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Abstract. In a bounded open set Ω ⊂ R
n , n � 3 , we consider the nonlinear fourth-order partial

differential equation ∑|α|=1,2 (−1)|α|Dα Aα(x,u,Du,D2u)+B(x,u,Du,D2u) = 0. It is assumed
that the principal coefficients {Aα}|α|=1,2 satisfy the growth and coercivity conditions suitable

for the energy space W̊ 1,q
2,p (Ω) = W̊ 1,q(Ω)∩W̊ 2,p(Ω) , 1 < p< n/2 , 2p < q < n . The lower-order

term B(x,u,Du,D2u) behaves as b(u)
{|Du|q + |D2u|p}+g(x) where g ∈ Lτ (Ω) , τ > n/q . We

establish the Hölder continuity up to the boundary of any solution u∈ W̊ 1,q
2,p (Ω)∩L∞(Ω) by using

the measure density condition on ∂Ω , an interior local result and a modified Moser method with
special test function.

1. Introduction

In this paper, we shall deal with nonlinear fourth-order elliptic equations in the
divergent form

∑
|α |=1,2

(−1)|α |DαAα(x,u,∇2u)+B(x,u,∇2u) = 0 in Ω, (1.1)

where Ω is a bounded open set of R
n , n � 3, α = (α1, . . . ,αn) is an n -dimensional

multiindex with nonnegative integer components αi , i = 1, . . . ,n , |α| = α1 + · · ·+αn ,
Dα = ∂ |α |/∂xα1

1 ...∂xαn
n and ∇2u = {Dαu : |α| = 1,2} .

The coefficients Aα and B for almost every x ∈ Ω and for every s ∈ R and ξ =
{ξα ∈ R : |α| = 1,2} satisfy the following strengthened coercivity condition:

∑
|α |=1,2

Aα(x,s,ξ )ξα � C
{

∑
|α |=1

|ξα |q + ∑
|α |=2

|ξα |p
}
− f1(x) (1.2)

and the natural (q, p)-growth condition:

|B(x,s,ξ )| � b(|s|)
{

∑
|α |=1

|ξα |q + ∑
|α |=2

|ξα |p
}

+ f2(x) (1.3)
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where C > 0, p ∈ (1,n/2) , q ∈ (2p,n) , b : R+ → R+ is a continuous nondecreasing
function and fi , i = 1,2 are nonnegative functions from Lτ(Ω) , τ > n/q .

Note that in the case n > q > mp , m � 2, nonlinear elliptic equations in the diver-
gence form

∑
|α |�m

(−1)|α |DαAα(x,u, . . . ,Dmu) = 0 in Ω, (1.4)

with the condition

∑
1�|α |�m

Aα(x,ξ )ξα � c1

{
∑

|α |=1

|ξα |q + ∑
|α |=m

|ξα |p
}

− c2 ∑
1<|α |<m

|ξα |pα − c2|ξ0|q − f (x) (1.5)

where c1 , c2 are positive constants, f ∈ Lt∗(Ω) with t∗ > 1, f � 0, {pα} is a set of ex-
ponents and ξ = {ξα : |α| � m} , have been introduced in [36], where the boundedness
and Hölder continuity have been established for arbitrary weak solutions from

W 1,q
m,p(Ω) = W 1,q(Ω)∩Wm,p(Ω) (W̊ 1,q

m,p(Ω) = W̊ 1,q(Ω)∩W̊m,p(Ω)).

In particular, for m = 2, the structure of equation (1.4) with condition (1.5) is deter-
mined by the inequality of the form (1.2).

A regularity condition at the boundary (like the Wiener condition) for solutions of
equations in the form (1.4), (1.5) was established in [38]. However, equations with the
natural growth condition were not considered in [36], [38].

One of the decisive factors in [36] and in subsequent investigations of equations
with strengthened coercivity is the fact that, due to the inequality q > mp , the chain
rule for weak differentiation in W 1,q

m,p(Ω) (W̊ 1,q
m,p(Ω)) is valid (see, e.g., [27, Lemma

2.2], [28, Lemma 3.5], [40, Lemmas 3.1, 3.2], Lemma 3.4). Due to this fact, in the case
n > q > mp , there is an analogy with the known methods in the theory of second-order
equations, when the superposition h(u) of the solution u and some specially selected
function h is used as a test function. However, the use of this analogy for high order
equations encounters a number of significant difficulties. First, the function h must be
smoother than a Lipschitz function. Secondly, it is necessary to appropriately take into
account the terms associated with the derivatives h(i)(u) , i � 2 in the corresponding
integral identities.

The noted mathematical difficulties are further amplified for equations with the
natural growth condition, like (1.3). Because in this case, preliminary regularization
of the lower-order term is required in order to obtain existence results and the function
h should be chosen so as to neutralize the influence of the lower-order term for fur-
ther considerations. All this is a reason for a separate consideration of equations with
natural growing terms. In this regard we refer to [1], [2], [3], [33], [34] for second
order equations and, especially, to [39]–[41], where the existence of bounded general-
ized solutions of the homogeneous Dirichlet problem for equations, like (1.1)–(1.3), is
proved. Next, following the approach of [36], appropriately modified, in [42] has been
established the interior local result on Hölder continuity of bounded generalized solu-
tions of the same equation. For existence results of unbounded solutions to fourth-order
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equations with natural growth condition and L1 -data see [12]. We also cite papers [11],
[14], [15], [16], [17], [18] on the regularity of solutions of second-order equations with
L1 -data.

