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Abstract. In this paper, we propose a generalized Gronwall inequality through the fractional in-
tegral with respect to another function. The Cauchy-type problem for a nonlinear differential
equation involving the ψ -Hilfer fractional derivative and the existence and uniqueness of solu-
tions are discussed. Finally, through generalized Gronwall inequality, we prove the continuous
dependence of data on the Cauchy-type problem.

1. Introduction

Over the decades, the fractional calculus has been building a great history and con-
solidating itself in several scientific areas such as: mathematics, physics and engineer-
ing, among others. The emergence of new fractional integrals and derivatives, makes
the wide number of definitions becomes increasingly larger and clears its numerous
applications [10, 12, 19]. Recently, Sousa and Oliveira [20] introduced the so-called
ψ -Hilfer fractional derivative with respect to another function, in order to unify the
wide number of fractional derivatives in a single fractional operator and consequently,
open a window for new applications.

Problems of initial values for the so-called fractional order differential equations
that emerge and describe linear and nonlinear phenomena have obtained much attention
in the scientific community and specially in engineering. Recently, there are several
researchers [5, 7, 9, 11, 13, 14, 16, 29] that have used fractional differential equa-
tions to model natural phenomena. It is remarkable the growth and the importance of
fractional differential equations both in the theoretical sense and in the practical sense
[7, 9, 12, 19]. In this sense, due to this exponential growth of the fractional calculus
added to differential equations, the number of researchers involved in the investiga-
tion of existence, uniqueness, Ulam-Hyers stabilities of solutions of fractional differen-
tial equations of the type: impulsive, functional and evolution with non-instantaneous
and instantaneous impulses, has been the target of research and has gained increasing
prominence in the scientific community [18, 21, 22, 23]. Recently, Sousa and Oliveira
[24, 25] investigated the Ulam-Hyers-Rassias, Ulam-Hyers and δ -Ulam-Hyers-Rassias
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stabilities of solutions of impulsive fractional differential equations and integrodiffer-
ential equations in the sense of ψ -Hilfer fractional derivative, using the fixed-point
method. We can also highlight the essential and important paper that Sousa and Oliveira
[26] carried out by means of the Ulam-Hyers-Rassias stability for nonlinear fractional
differential equations using the ψ -Hilfer fractional derivative through the Gronwall in-
equality presented here. On the other hand, an extension of Gronwall inequality was
shown to be important in the existence and δ -Ulam-Hyers-Rassias stability of mild
solution of fractional differential equations with noninstantaneous impulses in a Pδ -
normed Banach space [27]. Gronwall inequality is one of the tools used to study the
existence, uniqueness and data continuous dependence of the Cauchy’s problem solu-
tions and, in addition, other important applications might be found [6].

Consider the following Cauchy-type problem for the fractional differential equa-
tion [5]

Dα ,β
a+ y(x) = f (x,y(x)) , 0 < α < 1, 0 � β � 1 (1)

I1−γ
a+ y(a) = ya, γ = α + β (1−α), (2)

where I1−γ
a+ (·) is the fractional integral in the Riemann-Liouville sense and Dα ,β

a+ (·) is
the Hilfer fractional derivative.

In this paper, we propose a generalized Gronwall inequality using the fractional
integral of a function f with respect to another function ψ(·) , and from it to study
the data continuous dependence of the Cauchy-type problem Eq. (1)–Eq. (2) as well as
proposing and discussing the existence and uniqueness by means of ψ -Hilfer fractional
derivative [20].

The paper is organized as follows:. in section 2, we begin with the definition of
some spaces of functions, the weighted spaces among them. In this section, we present
the definition of fractional integral of a function f with respect to another function ψ ,
in a addition to the definitions of ψ -Riemann-Liouville fractional derivative, ψ -Caputo
fractional derivative and ψ -Hilfer fractional derivative. From these definitions, some
important results are introduced for the development of the paper. Finally, the defini-
tion of the Lipschitz condition, is presented. In section 3, we discuss the generalized
Gronwall inequality by means of fractional integral with respect to another ψ func-
tion. Also, two consonant results of the generalized Gronwall inequality theorem are
demonstrated. In section 4, we present the version of the Cauchy-type problem for the
ψ -Hilfer fractional derivative, showing: this problem is equivalent to solve a Volterra
integral equation. From this, we study the existence and uniqueness of Cauchy-type
problem. In section 5, using the generalized Gronwall inequality, we address the data
continuous dependence of the Cauchy-type problem. Concluding remarks close the
paper.

2. Preliminaries

First, we present the weighted spaces and some definitions and important results
for the development of the paper.
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Let [a,b] (0 < a < b < ∞) be a finite interval on the half-axis R
+ and C[a,b] ,

ACn[a,b] , Cn[a,b] be the spaces of continuous functions, n -times absolutely continu-
ous and n -times continuously differentiable functions on [a,b] , respectively.

The space of continuous function f on [a,b] with the norm is defined by [12]

‖ f‖C[a,b] = max
t∈[a,b]

| f (t)| .

On the other hand, we have n -times absolutely continuous functions given by

ACn [a,b] =
{

f : [a,b] → R; f (n−1) ∈ AC ([a,b])
}

.

The weighted spaces Cγ,ψ [a,b] and C1−γ,ψ [a,b] of functions f on [a,b] are de-
fined by

Cγ;ψ [a,b] =
{

f : (a,b] → R; (ψ (t)−ψ (a))γ f (t) ∈C [a,b]
}

, 0 � γ < 1,

C1−γ;ψ [a,b] =
{

f : (a,b] → R; (ψ (t)−ψ (a))1−γ f (t) ∈C [a,b]
}

, 0 � γ < 1,

respectively, with the norm

‖ f‖Cγ;ψ [a,b] =
∥∥(ψ (t)−ψ (a))γ f (t)

∥∥
C[a,b] = max

t∈[a,b]

∣∣(ψ (t)−ψ (a))γ f (t)
∣∣ (3)

and

‖ f‖C1−γ;ψ [a,b] =
∥∥∥(ψ (t)−ψ (a))1−γ f (t)

∥∥∥
C[a,b]

= max
t∈[a,b]

∣∣∣(ψ (t)−ψ (a))1−γ f (t)
∣∣∣ . (4)

The weighted space Cn
γ;ψ [a,b] of function f on [a,b] is defined by

Cn
γ;ψ [a,b] =

{
f : (a,b] → R; f (t) ∈Cn−1 [a,b] ; f (n) (t) ∈Cγ;ψ [a,b]

}
, 0 � γ < 1

with the norm

‖ f‖Cn
γ;ψ [a,b] =

n−1

∑
k=0

∥∥∥ f (k)
∥∥∥

C[a,b]
+
∥∥∥ f (n)

∥∥∥
Cγ;ψ [a,b]

.

