LP(1+ μω)2

ω2 +
3K2

0LQ(1+ μω)2

2ω + μω2 +
3K2

0LI

[1− e	ω(θ ,0)]2

]
< 1. (3.4)

Proof. Consider the nonlinear operator

ϒu(t)

=
∫ t

−∞
S(t,σ(s))P(s,u(s))Δs+

∫ t

−∞
S(t,σ(s))Q(s,u(s))ΔW (s)+ ∑

ti<t
S(t,ti)Ii(u(ti)).

First we show that it is well defined, i.e., ϒu(·) : SAA(T,L2(P,K))→ SAA(T,L2(P,K)).
Indeed, let u ∈ SAA(T,L2(P,K)) then by Lemma 7, the function s → P(s,u(s)) ∈
SAA(T,L2(P,K)) , s → Q(s,u(s)) ∈ SAA(T,L2(P,K)) and by Lemma 9, the function
ti → Ii(u(ti)) ∈ SAA(T,L2(P,K)) . Clearly, by Lemmas 11, 12, 13, the operator ϒ ∈
SAA(T,L2(P,K)). Now to complete our prove, we have to show that ϒ is a contraction
mapping on SAA(T,L2(P,K)) . Indeed, if we have u(t),v(t) ∈ SAA(T,L2(P,K)) , then

E||ϒu(t)−ϒv(t)||2 = E
∥∥∥∫ t

−∞
S(t,σ(s))

[
P(s,u(s))−P(s,v(s))

]
Δs

+
∫ t

−∞
S(t,σ(s))

[
Q(s,u(s))−Q(s,v(s))

]
ΔW (s)

+ ∑
ti<t

S(t,ti)
[
Ii(u(ti))− Ii(v(ti))

]∥∥∥2
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� 3E
∥∥∥∫ t

−∞
S(t,σ(s))

[
P(s,u(s))−P(s,v(s))

]
Δs
∥∥∥2

+3E
∥∥∥∫ t

−∞
S(t,σ(s))

[
Q(s,u(s))−Q(s,v(s))

]
ΔW (s)

∥∥∥2

+3E
∥∥∥∑

ti<t
S(t, ti)

[
Ii(u(ti))− Ii(v(ti))

]∥∥∥2

� 3K2
0E

[(∫ t

−∞
e	ω(t,σ(s))Δs

)(∫ t

−∞
e	ω(t,σ(s))

∥∥∥P(s,u(s))−P(s,v(s))
∥∥∥2

Δs
)]

+3K2
0

∫ t

−∞

(
e	ω(t,σ(s))E

∥∥∥Q(s,u(s))−Q(s,v(s))
∥∥∥)2

Δs

+3K2
0E

[(
∑
ti<t

e	ω(t,ti)
)(

∑
ti<t

e	ω(t,ti)‖Ii(u(ti))− Ii(v(ti))
)∥∥∥2)]

� 3K2
0

(∫ t

−∞
e	ω(t,σ(s))Δs

)(∫ t

−∞
e	ω(t,σ(s))E

∥∥∥P(s,u(s))−P(s,v(s))
∥∥∥2

Δs
)

+3K2
0

∫ t

−∞

(
e	ω(t,σ(s))E

∥∥∥Q(s,u(s))−Q(s,v(s))
∥∥∥)2

Δs

+3K2
0

(
∑
ti<t

e	ω(t,ti)
)(

∑
ti<t

e	ω(t,ti)E
∥∥∥Ii(u(ti))− Ii(v(ti))

∥∥∥2)
� −3K2

0LP

	ω

∫ t

−∞
e	ω(t,σ(s))E

∥∥∥u(s))− v(s)
∥∥∥2

Δs

+3K2
0LQ

∫ t

−∞

(
e	ω(t,σ(s))

)2
E
∥∥∥u(s)− v(s)

∥∥∥2
Δs

+
3K2

0LI

1− e	ω(θ ,0) ∑
ti<t

e	ω(t,ti)E
∥∥∥u(s))− v(s)

∥∥∥2
Δs

�
[

3K2
0LP(1+ μω)2

ω2 +
3K2

0LQ(1+ μω)2

2ω + μω2 +
3K2

0LI

[1− e	ω(θ ,0)]2

]