In this paper, we establish Hölder continuity up to the boundary of any solution
u ∈ W̊ 1,q

m,p(Ω)∩ L∞(Ω) to equation (1.1) under the conditions (1.2), (1.3). The proof
follows [42] with additional modifications of test functions near the boundary ∂Ω ,
which are suggested by the papers [8], [29] and [42]. In particular, due to the chain rule
(see below Lemma 3.4), we can use (see below Lemma 4.1)

v = ζ q(exp(λ |u|)−1)signu, ζ ∈C∞
0 (Bρ), Bρ ∩∂Ω �= /0

as a test function to obtain the estimate∫
Ω∩Bρ

(
∑

|α |=1

|Dαu|q + ∑
|α |=2

|Dαu|p
)

ζ q dx

� cρn
(
1+ ρ−q +max

Bρ

{
∑

|α |=1

|Dα ζ |q + ∑
|α |=2

|Dα ζ |p
})

,

which is the key to the proof. In this case, a suitable choice of λ makes it possible to
neutralize the lower order term.

We remark that the Hölder regularity in particular subsets of Ω for solutions of
nonlinear fourth-order elliptic equations with the strengthened coercivity condition and
L1 -right-hand sides was studied in [7]. In addition, the integral functionals in the form

I(u) =
∫

Ω
{A(x,∇2u)+A0(x,u)}dx

were considered in [6], [9]. It was assumed that A(x,ξ ) is convex respect to ξ and
satisfies the following growth condition: for almost every x ∈ Ω and for every ξ =
{ξα ∈ R : |α| = 1,2} ,

c̃1

{
∑

|α |=1

ν(x)|ξα |q + ∑
|α |=2

μ(x)|ξα |p
}
− f̃ (x) � A(x,ξ )

� c̃2

{
∑

|α |=1

ν(x)|ξα |q + ∑
|α |=2

μ(x)|ξα |p
}

+ f̃ (x),

where c̃1, c̃2 are positive constants, f̃ is a nonnegative function belonging to suitable
Lebesgue space and ν , μ are positive measurable functions. The boundedness and
Hölder regularity of minimizers to such functionals was obtained by using a modified
Moser method with a special test function.

Finally, principal results on continuity at boundary points of solutions to nonlinear
second-order elliptic equations were established in [22], [23], [26], [32], [37]. For the
local interior results see, for example, [10], [13], [30], [31], [33], [34] in the case of
second-order equations and systems, as well as [19], [20], [21] for high-order elliptic
equations with strengthened coercivity. Moreover, the papers [4], [5], [10], [13], [22],
[23], [30], [33], [34] cover the second-order equations with natural growth conditions.
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The present paper is organized as follows. In Section 2 we formulate the hy-
potheses, we state our problem and the main result. Section 3 consists of preliminary
Lemmas needed to prove the main result. In Section 4 we prove the main result on the
Hölder continuity up to the boundary of solutions of the Dirichlet problem for equation
(1.1) assuming that the lower-order term has the natural (q, p)-growth.

2. Main result

Let n ∈ N , n > 2, and let Ω be a bounded open set of R
n . We shall use the

following notation: R+ = [0,+∞) ; ∂Ω is the boundary of Ω , Ω = Ω∪ ∂Ω is the
closure of Ω ; Bρ(y) := {x ∈ R

n : |x− y|< ρ} is the open ball with center y and radius
ρ > 0; when not important, we shall omit denoting the center as follows: Bρ ≡ Bρ(y) ;
Λ is the set of all n -dimensional multi-indices α such that |α| = 1 or |α| = 2; R

n,2

is the space of all mappings ξ : Λ → R ; if u ∈W 2,1(Ω) , then ∇2u : Ω → R
n,2 , and for

every x ∈ Ω and for every α ∈ Λ , (∇2u(x))α = Dαu(x) . If E ⊂ R
n is a measurable

set, then |E| is the n -dimensional Lebesgue measure of the set E . If τ ∈ [1,+∞] , then
‖ · ‖Lτ(E) is the norm in the usual Lebesgue space Lτ(E) .

Let p∈ (1,n/2) and q∈ (2p,n) . We denote by W 1,q
2,p (Ω) the set of all functions in

W 1,q(Ω) that have the second-order generalized derivatives in Lp(Ω) . The set W 1,q
2,p (Ω)

is a Banach space with the norm

‖u‖ = ‖u‖W1,q(Ω) +
(

∑
|α |=2

∫
Ω
|Dαu|p dx

)1/p
.

We denote by W̊ 1,q
2,p (Ω) the closure of the set C∞

0 (Ω) in W 1,q
2,p (Ω) .

We consider the equation

∑
α∈Λ

(−1)|α |DαAα(x,u,∇2u)+B(x,u,∇2u) = 0 in Ω (2.1)

under the following assumptions:

(A1) For every α ∈Λ , Aα : Ω×R×R
n,2 →R and B : Ω×R×R

n,2 →R are Carathéo-
dory functions, i.e. for every (s,ξ ) ∈ R×R

n,2 , the functions Aα(·,s,ξ ) and
B(·,s,ξ ) are measurable on Ω and, for almost every x∈Ω , the functions Aα(x, ·, ·)
and B(x, ·, ·) are continuous in R×R

n,2 .