For n = 0, we have, C0
γ [a,b] = Cγ [a,b] .

As one of the objectives of this paper is to propose a generalized Gronwall in-
equality, we present the Gronwall inequality recently introduced [2]. Let u, v be two
integrable functions and g a continuous function, with domain [a,b] . Assume that: u
and v are nonnegative; g is nonnegative and nondecreasing. If

u(t) � v(t)+g(t)ρ1−α
∫ t

a
τρ−1 (tρ − τρ)α−1 u(τ)dτ,

then

u(t) � v(t)+
∫ t

a

∞

∑
k=1

ρ1−kα [g(t)Γ(α)]k

Γ(αk)
τρ−1 (tρ − τρ)kα−1 v(τ)dτ,
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∀t ∈ [a,b] . We suggest [3, 8, 31], where other formulations of the Gronwall inequality
can be found via fractional integrals.

Let α > 0, n∈N , with I = [a,b] (−∞ � a< x < b � ∞) a finite or infinite interval,
f an integrable function defined on I and ψ ∈C1([a,b],R) an increasing function such
that ψ ′(x) �= 0, ∀x ∈ I . The fractional integrals of a function f with respect to another
function are given by [12, 19]

Iα ;ψ
a+ f (x) :=

1
Γ(α)

∫ x

a
ψ ′ (t)(ψ (x)−ψ (t))α−1 f (t)dt (5)

and

Iα ;ψ
b− f (x) :=

1
Γ(α)

∫ b

x
ψ ′ (t) (ψ (t)−ψ (x))α−1 f (t)dt. (6)

In this sense, from Eq. (5) and Eq. (6), the Riemann-Liouville fractional derivatives
of a function f of order α with respect to another function ψ , are defined by [12, 19]

D
α ;ψ
a+ f (x) =

(
1

ψ ′ (x)
d
dx

)n

In−α ;ψ
a+ f (x)

=
1

Γ(n−α)

(
1

ψ ′ (x)
d
dx

)n ∫ x

a
ψ ′ (t)(ψ (x)−ψ (t))n−α−1 f (t)dt

(7)

and

D
α ;ψ
b− f (x) =

(
− 1

ψ ′ (x)
d
dx

)n

In−α ;ψ
a+ f (x)

=
1

Γ(n−α)

(
− 1

ψ ′ (x)
d
dx

)n ∫ b

x
ψ ′ (t)(ψ (t)−ψ (x))n−α−1 f (t)dt,

(8)

respectively and n = [α]+1.

REMARK 1. From Eq. (5) and Eq. (6), we also consider a fractional derivative
version, the so-called ψ -Caputo fractional derivative with respect to another function,
recently introduced by Almeida [1].

DEFINITION 1. [20] Let n−1< α < n with n∈N , I = [a,b] an interval such that
−∞ � a < b � ∞ and f ,ψ ∈Cn([a,b],R) two functions such that ψ is increasing and
ψ ′(x) �= 0, for all x∈ I . The ψ -Hilfer fractional derivatives (left-sided and right-sided)
H

D
α ,β ;ψ
a+ (·) and H

D
α ,β ;ψ
b− (·) of a function of order α and type 0 � β � 1 respectively,

are defined by

H
D

α ,β ;ψ
a+ f (x) = Iβ (n−α);ψ

a+

(
1

ψ ′ (x)
d
dx

)n

I(1−β )(n−α);ψ
a+ f (x) (9)
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and
H

D
α ,β ;ψ
b− f (x) = Iβ (n−α);ψ

b−

(
− 1

ψ ′ (x)
d
dx

)n

I(1−β )(n−α);ψ
b− f (x) . (10)

The ψ -Hilfer fractional derivatives as above defined, can be written in the follow-
ing forms

H
D

α ,β ;ψ
a+ f (x) = Iγ−α ;ψ

a+ D γ;ψ
a+ f (x) (11)

and
H

D
α ,β ;ψ
b− f (x) = Iγ−α ;ψ

b− (−1)n D γ;ψ
b− f (x) , (12)

respectively with γ = α + β (n−α) and Iγ−α ;ψ
a+ (·) , Dγ;ψ

a+ (·) , Iγ−α ;ψ
b− (·) , Dγ;ψ

b− (·) as
defined in Eq. (5), Eq. (7), Eq. (6) and Eq. (8).

DEFINITION 2. [5] Assume that f (x,y(x)) is defined on set (a,b]×H, H ⊂ R.
A function f (x,y(x)) satisfies Lipschitz condition with respect to y , if all x ∈ (a,b]
and for y1,y2 ∈ H,

| f (x,y1)− f (x,y2)| � A |y1− y2| , (13)

where A > 0 is Lipschitz constant.

DEFINITION 3. Let 0 < α < 1, 0 � β � 1, the weighted space Cα ,β
1−γ;ψ [a,b] is

defined by

Cα ,β
1−γ;ψ [a,b] =

{
f ∈C1−γ;ψ [a,b] : H

D
α ,β ;ψ
a+ f ∈C1−γ;ψ [a,b]

}
,

with γ = α + β (1−α) .

LEMMA 1. If α > 0 and 0 � μ < 1, then Iα ;ψ
a+ (·) is bounded from Cμ;ψ [a,b] to

Cμ;ψ [a,b] . In addition, if μ � α , then Iα ;ψ
a+ (·) is bounded from Cμ;ψ [a,b] to C [a,b] .