× sup
t∈T

E
∥∥∥u(t)− v(t)

∥∥∥2
,

that is,

||ϒu(t)−ϒv(t)||22 � M sup
t∈T

||u(t)− v(t)||22 � M
(

sup
t∈T

||u(t)− v(t)||2
)2

and ||ϒu(t)−ϒv(t)||2 �
√

M||u− v||PC, ||ϒu−ϒv||PC = supt∈T ||ϒu(t)−ϒv(t)||2 .
Hence we obtain,

||ϒu−ϒv||PC �
√

M||u− v||PC,

which implies ϒ is a contraction mapping by (3.4). So by the Banach contraction prin-
ciple, we conclude that there exists a unique fixed point u(·) for ϒ in SAA(T,L2(P,K)),
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such that ϒu = u , that is,

u(t) =
∫ t

−∞
S(t,σ(s))P(s,u(s))Δs+

∫ t

−∞
S(t,σ(s))Q(s,u(s))ΔW (s)+ ∑

ti<t
S(t,ti)Ii(u(ti)),

for all t ∈ T. If we let a ∈ T , then

u(a)

=
∫ a

−∞
S(a,σ(s))P(s,u(s))Δs+

∫ a

−∞
S(a,σ(s))Q(s,u(s))ΔW (s)+ ∑

ti<a
S(a,ti)Ii(u(ti))

and

S(t,a)u(a)

=
∫ a

−∞
S(t,σ(s))P(s,u(s))Δs+

∫ a

−∞
S(t,σ(s))Q(s,u(s))ΔW (s)+ ∑

ti<a
S(t,ti)Ii(u(ti)).

But for all t � a,

∫ t

a
S(t,σ(s))Q(s,u(s))ΔW (s)

=
∫ t

−∞
S(t,σ(s))Q(s,u(s))ΔW (s)−

∫ a

−∞
S(t,σ(s))Q(s,u(s))ΔW (s)

= u(t)−
∫ t

−∞
S(t,σ(s))P(s,u(s))Δs− ∑

ti<t
S(t,ti)Ii(u(ti))−S(t,a)u(a)

+
∫ a

−∞
S(t,σ(s))P(s,u(s))Δs+ ∑

ti<a
S(t, ti)Ii(u(ti))

= u(t)−S(t,a)u(a)−
∫ t

a
S(t,σ(s))P(s,u(s))Δs− ∑

a<ti<t
S(t,ti)Ii(u(ti)).

In conclusion,

u(t) = S(t,a)u(a)+
∫ t

a
S(t,σ(s))P(s,u(s))Δs+

∫ t

a
S(t,σ(s))Q(s,u(s))ΔW (s)

+ ∑
a<ti<t

S(t,ti)Ii(u(ti)),

is unique mild solution of problem (1.1)-(1.2). This completes our proof. �

4. Stability

In this section, we establish the exponential stability of almost automorphic solu-
tion.
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THEOREM 2. Let the assumptions of theorem 1 hold and (	ω)⊕ c < 0, where

c = 4K2
0 (1+ μω)

[LP(1+ μω)
ω

+LQ

]
, (4.1)

μ = supt∈T μ(t). Then, problem (1.1)-(1.2) has a unique square-mean almost automor-
phic mild solution which is exponentially stable.

Proof. By Theorem 1, we see that problem (1.1)-(1.2) has a unique square-mean
almost automorphic mild solution whose integral form is given by,

u(t) = S(t,a)u(a)+
∫ t

a
S(t,σ(s))P(s,u(s))Δs+

∫ t

a
S(t,σ(s))Q(s,u(s))ΔW (s)

+ ∑
a<ti<t

S(t,ti)Ii(u(ti)),

for all t > a,a �= ti, i ∈ Z. Let u(t) and v(t) are two solution of problem (1.1)-(1.2),
then

E||u(t)− v(t)||2 = E
∥∥∥S(t,a)

[
u(a)− v(a)

]
+
∫ t

a
S(t,σ(s))

[
P(s,u(s))−P(s,v(s))

]
Δs

+
∫ t

a
S(t,σ(s))

[
Q(s,u(s))−Q(s,v(s))

]
ΔW (s)+ ∑

a<ti<t
S(t,ti)