(A2) For almost every x∈ Ω and for every (s,ξ )∈R×R
n,2 the following inequalities

hold:

∑
α∈Λ

Aα(x,s,ξ )ξα � a(|s|)
{

∑
|α |=1

|ξα |q + ∑
|α |=2

|ξα |p
}
−g0(x), (2.2)

∑
|α |=1

|Aα(x,s,ξ )|q/(q−1) � a1(|s|)
{

∑
|α |=1

|ξα |q + ∑
|α |=2

|ξα |p
}

+g1(x), (2.3)

∑
|α |=2

|Aα(x,s,ξ )|p/(p−1) � a2(|s|)
{

∑
|α |=1

|ξα |q + ∑
|α |=2

|ξα |p
}

+g2(x), (2.4)
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|B(x,s,ξ )| � b(|s|)
{

∑
|α |=1

|ξα |q + ∑
|α |=2

|ξα |p
}

+g3(x), (2.5)

where a : R+ → (0,+∞) is a continuous nonincreasing function, a1,a2,b : R+ →
R+ are continuous nondecreasing functions, g0,g1,g2,g3 are nonnegative sum-
mable functions on Ω .

DEFINITION 1. A generalized solution of (2.1) is a function u∈W 1,q
2,p (Ω)∩L∞(Ω)

such that for every function v ∈ W̊ 1,q
2,p (Ω)∩L∞(Ω) ,

∫
Ω

{
∑

α∈Λ
Aα(x,u,∇2u)Dαv+B(x,u,∇2u)v

}
dx = 0. (2.6)

The existence of a solution u ∈ W̊ 1,q
2,p (Ω)∩L∞(Ω) for equation (2.1) is proved in

[39], [40] under additional assumptions on the coefficients {Aα}α∈Λ and B and on the
functions g0 , g1 , g2 , g3 . In particular, it was assumed that

(A3) g0 , g1 , g2 , g3 ∈ Lτ(Ω) , τ > n/q .

The local Hölder continuity in Ω of every solution u ∈W 1,q
2,p (Ω)∩L∞(Ω) to (2.1)

under the assumptions (A1), (A2), (A3) is proved in [42].
Examples illustrating the fulfilment of the assumptions (A1) and (A2) are given in

[42, Examples 2.4–2.6].
The main result of the present article is a theorem on the Hölder continuity up to

the boundary of any generalized solution u∈ W̊ 1,q
2,p (Ω)∩L∞(Ω) to equation (2.1) under

assumptions (A1), (A2), (A3) and the following assumption on ∂Ω :

(A4) there exist c∗ , R∗ > 0 such that for every y ∈ ∂Ω and R ∈ (0,R∗] ,

|BR(y)\Ω|� c∗|BR(y)|. (2.7)

THEOREM 1. Assume that conditions (A1), (A2), (A3) and (A4) are satisfied. Let
u ∈ W̊ 1,q

2,p (Ω)∩L∞(Ω) be a generalized solution of equation (2.1) and M = ‖u‖L∞(Ω) .

Then there exists a function ũ : Ω → R such that ũ = u a. e. in Ω and for every x ,
y ∈ Ω ,

|ũ(x)− ũ(y)| � C|x− y|ε ,

where the positive constants C and ε depend only on n, p, q , τ , R∗ , |Ω| , M , a(M) ,
a1(M) , a2(M) , b(M) and max0�i�3‖gi‖τ .



112 S. BONAFEDE AND M. V. VOITOVYCH

3. Auxiliary results

The following is the well-known Sobolev inequality for functions in W̊ 1,q(O) ,
O ⊂ R

n ; see for example [24, Theorem 7.10].

LEMMA 3.1. Set q∗ = nq/(n− q) . Let O be a bounded open set in R
n . Then

W̊ 1,q(O) ⊂ Lq∗(O) . Furthermore, there exists a positive constant cn,q depending only
on n and q such that, for every function u ∈ W̊ 1,q(O) ,

(∫
O
|u|q∗dx

)1/q∗
� cn,q

(
∑

|α |=1

∫
O
|Dαu|q dx

)1/q
. (3.1)

The proof of the following lemma is given in [35, Chapter 1, §2, Lemma 4].

LEMMA 3.2. Let f ∈W 1,q(Bρ) . Suppose there exists a measurable subset G ⊂
Bρ and positive constants C′ and C′′ such that

|G| � C′ρn, max
G

| f | � C′′.

Then ∫
Bρ

| f |q dx � Cρ q
(

∑
|α |=1

∫
Bρ

|Dα f |q dx+ ρn−q
)

where C is a positive constant depending only on n, q, C′ , C′′ .

The following lemma is due to John and Nirenberg [25] (see also [24, Theorem
7.21]).

LEMMA 3.3. Let f ∈ W 1,1(O) where O is a convex domain in R
n . Suppose

there exists a positive constant K such that

∑
|α |=1

∫
O∩Bρ

|Dα f |dx � Kρn−1 for all balls Bρ .

Then there exist positive constants σ0 and C depending only on n such that∫
O

exp
(σ

K
| f − ( f )O |

)
dx � C (diamO)n

where σ = σ0|O|(diamO)−n , ( f )O = 1
|O|
∫
O f dx .