LEMMA 2. Let α > 0 and δ > 0 .

1. If f (x) = (ψ (x)−ψ (a))δ−1 , then

Iα ;ψ
a+ f (x) =

Γ(δ )
Γ(α + δ )

(ψ (x)−ψ (a))α+δ−1

2. If g(x) = (ψ (b)−ψ (x))δ−1 , then

Iα ;ψ
b− g(x) =

Γ(δ )
Γ(α + δ )

(ψ (b)−ψ (x))α+δ−1

Proof. See [12]. �
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THEOREM 1. If f ∈Cn[a,b] , n−1 < α < n and 0 � β � 1 , then

Iα ;ψ
a+

H
D

α ,β ;ψ
a+ f (x) = f (x)−

n

∑
k=1

(ψ (x)−ψ (a))γ−k

Γ(γ − k+1)
f [n−k]
ψ I(1−β )(n−α);ψ

a+ f (a)

and

Iα ;ψ
b−

H
D

α ,β ;ψ
b− f (x) = f (x)−

n

∑
k=1

(−1)k (ψ (b)−ψ (x))γ−k

Γ(γ − k+1)
f [n−k]
ψ I(1−β )(n−α);ψ

b− f (b) .

Proof. See [20]. �

THEOREM 2. Let f ∈C1[a,b] , α > 0 and 0 � β � 1 , we have

H
D

α ,β ;ψ
a+ Iα ;ψ

a+ f (x) = f (x) and H
D

α ,β ;ψ
b− Iα ;ψ

b− f (x) = f (x) .

Proof. See [20]. �

3. The Gronwall inequality

The Gronwall inequality plays an important role in the study of the qualitative
theory of integral and differential equations [2, 5, 17, 28], as well as solving Cauchy-
type problems of non-linear differential equations. In order to work with continuous
dependence of differential equations via ψ -Hilfer fractional derivative, in this section,
we present the first main result, the generalized Gronwall inequality by means of the
fractional integral with respect to another function ψ and other important results.

THEOREM 3. Let u, v be two integrable functions and g continuous, with domain
[a,b] . Let ψ ∈C1 [a,b] an increasing function such that ψ ′ (t) �= 0 , ∀t ∈ [a,b] . Assume
that

1. u and v are nonnegative;

2. g in nonnegative and nondecreasing.

If

u(t) � v(t)+g(t)
∫ t

a
ψ ′ (τ) (ψ (t)−ψ (τ))α−1 u(τ)dτ,

then

u(t) � v(t)+
∫ t

a

∞

∑
k=1

[g(t)Γ(α)]k

Γ(αk)
ψ ′ (τ) [ψ (t)−ψ (τ)]αk−1 v(τ)dτ, (14)

∀t ∈ [a,b] .
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Proof. Let

Aφ (t) = g(t)
∫ t

a
ψ ′ (τ)(ψ (t)−ψ (τ))α−1 φ (τ)dτ, (15)

∀t ∈ [a,b] , for locally integral functions φ . Then,

u(t) � v(t)+Au(t) .

Iterating, for n ∈ N , we can write

u(t) �
n−1

∑
k=0

Akv(t)+Anu(t) .

The next step, is usually mathematical induction, that if φ is a nonnegative func-
tion, then

Aku(t) �
∫ t

a

[g(t)Γ(α)]k

Γ(αk)
ψ ′ (τ) [ψ (t)−ψ (τ)]αk−1 u(τ)dτ. (16)

We know that relation Eq. (16) is true for n = 1. Suppose that the formula is true
for some k = n ∈ N , then the induction hypothesis implies

Ak+1u(t) = A
(
Aku(t)

)
� A

(∫ t

a

[g(t)Γ(α)]k

Γ(αk)
ψ ′ (τ) [ψ (t)−ψ (τ)]αk−1 u(τ)dτ

)

= g(t)
∫ t

a
ψ ′ (τ) [ψ (t)−ψ (τ)]α−1

×
(∫ τ

a

[g(τ)Γ(α)]k

Γ(αk)
ψ ′ (s) [ψ (τ)−ψ (s)]αk−1 u(s)ds

)
dτ. (17)

By hypothesis, g is a nondecreasing function, that is g(τ) � g(t) , for all τ � t ,
then from Eq. (17), we get

Ak+1u(t) (18)

� [Γ(α)]k

Γ(αk)
[g(t)]k+1

∫ t

a

∫ τ

a
ψ ′ (τ) [ψ (t)−ψ (τ)]α−1 ψ ′ (s) [ψ (τ)−ψ (s)]αk−1 u(s)dsdτ.

By Dirichlet’s formula, the Eq. (18) can be rewritten as

Ak+1u(t) (19)

� [Γ(α)]k

Γ(αk)
[g(t)]k+1

∫ t

a
ψ ′ (τ)u(τ)

∫ t

τ
ψ ′ (s) [ψ (t)−ψ (s)]α−1 [ψ (s)−ψ (τ)]αk−1 dsdτ.

Note that,∫ t

τ
ψ ′ (s) [ψ (t)−ψ (s)]α−1 [ψ (s)−ψ (τ)]αk−1 ds

=
∫ t

τ
ψ ′ (s) [ψ (t)−ψ (s)]α−1

[
1− ψ (s)−ψ (τ)

ψ (t)−ψ (τ)

]α−1

[ψ (s)−ψ (τ)]αk−1 ds.
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Introducing a change of variables u =
ψ (s)−ψ (τ)
ψ (t)−ψ (τ)

and using the definition of

beta function and the relation with gamma function B(x,y) =
Γ(x)Γ(y)
Γ(x+ y)

, we have

∫ t

τ
ψ ′ (s) [ψ (t)−ψ (s)]α−1 [ψ (s)−ψ (τ)]αk−1 ds

= [ψ (t)−ψ (τ)]kα+α−1
∫ 1

0
[1−u]α−1 ukα−1du

= [ψ (t)−ψ (τ)]kα+α−1 Γ(α)Γ(kα)
Γ(α + kα)

. (20)

Replacing Eq. (19) in Eq. (20), we get

Ak+1u(t) �
∫ t

a

[g(t)Γ(α)]k+1

Γ(α (k+1))
ψ ′ (τ)u(τ) [ψ (t)−ψ (τ)]α(k+1)−1 dτ.