[
Ii(u(ti))− Ii(v(ti))

]∥∥∥2

� 4E
∥∥∥S(t,a)

[
u(a)− v(a)

]∥∥∥2
+4E

∥∥∥∫ t

a
S(t,σ(s))

[
P(s,u(s))−P(s,v(s))

]
Δs
∥∥∥2

+4E
∥∥∥∫ t

a
S(t,σ(s))

[
Q(s,u(s))−Q(s,v(s))

]
ΔW (s)

∥∥∥2

+4E
∥∥∥ ∑

a<ti<t
S(t,ti)

[
Ii(u(ti))− Ii(v(ti))

]∥∥∥2
� 4K2

0

(
e	ω(t,a)

)2
E
∥∥∥u(a)− v(a)

∥∥∥2

+4K2
0E

[(∫ t

a
e	ω(t,σ(s))Δs

)(∫ t

a
e	ω(t,σ(s))

∥∥∥P(s,u(s))−P(s,v(s))
∥∥∥2

Δs
)]

+4K2
0

∫ t

a

(
e	ω(t,σ(s))E

∥∥∥Q(s,u(s))−Q(s,v(s))
∥∥∥)2

Δs

+4K2
0E

[(
∑
ti<t

e	ω(t,ti)
)(

∑
a<ti<t

e	ω(t,ti)‖Ii(u(ti))− Ii(v(ti))
)∥∥∥2)]

� 4K2
0 e	ω(t,a)E

∥∥∥u(a)− v(a)
∥∥∥2

+4K2
0

(∫ t

−∞
e	ω(t,σ(s))Δs

)(∫ t

a
e	ω(t,σ(s))E

∥∥∥P(s,u(s))−P(s,v(s))
∥∥∥2

Δs
)

+4K2
0

∫ t

a

(
e	ω(t,σ(s))E

∥∥∥Q(s,u(s))−Q(s,v(s))
∥∥∥)2

Δs

+4K2
0

(
∑

−∞<ti<t
e	ω(t,ti)

)(
∑

a<ti<t
e	ω(t,ti)E

∥∥∥Ii(u(ti))− Ii(v(ti))
∥∥∥2)
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� 4K2
0 e	ω(t,a)E

∥∥∥u(a)− v(a)
∥∥∥2

+
−4K2

0LP(1+ μω)
	ω

∫ t

a
e	ω(t,s)E

∥∥∥u(s))− v(s)
∥∥∥2

Δs

+4K2
0LQ(1+ μω)

∫ t

a
e	ω(t,s)E

∥∥∥u(s)− v(s)
∥∥∥2

Δs

+
4K2

0LI

1− e	ω(θ ,0) ∑
a<ti<t

e	ω(t,ti)E
∥∥∥u(s))− v(s)

∥∥∥2
Δs.

Let e	ω(t,a)E||x(t)||2 = E||u(t)− v(t)||2, then,

e	ω(t,a)E||x(t)||2 � c1e	ω(t,a)E||x(a)||2 + c2

∫ t

a
e	ω(t,a)E||x(s)||2Δs

+ c3

∫ t

a
e	ω(t,a)E||x(s)||2Δs+ c4 ∑

a<ti<t
e	ω(t,a)E||x(ti)||2

E||x(t)||2 � c1E||x(a)||2 +(c2 + c3)
∫ t

a
E||x(s)||2Δs+ c4 ∑

a<ti<t
E||x(ti)||2,

where c1 = 4K2
0 , c2 = 4K2

0 LP(1+μω)2

ω , c3 = 4K2
0LQ(1+ μω), c4 = 4K2

0 LI
1−e	ω(θ ,0) . From

Lemma 10, we have

E||x(t)||2 � c1E||x(a)||2 ∏
a<ti<t

c4ec2+c3(t,a),

that is,

E||u(t)− v(t)||2eω(t,a) � c1E||u(a)− v(a)||2 ∏
a<ti<t

(1+ c4)ec2+c3(t,a)

E||u(t)− v(t)||2 � c1E||u(a)− v(a)||2 ∏
a<ti<t

(1+ c4)e(	ω)⊕c(t,a),

Where c = c2 +c3 = 4K2
0 LP(1+μω)2

ω +4K2
0LQ(1+μω). Now, by Definition and (4.1) we

conclude that problem (1.1)-(1.2) has a square-mean almost automorphic mild solution
which is exponentially stable. This completes the proof. �

5. Example

Consider the following stochastic impulsive partial differential equation on an al-
most periodic time scale T with μ < 4/3,
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∂
Δ1t

Z(t,x) =
∂ 2

Δ2x2 Z(t,x)+
1

100
cos
( 1

2+ sint + sin
√

2t

)
sinZ(t,x)

+
1

100
sin
( 1

1+ cost + sin
√

2t

)
sinZ(t,x)

∂W (t)
Δ1t

, t ∈ T, t �= ti, x ∈ [0,π ]T,

Δ2Z(ti,x) =
1

100

(
cos i+ sin

√
5t
)
Z(ti,x), i ∈ Z, x ∈ [0,π ]T,

Z(t,0) = Z(t,π) = 0, t ∈ T, (5.1)

where ti = i+ 1
16 |cos(i+1)−sin

√
3t|, i∈Z and W (t) is a two-sided and standard one-

dimensional Brownian motion defined on the filtered probability space (Ω,F ,P,Ft ) .
Let u(t) = Z(t, ·) and X = L2[0,π ]T, we define the operator A by

Au =
∂ 2

Δ2x2 u, u ∈ D(A) = {H1
0 [0,π ]T ∩H2

0 [0,π ]T}.

Clearly from the same discussion as in Section 3.1 in [45] that one can easily see that the
evolution system {S(t,s) : t � s} satisfies ||S(t,s)||� e	 1

2
(t,s), t � s, with K0 = 1 and

ω = 1
2 . Now, problem (5.1) can be formulated in abstract form as (1.1)-(1.2), where,

P(t,u) =
1

100
cos
( 1

2+ sint + sin
√

2t

)
sinu(t),

Q(t,u) =
1

100
sin
( 1

1+ cost + sin
√

2t

)
sinu(t),

Ii(u(ti)) =
1

100

(
cos i+ sin

√
5t
)
u(ti), ti = i+

1
16

|cos(i+1)− sin
√

3t|.

Now, {t j
i }, i, j ∈ Z is an equipotentially square-mean almost automorphic sequence

and t1i = ti+1− ti > 17/20. Hence θ = infi∈Z(ti+1− ti) > 17
20 > 0.

Clearly P,Q, Ii satisfies all assumptions with LP = LQ = 1
100 ,LI = 1

50 . Moreover,[
3K2

0LP(1+ μω)2

ω2 +
3K2

0LQ(1+ μω)2

2ω + μω2 +
3K2

0LI

[1− e	ω(θ ,0)]2

]
= 0.600152 < 1,

and since μ < 4/3, then μ = 4/3 and μ = 0, so,

c = 4K2
0 (1+ μω)

[LP(1+ μω)
ω

+LQ

]
=

13
45

,

and (	ω)⊕ c = −0.544 < 0. Therefore, the Equation (5.1) has a unique square-mean
almost automorphic mild solution which is exponential stable.
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[13] W. HU, Itô’s Formula, the Stochastic Exponential and Change of Measure on General Time Scales,

Abstract and Applied Analysis. Vol. 2017. Hindawi, (2017).
[14] W. T. BRETT, On stochastic differential equations in the Ito and in the Stratonovich sense (Master’s

Thesis), University of Maryland, College Park, (2012).
[15] B.H. PAUL, T. DIAGANA, Existence of almost periodic solutions to some stochastic differential equa-

tions, Applicable Analysis 86.7 (2007), 819-827.
[16] B. H. PAUL, Existence of almost periodic solutions to some functional integro-differential stochastic

evolution equations, Statistics & Probability Letters 78.17 (2008), 2844–2849.
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définis par rapporta un ensemble fermé de temps, To appear in Rend. Sem. Mat. Univ. Pol. Torino
(2016).

[18] S. SANYAL, D. GROW, Existence and uniqueness for stochastic dynamic equations, International
Journal of Statistics and Probability 2.2 (2013), 77.

[19] F. MIAOMIAO, Z. LIU, Square-mean almost automorphic solutions for some stochastic differential
equations, Proceedings of the American Mathematical Society 138.10 (2010), 3689–3701.
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