LEMMA 3.4. Let h be an odd function on R such that h ∈ C1(R) , h ∈ C2(R \
{0}) and h′′ has a discontinuity of the first kind at the origin. Let u∈ W̊ 1,q

2,p (Ω)∩L∞(Ω).

Then h(u) ∈ W̊ 1,q
2,p (Ω)∩L∞(Ω) and the following assertions hold:

(i) for every n-dimensional multi-index α , |α| = 1 ,

Dαh(u) = h′(u)Dαu a.e. in Ω;
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(ii) for every n-dimensional multi-index α , |α| = 2 ,

Dαh(u) = h′(u)Dαu+h′′(u)Dβ uDγuI{u �=0} a.e. in Ω,

where α = β + γ , |β | = |γ| = 1 and I{u �=0} is the indicator of the set {u �= 0} .

For the proof of this fact, see [40, Lemma 3.2].
The following result is discussed in [24, Lemma 8.23].

LEMMA 3.5. Let ω be a non-decreasing function on an interval (0,R0] satisfy-
ing, for all R � R0 , the inequality

ω(ϑR) � θ ω(R)+ ϕ(R)

where ϕ is also non-decreasing function and 0 < ϑ ,θ < 1 . Then, for any δ ∈ (0,1)
and R � R0 , we have

ω(R) � C
(( R

R0

)ε
ω(R0)+ ϕ(Rδ R1−δ

0 )
)

where C = C(ϑ ,θ ) and ε = ε(ϑ ,θ ,δ ) are positive constants.

4. Proof of Theorem 1

Suppose that the assumptions (A1)–(A4) are satisfied. Let u ∈ W̊ 1,q
2,p (Ω)∩L∞(Ω)

be a generalized solution of equation (2.1). Denote by u the extension of u to 0 on
R

n \Ω . From the definition of W̊ 1,q
2,p (Ω) it follows that for any open bounded set Ω′ ⊃

Ω , u ∈ W̊ 1,q
2,p (Ω′) and for every α ∈ Λ , Dαu = Dαu a. e. in Ω and Dαu = 0 a. e. in

Ω′ \Ω . We set M = ‖u‖L∞(Ω) , thus

|u| � M < +∞ a.e. in R
n . (4.1)

By ci , i = 0,1, . . . , we shall denote positive constants depending only on

data≡ (n, p, q, τ, R∗, |Ω|, M, a(M),a1(M),a2(M),b(M), max
0�i�3

‖gi‖τ
)
.

Fixing x0 ∈ ∂Ω for every R > 0 we set ΩR(x0) = Ω∩BR(x0) ,

μ(R) = ess inf
BR(x0)

u, M(R) = ess sup
BR(x0)

u, ω(R) = M(R)− μ(R).

By (2.7), it is obvious that μ(R) � 0 and M(R) � 0 for every R > 0. We fix a positive
number r such that

r < min
{

1− n
qτ

,
q−2p
q− p

}
. (4.2)

For every R ∈ (0,min{1, 1
2R∗}

]
we shall establish the inequality

ω(R) � c0 ω(2R)+Rr (4.3)
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with c0 ∈ (0,1) . This inequality, Lemma 3.5 and [42, Theorem2.3] imply the validity
of Theorem 1.

To prove (4.3), we fix R∈ (0,min{1, 1
2R∗}

]
and define a function v0 : B2R(x0)→R

as follows:

v0(x) =

⎧⎪⎪⎨
⎪⎪⎩

ln
2eω(2R)

M(2R)−u(x)+Rr if M(2R) � ω(2R)/2,

ln
2eω(2R)

u(x)− μ(2R)+Rr if M(2R) < ω(2R)/2.

(4.4)

We denote by v0 the restriction of the function v0 on Ω2R(x0) . It is easy to see that
(4.3) follows from the estimate

‖v0‖L∞(BR(x0)) � c1 (4.5)

or, which is the same thing, from the inequality ‖v0‖L∞(ΩR(x0)) � c1 . For definiteness
we assume that the function v0 is defined by the first line in (4.4). We can also assume
that

ω(2R) � Rr, (4.6)

and therefore, v0 � 1 a.e. in B2R(x0) , otherwise inequality (4.3) holds.
To derive inequality (4.5), we need some integral estimates of the function u and

its derivatives in the balls Bρ that intersect ∂Ω . We set

Φ = ∑
|α |=1

|Dαu|q + ∑
|α |=2

|Dαu|p.

LEMMA 4.1. Let ζ ∈C∞
0 (Rn) be a function such that

ζ = 0 in R
n \Bρ and 0 � ζ � 1. (4.7)

Then there exists a positive constant c2 such that∫
Bρ

Φζ q dx � c2 ρn
(
1+ ρ−q +max

Bρ

{
∑

|α |=1

|Dα ζ |q + ∑
|α |=2

|Dαζ |p
})

. (4.8)

Proof. We assume that Bρ ∩Ω �= /0 , otherwise Φ ≡ 0 in Bρ and (4.8) is trivial.
We set λ = b(M)/a(M) and define the function h : R → R by

h(s) = (eλ |s| −1)signs, s ∈ R.