Let us now prove that Anu(t) → 0 as n → ∞. As g is a continuous function on
[a,b] , then by Weierstrass theorem [4, 15], there exist a constant M > 0 such that
g(t) � M for all t ∈ [a,b] . Then, we obtain

Anu(t) �
∫ t

a

[MΓ(α)]n

Γ(αn)
ψ ′ (τ)u(τ) [ψ (t)−ψ (τ)]αn−1 dτ.

Consider the series
∞

∑
n=1

[MΓ(α)]n

Γ(αn)
,

satisfying the relation

lim
n→∞

Γ(αn)(αn)α

Γ(αn+ α)
= 1. (21)

Using the ratio test to the series and the asymptotic approximation [30], so we
obtain

lim
n→∞

Γ(αn)
Γ(αn+ α)

= 0.

Therefore, the series converges and we conclude that

u(t) �
∞

∑
k=0

Akv(t) � v(t)+
∫ t

a

∞

∑
k=1

[g(t)Γ(α)]k

Γ(αk)
ψ ′ (τ) [ψ (t)−ψ (τ)]αk−1 v(τ)dτ. �

COROLLARY 1. Let α > 0 , I = [a,b] and f ,ψ ∈C1([a,b],R) two functions such
that ψ is increasing and ψ ′(t) �= 0 for all t ∈ I . Suppose b � 0 and v is a nonnegative
function locally integrable on [a,b] and suppose also that u is nonnegative and locally
integrable on [a,b] with

u(t) � v(t)+b
∫ t

a
ψ ′ (τ) [ψ (t)−ψ (τ)]α−1 u(τ)dτ, ∀t ∈ [a,b].
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Then, we can write

u(t) � v(t)+
∫ t

a

∞

∑
k=1

[bΓ(α)]k

Γ(αk)
ψ ′ (τ) [ψ (t)−ψ (τ)]αk−1 v(τ)dτ, ∀t ∈ [a,b].

COROLLARY 2. Under the hypothesis of Theorem 3, let v be a nondecreasing
function on [a,b] . Then, we have

u(t) � v(t)Eα
(
g(t)Γ(α) [ψ (t)−ψ (a)]α

)
, ∀t ∈ [a,b] ,

where Eα (·) is the Mittag-Leffler function defined by Eα (t) =
∞
∑

k=0

tk

Γ(αk+1)
with

Re(α) > 0 .

Proof. In fact, as v is nondecreasing, so, for all τ ∈ [a,t] , we have v(τ) � v(t)
and we can write

u(t) � v(t)+
∫ t

a

∞

∑
k=1

[g(t)Γ(α)]k

Γ(αk)
ψ ′ (τ) [ψ (t)−ψ (τ)]αk−1 v(τ)dτ

= v(t)

[
1+

∫ t

a

∞

∑
k=1

[g(t)Γ(α)]k

Γ(αk)
ψ ′ (τ) [ψ (t)−ψ (τ)]αk−1 v(τ)dτ

]

= v(t)

[
1+

∞

∑
k=1

[g(t)Γ(α)]k

Γ(αk)
[ψ (t)−ψ (a)]αk

kα

]

= v(t)Eα
(
g(t)Γ(α) [ψ (t)−ψ (a)]α

)
. �

REMARK 2.

• Note that, choosing g(t) = Lsgn(t) , ψ(t) = |t| and a = −t with −1 � t � 1 and
substituting in Theorem 3, we have as particular case Theorem 2.1 [3]. On the
other hand, making the same procedure in the Corollary 2, we have as particular
case the Corollary 2.4 [3];

• Choosing ψ(t) = t and a = 0 and substituting in Theorem 3, we have as par-
ticular case Theorem 1 in the Riemann-Liouville fractional integral sense. In an
analogous way, it is valid for Corollary 2, that by replacing we get the Corollary
2 [31];

• Choosing ψ(t) = ln t , a = 1 and substituting in Theorem 3, we have as particular
case Theorem 13. 4 Hadamard fractional integral sense. In an analogous way, it
is valid for Corollary 2, that by replacing we get the Corollary 13.2 [8];

• In the previous items, we present some particular cases from the generalized
Gronwall inequality. However, recently, Sousa and Oliveira [20], introduced
ψ -Hilfer fractional derivative, and presented a class of fractional integrals and
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fractional derivatives, which can be obtained from such definitions, with the par-
ticular choice of the function ψ . In this sense, the Gronwall inequality given
above can be considered as a wide class of inequality of Gronwall, that is, in
other words, it’s a generalization of the possible inequalities of Gronwall intro-
duced via fractional integral.

4. Existence and uniqueness

In this section, we prove the second ma
in result of the paper, the existence and uniqueness of solutions of the Cauchy-type

problem Eq. (22)–Eq. (23), using the fact that Volterra integral equation is equivalent to
the Cauchy-type problem in the C1−γ;ψ [a,b] weighted space, by means of ψ -Hilfer
fractional derivative.

To this end, we consider the following initial value problem

H
D

α ,β ;ψ
a+ y(x) = f (x,y(x)) , 0 < α < 1, 0 � β � 1 (22)

I1−γ;ψ
a+ y(a) = ya, γ = α + β (1−α) , (23)

where H
D

α ,β ;ψ
a+ y(x) is the ψ−Hilfer fractional derivative, f : [a,b)×R→ R and ya is

a constant.
Applying the fractional integral operator Iα ;ψ

a+ (·) on both sides of the fractional
equation Eq. (22) and using Theorem 1, we get

y(x) =
(ψ (x)−ψ (a))γ−1

Γ(γ)
I(1−β )(1−α);ψ
a+ f (a)+ Iα ;ψ

a+ f (x,y(x)) . (24)

On the other hand, if y satisfies Eq. (24), then y satisfies Eq. (22)–Eq. (23). How-
ever, applying the fractional derivative operator H

D
α ,β ;ψ
a+ (·) on both sides of Eq. (24),

we have

H
D

α ,β ;ψ
a+ y(x) = H

D
α ,β ;ψ
a+

(
(ψ (x)−ψ (a))γ−1

Γ(γ)
I(1−β )(1−α);ψ
a+ f (a)

)

+H
D

α ,β ;ψ
a+ Iα ;ψ

a+ f (x,y(x)) . (25)

Using the Theorem 2 and the formula [7, 20]

H
D

α ,β ;ψ
a+ (ψ (x)−ψ (a))γ−1 = 0, 0 < γ < 1,

we obtain
H

D
α ,β ;ψ
a+ y(x) = f (x,y(x)) .