Elementary calculations show that

a(M)h′ −b(M) |h|= b(M) in R. (4.9)

For every x ∈ Ω we set

v1(x) = h(u(x))ζ q(x).
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By Lemma 3.4, h(u) ∈ W̊ 1,q
2,p (Ω)∩L∞(Ω) . Therefore, v1 ∈ W̊ 1,q

2,p (Ω)∩L∞(Ω) and the
following assertions hold:

(a) for every n -dimensional multi-index α , |α| = 1,

Dαv1 = h′(u)Dαuζ q +qh(u)ζ q−1Dα ζ a.e. in Ω,

(b) for every n -dimensional multi-index α , |α| = 2,

|Dαv1−h′(u)Dαuζ q|
� |h′′(u)|

{
∑

|β |=1

|Dβ u|2
}

I{u �=0}ζ q +2qh′(u)
{

∑
|β |=1

|Dβ u|
}{

∑
|β |=1

|Dβ ζ |
}

ζ q−1

+q(q−1) |h(u)|
{

∑
|β |=1

|Dβ ζ |2
}

ζ q−2 +q|h(u)| |Dαζ |ζ q−1 a.e. in Ω.

By (2.6), we have

∫
Ω

{
∑

α∈Λ
Aα(x,u,∇2u)Dαv1 +B(x,u,∇2u)v1

}
dx = 0.

From this equality, using (2.2), (2.5), (4.1), (4.7), and assertions (a) and (b), we deduce
that

∫
Ωρ

Φ
(
a(M)h′(u)−b(M) |h(u)|)ζ q dx �

4

∑
i=1

Ii + eλM
∫

Ωρ
(g3 + λg0)ζ q dx

where Ωρ = Ω∩Bρ ,

I1 = q ∑
α∈Λ

∫
Ωρ

|Aα(x,u,∇2u)| |Dα ζ | |h(u)|ζ q−1 dx,

I2 = ∑
|α |=2

∑
|β |=1

∫
Ωρ

|Aα(x,u,∇2u)| |Dβ u|2 |h′′(u)|I{u �=0} ζ q dx,

I3 = q2 ∑
|α |=2

∑
|β |=1

∫
Ωρ

|Aα(x,u,∇2u)| |Dβ ζ |2 |h(u)|ζ q−2 dx,

I4 = 2q ∑
|α |=2

∑
|β |=1

∑
|γ|=1

∫
Ωρ

|Aα(x,u,∇2u)| |Dβ u| |Dγ ζ |h′(u)ζ q−1 dx.

From this and (4.9) it follows that

b(M)
∫

Ωρ
Φζ q dx � I1 + I2 + I3 + I4 + eλM

∫
Ωρ

(g3 + λg0)ζ q dx. (4.10)

Further, to obtain suitable estimates for the terms on the right-hand side of (4.10),
we argue similarly to the proof of [42, Lemma 4.1].
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Estimate for I1 . Using the Young’s inequality with the exponents q/(q− 1) and
q , (2.3), (4.1) and (4.7), we obtain

q ∑
|α |=1

∫
Ωρ

|Aα(x,u,∇2u)| |Dα ζ | |h(u)|ζ q−1 dx

� b(M)
16

∫
Ωρ

Φζ q dx+ c3

∫
Ωρ

g1 dx+ c3 ρn max
Bρ

∑
|α |=1

|Dαζ |q.

Using the Young’s inequality with the exponents p/(p− 1) and p , (2.4), (4.1) and
(4.7), we obtain

q ∑
|α |=2

∫
Ωρ

|Aα(x,u,∇2u)| |Dα ζ | |h(u)|ζ q−1 dx

� b(M)
16

∫
Ωρ

Φζ q dx+ c4

∫
Ωρ

g2 dx+ c4 ρn max
Bρ

∑
|α |=2

|Dα ζ |p.

Summing the last two inequalities, we obtain

I1 � b(M)
8

∫
Ωρ

Φζ q dx+ c5

∫
Ωρ

(g1 +g2)dx+ c5 ρn max
Bρ

Φζ (4.11)

where
Φζ = ∑

|α |=1

|Dαζ |q + ∑
|α |=2

|Dα ζ |p.

Estimates for I2 , I3 and I4 . It is obvious that

p−1
p

+
2
q

+
q−2p

qp
= 1, q−1 = (p−1)

q
p

+(
q
p
−1). (4.12)

Using this equalities, the Young’s inequality, (2.4), (4.1) and (4.7), we obtain

I2 � b(M)
8

∫
Ωρ

Φζ q dx+ c6

∫
Ωρ

g2 dx+ c6 ρn, (4.13)

I3 � b(M)
8

∫
Ωρ

Φζ q dx+ c7

∫
Ωρ

g2 dx+ c7 ρn max
Bρ

Φζ + c7 ρn, (4.14)

I4 � b(M)
8

∫
Ωρ

Φζ q dx+ c8

∫
Ωρ

g2 dx+ c8 ρn max
Bρ

Φζ + c8 ρn. (4.15)

From (4.10), (4.11), (4.13)–(4.15) it follows that

b(M)
2

∫
Ωρ

Φζ q dx � c9

(∫
Ωρ

gdx+ ρnmax
Bρ

Φζ + ρn
)

where g = g0 + g1 + g2 + g3 . By Hölder’s inequality and the inequality τ > n/q we
have ∫

Ωρ
gdx � ‖g‖Lτ(Ω) |Bρ |(τ−1)/τ � c10 ρn−q.

The last two inequalities and (4.1) imply inequality (4.8). The proof is complete. �
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LEMMA 4.2. Let Bρ ⊂ B2R(x0) and let ζ ∈C∞
0 (Rn) be a function such that con-

dition (4.7) be satisfied. Then there exists a positive constant c11 such that∫
Bρ

Φζ q dx
(M(2R)−u+Rr)q

� c11 ρn
(

ρ−q +max
Bρ

{
∑

|α |=1

|Dα ζ |q + ∑
|α |=2

|Dα ζ |p
}

+ ρ2p−qmax
Bρ

∑
|α |=2

|Dα ζ |p + ρ−q(q−2p)/(q−p)max
Bρ

∑
|α |=1

|Dα ζ |qp/(q−p)
)
.

(4.16)

In particular, if |Dα ζ | � Kρ−|α | for any α ∈ Λ , then∫
Bρ

Φζ q dx
(M(2R)−u+Rr)q � c12 (K +1)ρn−q. (4.17)

Proof. We assume that Bρ ∩Ω �= /0 , otherwise Φ ≡ 0 in Bρ and (4.16) is triv-
ial. For every x ∈ B2R(x0) , we set U(x) = M(2R)− u(x)+ Rr . Note that due to the
inequality M(2R) � ω(2R)/2 we have

|U1−q− (M(2R)+Rr)1−q| � 2q−1U1−q a.e. in Ω2R(x0). (4.18)

We define the function v2 : Ω → R by

v2(x) =

{
[U1−q(x)− (M(2R)+Rr)1−q]ζ q(x) if x ∈ Ω2R(x0),
0 if x ∈ Ω\B2R(x0).

Simple calculations show that v2 ∈ W̊ 1,q
2,p (Ω)∩L∞(Ω) and due to (4.7) and (4.18)

the following assertions hold:
(c) for every n -dimensional multi-index α , |α| = 1,

|Dαv2 − (q−1)U−qζ qDαu| � q2q−1U1−q ζ q−1|Dα ζ | a.e. in Ω∩Bρ ,

(d) for every n -dimensional multi-index α , |α| = 2,∣∣∣Dαv2− (q−1)U−q ζ qDαu
∣∣∣

� q2q−1U1−q ζ q−1|Dα ζ |+q(q−1)2q−1U1−q ζ q−2 ∑
|β |=1

|Dβ ζ |2

+2q(q−1)U−qζ q−1
{

∑
|β |=1

|Dβ u|
}{

∑
|β |=1

|Dβ ζ |
}

+q(q−1)U−1−qζ q ∑
|β |=1

|Dβ u|2 a.e. in Ω∩Bρ .

In virtue of (2.6) we have∫
Ω

{
∑

α∈Λ
Aα(x,u,∇2u)Dαv2 +B(x,u,∇2u)v2

}
dx = 0.
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Hence by using (2.2), (2.5), (4.1), (4.7), (4.18) and assertions (c) and (d), we obtain

a(M)
∫

Ωρ
ΦU−q ζ q dx � c13

( 5

∑
i=1

I′i +
∫

Ωρ
(g0 +g3)U−qdx

)
(4.19)

where Ωρ = Ω∩Bρ ,

I′1 = ∑
α∈Λ

∫
Ωρ

|Aα(x,u,∇2u)| |Dαζ |U1−q ζ q−1 dx,

I′2 = ∑
|α |=2

∑
|β |=1

∫
Ωρ

|Aα(x,u,∇2u)| |Dβ u|2U−1−q ζ q dx,

I′3 = ∑
|α |=2

∑
|β |=1

∫
Ωρ

|Aα(x,u,∇2u)| |Dβ ζ |2U1−q ζ q−2 dx,

I′4 = ∑
|α |=2

∑
|β |=1

∑
|γ|=1

∫
Ωρ

|Aα(x,u,∇2u)| |Dβ u| |Dγζ |U−q ζ q−1 dx,

I′5 =
∫

Ωρ
ΦU1−q ζ q dx.

Further, to obtain suitable estimates for the terms on the right-hand side of (4.19),
we argue similarly to the proof of [42, Lemma 4.2].

Estimate for I′1 . Using the Young’s inequality with the exponents q/(q− 1) and
q , (2.3), (4.1) and (4.7), we obtain

∑
|α |=1

∫
Ωρ

|Aα(x,u,∇2u)| |Dα ζ |U1−q ζ q−1 dx

� a(M)
20c13

∫
Ωρ

ΦU−q ζ q dx+ c14

∫
Ωρ

g1U
−q dx+ c14 ρn max

Bρ
∑

|α |=1

|Dα ζ |q.
(4.20)

We use the Young’s inequality with the exponents p/(p− 1) and p , (2.4), (4.1) and
(4.7) to obtain

∑
|α |=2

∫
Ωρ

|Aα(x,u,∇2u)| |Dα ζ |U1−q ζ q−1 dx

� a(M)
20c13

∫
Ωρ

ΦU−q ζ q dx+ c15

∫
Ωρ

g2U−q dx+ c15 ∑
|α |=2

∫
Ωρ

|Dα ζ |pU p−q ζ q−p dx,

whence, taking into account the inequalities U � Rr , ρ/2 < R < 1 and (4.2), we derive