Then, we conclude that, y(x) satisfies initial value problem Eq. (22)–Eq. (23) if
and only if y(x) satisfies the second kind Volterra integral equation

y(x) = ya
(ψ (x)−ψ (a))γ−1

Γ(γ)
+

1
Γ(α)

∫ x

a
ψ ′ (t)(ψ (x)−ψ (t))α−1 f (t,y(t))dt. (26)
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LEMMA 3. Let ψ ∈C1([a,b],R) be a function such that ψ is increasing and ψ �=
0 , ∀x∈ [a,b] . If γ = α +β (1−α) where 0 < α < 1 and 0 � β � 1, then ψ -Riemann
fractional integral operator Iα ;ψ

a+ (·) is bounded from C1−γ;ψ [a,b] to C1−γ;ψ [a,b]:

∥∥Iα ;ψ
a+ f

∥∥
C1−γ;ψ [a,b] � M

Γ(γ)
Γ(γ + α)

(ψ (x)−ψ (a))α , (27)

where, M is the bound of a bounded function f .

Proof. From Lemma 1, the result follows. Now we prove the estimative Eq. (27).
By the weighted space given in Eq. (3), we have

∥∥Iα ;ψ
a+ f

∥∥
C1−γ;ψ [a,b] =

∥∥∥(ψ (x)−ψ (a))1−γ Iα ;ψ
a+ f

∥∥∥
C[a,b]

�
∥∥∥(ψ (x)−ψ (a))1−γ f

∥∥∥
C[a,b]

×
∥∥∥(ψ (x)−ψ (a))1−γ Iα ;ψ

a+ (ψ (x)−ψ (a))γ−1
∥∥∥

C[a,b]

= ‖ f‖C1−γ;ψ [a,b]

∥∥∥Iα ;ψ
a+ (ψ (x)−ψ (a))γ−1

∥∥∥
C1−γ;ψ [a,b]

� M
Γ(γ)

Γ(γ + α)
(ψ (x)−ψ (a))γ

ψ (x)−ψ (a)
(ψ (x)−ψ (a))α .

As 0 < γ < 1, then
(ψ (x)−ψ (a))γ

ψ (x)−ψ (a)
< 1. So, we conclude that

∥∥Iα ;ψ
a+ f

∥∥
C1−γ;ψ [a,b] � M

Γ(γ)
Γ(γ + α)

(ψ (x)−ψ (a))α . �

THEOREM 4. Let γ = α + β (1−α) where 0 < α < 1 and 0 � β � 1. Let f :
[a,b]×R → R be a function such that f (x,y) ∈ C1−γ;ψ [a,b] for any y ∈C1−γ;ψ [a,b]
and satisfies Lipschitz condition Eq. (13) with respect to y. Then there exists a unique
solution y(x) for the Cauchy-type problem Eq. (22)–Eq. (23) Cα ,β

1−γ;ψ [a,b] .

Proof. The Volterra integral equation makes sense in any interval [a,x1] ⊂ [a,b] .
So, we choose x1 such that

A
Γ(γ)

Γ(γ + α)
(ψ (x)−ψ (a))α < 1, (28)

holds and first we prove the existence of unique solution y ∈ C1−γ;ψ [a,x1] . From the
Picard’s sequences, we consider

y0 (x) = ya
(ψ (x)−ψ (a))γ−1

Γ(γ)
, γ = α + β (1−α) (29)
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and

ym (x) = y0 (x)+
1

Γ(α)

∫ x

a
ψ ′ (t)(ψ (x)−ψ (t))α−1 f (t,ym−1 (t))dt, m ∈ N. (30)

We now show that ym (x) ∈ C1−γ;ψ [a,b] . From Eq. (29), it follows that y0 (x) ∈
C1−γ;ψ [a,b] . By Lemma 1 Iα ;ψ

a+ f is bounded from C1−γ;ψ [a,b] to C1−γ;ψ [a,b] , which
gives ym (x) ∈C1−γ;ψ [a,b] , m ∈ N and x ∈ [a,b] .

Using Eq. (29) and Eq. (30), we have

‖y1 (x)− y0 (x)‖C1−γ;ψ [a,x1]

=
∥∥∥∥y0 (x)+

1
Γ(α)

∫ x

a
ψ ′ (t)(ψ (x)−ψ (t))α−1 f (t,y0 (t))dt− y0 (x)

∥∥∥∥
C1−γ;ψ [a,x1]

=
∥∥Iα ;ψ

a+ f (x,y0 (x))
∥∥

C1−γ;ψ [a,x1]
.

By means of Lemma 3, we have

‖y1 (x)− y0 (x)‖C1−γ;ψ [a,x1] � M
Γ(γ)

Γ(γ + α)
(ψ (x)−ψ (a))α . (31)

Further, we get

‖y2 (x)− y1 (x)‖C1−γ;ψ [a,x1] =
∥∥Iα ;ψ

a+ [ f (x,y(x))− f (x,y0 (x))]
∥∥

C1−γ;ψ [a,x1]

� Γ(γ) (ψ (x1)−ψ (a))α

Γ(γ + α)
A‖y(x)− y0 (x)‖C1−γ;ψ [a,x1]

� M
Γ(γ)(ψ (x1)−ψ (a))α

Γ(γ + α)

(
A

Γ(γ)(ψ (x1)−ψ (a))α

Γ(γ + α)

)
.