∑
|α |=2

∫
Ωρ

|Aα(x,u,∇2u)| |Dα ζ |U1−q ζ q−1 dx

� a(M)
20c13

∫
Ωρ

ΦU−q ζ q dx+ c15

∫
Ωρ

g2U−q dx+ c16 ρn−q+2pmax
Bρ

∑
|α |=2

|Dαζ |p.
(4.21)
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Summing inequalities (4.20) and (4.21), we obtain

I′1 � a(M)
10c13

∫
Ωρ

ΦU−q ζ q dx+ c17

∫
Ωρ

(g1 +g2)U−q dx

+ c14 ρn max
Bρ

∑
|α |=1

|Dα ζ |q + c16 ρn−q+2pmax
Bρ

∑
|α |=2

|Dα ζ |p.
(4.22)

Estimate for I′2 . We use (4.1), the first equality in (4.12), Young’s inequality, (2.4)
and (4.7) to obtain

I′2 � a(M)
10c13

∫
Ωρ

ΦU−q ζ q dx+ c18

∫
Ωρ

g2U−q dx+ c18

∫
Ωρ

U−q(q−p)/(q−2p)ζ q dx.

Estimating the last integral in this inequality by means of the inequalities U � Rr ,
ρ/2 < R < 1 and (4.2), we obtain

I′2 � a(M)
10c13

∫
Ωρ

ΦU−q ζ q dx+ c18

∫
Ωρ

g2U−q dx+ c19 ρn−q. (4.23)

Estimates for I′3 and I′4 . Using the reasoning similar the proof of (4.23), we obtain

I′3 � a(M)
10c13

∫
Ωρ

ΦU−q ζ q dx+ c20

∫
Ωρ

g2U−q dx

+ c20 ρn max
Bρ

∑
|α |=1

|Dα ζ |q + c20 ρn−q,
(4.24)

I′4 � a(M)
10c13

∫
Ωρ

ΦU−q ζ q dx+ c21

∫
Ωρ

g2U−q dx

+ c21 ρn−q(q−2p)/(q−p)max
Bρ

∑
|α |=1

|Dα ζ |qp/(q−p).
(4.25)

Estimate for I′5 . We use Young’s inequality and Lemma 4.1, to obtain

I′5 � a(M)
10c13

∫
Ωρ

ΦU−q ζ q dx+ c22 ρn
(

ρ−q +max
Bρ

{
∑

|α |=1

|Dα ζ |q + ∑
|α |=2

|Dα ζ |p
})

.

Collecting (4.19), (4.22)–(4.25) and the above inequality, we obtain

a(M)
2

∫
Bρ

ΦU−q ζ q dx

� c23

(
ρn−q + ρnmax

Bρ

{
∑

|α |=1

|Dα ζ |q + ∑
|α |=2

|Dα ζ |p
}

+ ρn−q+2pmax
Bρ

∑
|α |=2

|Dα ζ |p + ρn−q(q−2p)/(q−p)max
Bρ

∑
|α |=1

|Dα ζ |qp/(q−p)

+
∫

Ωρ
gU−q dx

)
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where g = g0 + g1 + g2 + g3 . Finally, to obtain (4.16), we estimate the last integral
in this inequality by means of Holder’s inequality and the relations (4.2), U � Rr and
ρ/2 < R < 1. Inequality (4.17) is a trivial consequence of (4.16). The proof is com-
plete. �

LEMMA 4.3. For every κ � 1 there is a positive constant c = c(data,κ) such
that limκ→+∞ c(data,κ) = +∞ and

∫
Ω3R/2(x0)

vκ
0 dx � cRn. (4.26)

Proof. First, we estimate from above the average integral

(v0)B3R/2(x0) =
1

|B3R/2(x0)|
∫

B3R/2(x0)
v0 dx

by a constant depending only on data. For this purpose we choose a function ζ1 ∈
C∞

0 (Rn) such that

0 � ζ1 � 1 in R
n, ζ1 = 1 in B3R/2(x0), ζ1 = 0 in R

n \B7R/4(x0),

|Dα ζ1| � K1R
−|α | for |α| = 1,2,

where K1 is an absolute constant, not depending on R . We have

v0 ∈W 1,q(B3R/2(x0)).

Moreover by (2.7)
|B3R/2(x0)\Ω|� c24R

n

and by the inequalities (4.6) and M(2R) � ω(2R)/2,

1 � v0 � 1+ ln4 on B3R/2(x0)\Ω.

Taking into account these facts and using Holder’s inequality, Lemmas 3.2 and 4.2 and
the properties of the function ζ1 , we obtain

(v0)B3R/2(x0) � c25R
−n/q

(∫
B3R/2(x0)

vq
0 dx

)1/q

� c26R
1−n/q

(∫
B7R/4(x0)

Φζ q
1 dx

(M(2R)−u+Rr)q +Rn−q
)1/q

� c27.