Continuing this process m-times, we can write

‖ym (x)− ym−1 (x)‖C1−γ;ψ [a,x1]

� M
Γ(γ)(ψ (x1)−ψ (a))α

Γ(γ + α)

(
A

Γ(γ) (ψ (x1)−ψ (a))α

Γ(γ + α)

)m−1

. (32)

Taking the limit m → ∞ on both sides of Eq. (32) and remember the following

condition A
Γ(γ)(ψ (x1)−ψ (a))α

Γ(γ + α)
< 1, we get

‖ym (x)− y(x)‖C1−γ;ψ [a,x1] → 0. (33)

Again, by Lemma 3, it follows that∥∥Iα ;ψ
a+ f (x,ym (x))− Iα ;ψ

a+ f (x,y(x))
∥∥

C1−γ;ψ [a,x1]

�
∥∥∥(ψ (x1)−ψ (a))1−γ ( f (x,ym (x))− f (x,y(x)))

∥∥∥
C[a,x1]

×
∥∥∥(ψ (x1)−ψ (a))1−γ Iα ;ψ

a+ (ψ (x1)−ψ (a))γ−1
∥∥∥

C[a,x1]

� A
Γ(γ)

Γ(γ + α)
(ψ (x1)−ψ (a))α ‖ym (x)− y(x)‖C1−γ;ψ [a,x1]
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and hence by Eq. (33)∥∥Iα ;ψ
a+ f (x,ym (x))− Iα ;ψ

a+ f (x,y(x))
∥∥

C1−γ;ψ [a,x1]
→ 0 (34)

as m → ∞ .
Using Eq. (33) and Eq. (34), we conclude that y(x) is the solution of integral equa-

tion Eq. (26) in C1−γ;ψ [a,x1] .
On the other hand, considering two solutions y(x) and z(x) of the integral equa-

tion Eq. (26) on [a,x1] , we prove that the solution y(x) is unique. Substituting them
into Eq. (34) and using Lemma 1 with Lipschitz condition Eq. (13), we get

‖y(x)− z(x)‖
C1−γ;ψ [a,x1]

�
∥∥∥Iα ;ψ

a+ (ψ (x)−ψ (a))γ−1
∥∥∥

C1−γ;ψ [a,x1]

×‖ f (x,y(x))− f (x,z(x))‖C1−γ;ψ [a,x1]

� A
Γ(γ) (ψ (x)−ψ (a))α

Γ(γ + α)
‖y(x)− z(x)‖

C1−γ;ψ [a,x1]
. (35)

From this it follows that A
Γ(γ)(ψ (x)−ψ (a))α

Γ(γ + α)
� 1, contradicting the condition

Eq. (28). Thus there exists y(x) = y1 (x) ∈C1−γ;ψ [a,x1] as a unique solution on [a,x1] .
Now, consider the interval [x,x2] , where x2 = x1 + h1, h1 > 0 such that x2 < b.

Now the integral equation Eq. (35) takes the form

y(x) =
ya

Γ(γ)
(ψ (x)−ψ (a))γ−1 +

1
Γ(α)

∫ x

x1

ψ ′ (t)(ψ (x)−ψ (t))α−1 f (t,y(t))dt

+
1

Γ(α)

∫ x1

a
ψ ′ (t)(ψ (x)−ψ (t))α−1 f (t,y(t))dt, (36)

with x ∈ [x1,x2] .
As seen previously, y(x) is uniquely defined on [a,x1] and the integral equation

Eq. (36) is known and can be written as follows

y(x) = y∗0 (x)+
1

Γ(α)

∫ x

x1

ψ ′ (t)(ψ (x)−ψ (t))α−1 f (t,y(t))dt, (37)

with x ∈ [x1,x2] , where

y∗0 (x) =
ya

Γ(γ)
(ψ (x)−ψ (a))γ−1 +

1
Γ(α)

∫ x1

a
ψ ′ (t) (ψ (x)−ψ (t))α−1 f (t,y(t))dt

(38)
is a known function. Using the same argument as above, we deduce that there exist
a unique solution y(x) = y2 (x) ∈ C1−γ;ψ [x1,x2] on [x1,x2] . Taking interval [x2,x3] ,
where x3 = x2 +h2 , h2 > 0 such that x3 < b, and repeating the above steps, we obtain a
unique solution y(x) ∈C1−γ;ψ [a,b] , of the integral equation Eq. (26) such that y(x) =
y j (x) ∈ C1−γ;ψ

[
x j−1,x j

]
, for j = 1,2, ..., l and a = x0 < x2 < · · · < xl = b . Using
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differential equation Eq. (22) and Lipschitz condition Eq. (13), we obtain∥∥∥HDα ,β ;ψ
a+ ym (x)− HDα ,β ;ψ

a+ y(x)
∥∥∥

C1−γ;ψ [a,b]
= ‖ f (x,ym (x))− f (x,y(x))‖C1−γ;ψ [a,b]

� A‖ym (x)− y(x)‖C1−γ;ψ [a,b] . (39)

Therefore, by Eq. (33) and Eq. (39) implies that H
D

α ,β ;ψ
a+ y(x) ∈ C1−γ;ψ [a,b] and

thus we conclude the result. �

5. Continuous dependence

Working with initial value problem in which it can models a physical phenomenon,
it is desirable that any little perturbation in the initial data does not influence the solu-
tion. In this section, we study the data continuous dependence of the Cauchy problem
solution for a fractional differential equation using ψ -Hilfer derivative via the general-
ized Gronwall inequality, obtained in Eq. (14).

THEOREM 5. Let f ,ψ ∈C([a,b],R) two functions such that ψ is increasing and
ψ ′(x) �= 0 , for all x ∈ [a,b] and f satisfying Lipschitz condition Eq. (13) in R . Let
α > 0 , δ > 0 such that 0 < α −δ < α � 1 and 0 � β � 1 . For a � x � h < b, assume

that y is the solution of the initial value problem (IVP) Eq. (22) and
∗
y is the solution

of the following IVP

H
D

α−δ ,β ;ψ
a+

∗
y(x) = f

(
x,

∗
y (x)

)
, 0 < α < 1, 0 � β � 1 (40)

I1−γ−δ (β−1);ψ
a+

∗
y(x)x=a =

∗
ya, γ = α + β (1−α) . (41)

Then, for a < x � h,

∣∣∣∗y(x)− y(x)
∣∣∣� B(x)+

∫ x

a

[
∞

∑
n=1

(
A

Γ(α)
Γ(α − δ )

)n (ψ (x)−ψ (t))n(α−δ )−1

Γ(n(α − δ ))
B(t)

]
dt

holds, where

B(x) =

∣∣∣∣∣
∗
ya (ψ (x)−ψ (a))γ+δ (β−1)−1

Γ(γ + δ (β −1))
− ya (ψ (x)−ψ (a))γ−1

Γ(γ)

∣∣∣∣∣
+‖ f‖

∣∣∣∣∣ (ψ (x)−ψ (a))α−δ

Γ(α − δ +1)
− (ψ (x)−ψ (a))α−δ

(α − δ )Γ(α)

∣∣∣∣∣
+‖ f‖

∣∣∣∣∣ (ψ (x)−ψ (a))α−δ

(α − δ )Γ(α)
− (ψ (x)−ψ (a))α

Γ(α +1)

∣∣∣∣∣ (42)

and
‖ f‖ = max

x∈[a,b]
| f (x,y(x))| .
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Proof. IVPs Eq. (22)–Eq. (23) and Eq. (40)–Eq. (41), have similar integral solu-
tions and are given by

y(x) =
ya (ψ (x)−ψ (a))γ−1

Γ(γ)
+

1
Γ(α)

∫ x

a
ψ ′ (t)(ψ (x)−ψ (t))α−1 f (t,y(t))dt

and

∗
y(x)=

∗
ya (ψ (x)−ψ (a))γ+δ (β−1)−1

Γ(γ+δ (β−1))
+

1
Γ(α−δ )

∫ x

a
ψ ′ (t)(ψ (x)−ψ (t))α−δ−1 f (t,

∗
y(t))dt

respectively. It follows that

∣∣∣∗y(x)−y(x)
∣∣∣

�
∣∣∣∣∣
∗
ya (ψ (x)−ψ (a))γ+δ (β−1)−1

Γ(γ+δ (β−1))
−ya (ψ (x)−ψ (a))γ−1

Γ(γ)

∣∣∣∣∣
+
∣∣∣∣ 1
Γ(α−δ )

∫ x

a
ψ ′ (t)(ψ (x)−ψ (t))α−δ−1 f

(
t,

∗
y(t)

)
dt

− 1
Γ(α)

∫ x

a
ψ ′ (t)(ψ (x)−ψ (t))α−1 f (t,y(t))dt

∣∣∣∣
=

∣∣∣∣∣
∗
ya (ψ (x)−ψ (a))γ+δ (β−1)−1

Γ(γ+δ (β−1))
−ya (ψ (x)−ψ (a))γ−1

Γ(γ)

∣∣∣∣∣
+

∣∣∣∣∣
∫ x

a
ψ ′ (t)

[
(ψ (x)−ψ (t))α−δ−1

Γ(α−δ )
− (ψ (x)−ψ (t))α−δ−1

Γ(α)

]
f
(
t,

∗
y(t)

)
dt

+
1

Γ(α)

∫ x

a
ψ ′ (t)(ψ (x)−ψ (t))α−δ−1

[
f
(
t,

∗
y(t)

)
− f (t,y(t))

]
dt

+
1

Γ(α)

∫ x

a
ψ ′ (t)

[
(ψ (x)−ψ (t))α−δ−1−(ψ (x)−ψ (t))α−1

]
f (t,y(t))dt

∣∣∣∣
�
∣∣∣∣∣
∗
ya (ψ (x)−ψ (a))γ+δ (β−1)−1

Γ(γ+δ (β−1))
−ya (ψ (x)−ψ (a))γ−1

Γ(γ)

∣∣∣∣∣
+‖ f‖

∣∣∣∣∣
∫ x

a
ψ ′ (t)

[
(ψ (x)−ψ (t))α−δ−1

Γ(α−δ )
− (ψ (x)−ψ (t))α−δ−1

Γ(α)

]
dt

∣∣∣∣∣
+

A
Γ(α)

∫ x

a
ψ ′ (t)(ψ (x)−ψ (t))α−δ−1

∣∣∣∗y(t)−y(t)
∣∣∣dt

+‖ f‖
∣∣∣∣∣
∫ x

a
ψ ′ (t)

[
(ψ (x)−ψ (t))α−δ−1

Γ(α)
− (ψ (x)−ψ (t))α−1

Γ(α)

]
dt

∣∣∣∣∣
= B(x)+

A
Γ(α)

∫ x

a
ψ ′ (t)(ψ (x)−ψ (t))α−δ−1

∣∣∣∗y(t)−y(t)
∣∣∣dt
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where B(x) is defined by Eq. (42). Applying the Gronwall inequality Eq. (14), we
conclude that

∣∣∣∗y (x)− y(x)
∣∣∣� B(x)+

∫ x

a

[
∞

∑
n=1

(
AΓ(α − δ )

Γ(α)

)n ψ ′ (t)(ψ (x)−ψ (t))n(α−δ )−1

Γ(n(α − δ ))
B(t)

]
dt.

�

Next, we consider the fractional differential equation Eq. (22) with small change
in the initial condition Eq. (23)

I1−γ;ψ
a+ y(x)x=a = ya + ε , γ = α + β (1−α) ,

where ε is an arbitrary positive constant. We state and prove the result as follows.

THEOREM 6. Suppose that assumptions of Theorem 3 hold. Suppose y(x) and
∗
y(x) are solutions of IVP Eq. (22)–Eq. (23) and Eq. (40)–Eq. (41) respectively. Then

∣∣∣y(x)− ∗
y(x)

∣∣∣� |ε|(ψ (x)−ψ (a))γ−1
Eα ,γ

[
A(ψ (x)−ψ (a))α] , x(a,b]

holds, where Eα ,γ (z) =
∞
∑

k=0

zk

Γ(αk+ γ)
is the Mittag-Leffler function with Re(α) > 0 .

Proof. By Theorem3, we have y(x)= lim
m→∞

ym (x) with y0 (x) as defined in Eq. (40)

and Eq. (5.2), respectively. Clearly, we can write
∗
y(x) = lim

m→∞

∗
ym (x) and

∗
y0 (x) =

(ya + ε)
Γ(γ)

(ψ (x)−ψ (a))γ−1 , (43)

and

∗
ym (x) =

∗
y0 (x)+

1
Γ(α)

∫ x

a
ψ ′ (t)(ψ (x)−ψ (t))α−1 f

(
t,

∗
ym−1 (t)

)
dt.

From Eq. (26) and Eq. (43), we have

∣∣∣y0 (x)− ∗
y0 (x)

∣∣∣ =
∣∣∣∣ ya

Γ(γ)
(ψ (x)−ψ (a))γ−1 − (ya + ε)

Γ(γ)
(ψ (x)−ψ (a))γ−1

∣∣∣∣
� |ε| (ψ (x)−ψ (a))γ−1

Γ(γ)
(44)
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Using relations Eq. (30) and Eq. (43), the Lipschitz condition Eq. (13) and the in-
equality Eq. (44), we get

∣∣∣y1 (x)− ∗
y1 (x)

∣∣∣
=

∣∣∣∣∣ε (ψ (x)−ψ (a))γ−1

Γ(γ)
+

1
Γ(α)

∫ x

a
ψ ′ (t)(ψ (x)−ψ (t))α−1 ( f (t,y0(t))− f (t,

∗
y0(t)))dt

∣∣∣∣∣
� |ε| (ψ (x)−ψ (a))γ−1

Γ(γ)
+

A
Γ(α)

∫ x

a
ψ ′ (t)(ψ (x)−ψ (t))α−1

∣∣∣y0 (t)− ∗
y0 (t)

∣∣∣dt

� |ε| (ψ (x)−ψ (a))γ−1

Γ(γ)
+

A |ε|(ψ (x)−ψ (a))γ−1

Γ(α)Γ(γ)

∫ x

a
ψ ′ (t)(ψ (x)−ψ (t))α−1 dt

= |ε| (ψ (x)−ψ (a))γ−1

Γ(γ)
+A |ε| (ψ (x)−ψ (a))γ+α−1

Γ(γ + α)
.

From this it follows that

∣∣∣y1 (x)− ∗
y1 (x)

∣∣∣� |ε|(ψ (x)−ψ (a))γ−1
1

∑
j=0

Aj (ψ (x)−ψ (a))α j

Γ(γ + α j)
.

On the other hand, we have

∣∣∣y2 (x)− ∗
y2 (x)

∣∣∣
=

∣∣∣∣∣ε (ψ (x)−ψ (a))γ−1

Γ(γ)
+

1
Γ(α)

∫ x

a
ψ ′ (t)(ψ (x)−ψ (t))α−1 ( f (t,y1(t))− f (t,

∗
y1(t)))dt

∣∣∣∣∣
� |ε| (ψ (x)−ψ (a))γ−1

Γ(γ)
+

A
Γ(α)

∫ x

a
ψ ′ (t)(ψ (x)−ψ (t))α−1

∣∣∣y1 (t)− ∗
y1 (t)

∣∣∣dt

� |ε| (ψ (x)−ψ (a))γ−1

Γ(γ)
+

A |ε|
Γ(α)

∫ x

a
ψ ′ (t)(ψ (x)−ψ (t))α−1 (ψ (t)−ψ (a))γ−1

×
1

∑
j=0

Aj (ψ (t)−ψ (a))α j

Γ(γ + α j)
dt

= |ε| (ψ (x)−ψ (a))γ−1

Γ(γ)
+

A |ε|
Γ(α)

1

∑
j=0

Aj

Γ(γ + α j)

×
{∫ x

a
ψ ′ (t)(ψ (x)−ψ (t))α−1 (ψ (t)−ψ (a))γ+α j−1 dt

}
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� |ε| (ψ (x)−ψ (a))γ−1

Γ(γ)
+

A |ε|(ψ (x)−ψ (a))γ−1

Γ(α)Γ(γ)

∫ x

a
ψ ′ (t)(ψ (x)−ψ (t))α−1 dt

+
A2 |ε|(ψ (x)−ψ (a))γ+α−1

Γ(α)Γ(α + γ)

∫ x

a
ψ ′ (t)(ψ (x)−ψ (t))α−1 dt

� |ε| (ψ (x)−ψ (a))γ−1

Γ(γ)
+

A |ε|(ψ (x)−ψ (a))γ−1 (ψ (x)−ψ (a))α

Γ(α + γ)

+
A2 |ε|(ψ (x)−ψ (a))γ−1 (ψ (x)−ψ (a))2α

Γ(2α + γ)

= |ε| (ψ (x)−ψ (a))γ−1
2

∑
j=0

Aj (ψ (x)−ψ (a))α j

Γ(α j + γ)
.

Using induction on j , we get

∣∣∣ym (x)− ∗
ym (x)

∣∣∣� |ε| (ψ (x)−ψ (a))γ−1
m

∑
j=0

Aj (ψ (x)−ψ (a))α j

Γ(α j + γ)
. (45)

Taking the limit m → ∞ in Eq. (45), we conclude that

∣∣∣ym (x)− ∗
ym (x)

∣∣∣ � |ε|(ψ (x)−ψ (a))γ−1
m

∑
j=0

Aj (ψ (x)−ψ (a))α j

Γ(α j + γ)

= |ε|(ψ (x)−ψ (a))γ−1
Eα ,γ

(
A(ψ (x)−ψ (a))α) . �

6. Concluding remarks

In this paper, combining the fractional integral with respect to another ψ function
and the classical Gronwall inequality [6], we proposed a generalized Gronwall inequal-
ity. For this inequality, we discussed the existence and uniqueness of solutions of the
Cauchy-type problem by means of ψ -Hilfer fractional derivative recently introduced
[20]. On the other hand, as application, the data continuous dependence of the Cauchy-
type problem was studied via generalized Gronwall inequality.
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