(4.27)

Next, let B2ρ ⊂ B2R(x0) , and let ζ2 ∈C∞
0 (Rn) be a function such that

0 � ζ2 � 1 in R
n, ζ2 = 1 in Bρ , ζ2 = 0 in R

n \B2ρ ,

|Dα ζ2| � K2 ρ−|α | for |α| = 1,2,
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where K2 is an absolute constant, not depending on ρ . Using Holder’s inequality,
Lemma 4.2 and the properties of the function ζ2 , we derive that

∑
|α |=1

∫
Bρ

|Dαv0|dx � c28 ρn−n/q

(
∑

|α |=1

∫
Bρ

|Dαv0|q dx

)1/q

� c28 ρn−n/q

(∫
B2ρ

Φζ q
2 dx

(M(2R)−u+Rr)q

)1/q

� c29 ρn−1.

Hence, by Lemma 3.3, we have∫
B3R/2(x0)

exp
(
c30|v0− (v0)B3R/2(x0)|

)
dx � c31R

n. (4.28)

Now let κ � 1. Then inequalities (4.27) and (4.28) imply (4.26). The proof is
complete. �

Now we are ready to prove inequality (4.5).

LEMMA 4.4. There exists a positive constant c1 such that inequality (4.5) holds.

Proof. The proof is based on obtaining the estimate R−n/k‖v0‖Lk(BR(x0)) � c1 at
k →+∞ by adapting the Moser’s iterative technique. We divide the proof in four steps.

Step 1. Let us introduce some auxiliary functions.
We fix a function ψ0 ∈C∞

0 (R) such that

0 � ψ0 � 1 on R, ψ0 = 1 in [−1,1], ψ0 = 0 in R\ (−3/2,3/2).

We define the function ψ : R
n → R by ψ(x) = ψ0

( |x−x0|
R

)
. Let E ⊂ Ω2R(x0) be a set

such that |E| = 0 and for every x ∈ Ω2R(x0)\E ,

μ(2R) � u(x) � M(2R). (4.29)

Let U : Ω → R be the function such that

U (x) =

{
M(2R)−u(x)+Rr if x ∈ Ω2R(x0)\E,

2ω(2R) if x ∈ (Ω\B2R(x0))∪E.

Let now
κ = 2qp/(q−2p), (4.30)

k � k := max{q,12Mb(M)/a(M)}, (4.31)

l := max{q,κ} < t � C0k, (4.32)

and C0 = C0(n, p,q,τ) > 1 is a constant that will be specified below. Define

G = max{U (1−q)/κ − (M(2R)+Rr)(1−q)/κ,0},
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v0 = ln(2eω(2R)U −1), w = Gκvk
0ψt .

Due to (4.6), (4.29), 2p < q we have w ∈ W̊ 1,q
2,p (Ω)∩L∞(Ω) ,

|Dαw− (q−1)vk
0ψtGκ−1 U (1−q)/κ−1Dαu− k vk−1

0 ψtGκ U −1Dαu|
� c32 kR−1Gκvk

0ψt−1 if |α| = 1, (4.33)

|Dαw− (q−1)vk
0ψtGκ−1 U (1−q)/κ−1Dαu− kvk−1

0 ψtGκ U −1Dαu|
� c32 k2vk

0ψt−2Gκ−2 U 2(1−q)/κ

{
R−2 +U −2 ∑

|β |=1

|Dβ u|2
}

if |α| = 2. (4.34)

Putting the function w in (2.6) instead of v and using (2.2), (2.5), (4.33), (4.34)
and the inequalities G � U (1−q)/κ , U � 2M+1 we deduce that

(q−1)a(M)
∫

Ω2R(x0)
ΦGκ−1 U (1−q)/κ−1vk

0ψt dx

+ ka(M)
∫

Ω2R(x0)
ΦGκ U −1vk−1

0 ψt dx

� b(M)
∫

Ω2R(x0)
ΦGκvk

0ψt dx+
∫

Ω2R(x0)
kg4v

k
0ψt U −q dx+I1 +I2,

(4.35)

where g4 = 2g0 +(2M+1)g3 ,

I1 =
c32 k
R ∑

|α |=1

∫
Ω2R(x0)

|Aα(x,u,∇2u)|Gκvk
0ψt−1 dx, (4.36)

I2 = c32 k2 ∑
|α |=2

∫
Ω2R(x0)

|Aα(x,u,∇2u)|

×Gκ−2 U 2(1−q)/κ

{
R−2 +U −2 ∑

|β |=1

|Dβ u|2
}

vk
0ψt−2 dx. (4.37)

Step 2. We show that the first term on the right-hand side of inequality (4.35) is
absorbed by the second term in its left-hand side. For this we need the inequality

U v0 � 12M a.e. in Ω2R(x0), (4.38)

which follows from (4.1) and from the fact that lns < s for every s > 0.
Using (4.38), the first term on the right-hand side of inequality (4.35) is estimated

in the following way

b(M)
∫

Ω2R(x0)
ΦGκvk

0ψt dx � 12Mb(M)
∫

Ω2R(x0)
ΦGκ U −1vk−1

0 ψt dx. (4.39)

Now (4.31), (4.35) and (4.39) imply the inequality
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(q−1)a(M)
∫

Ω2R(x0)
ΦGκ−1 U (1−q)/κ−1vk

0ψt dx

� k
∫

Ω2R(x0)
g4v

k
0ψt U −q dx+I1 +I2 . (4.40)

Step 3. Let us estimate from above the quantities I1 and I2 , which are defined
by (4.36) and (4.37) respectively.

Estimate for I1 . We use (2.3), the inequality G � U (1−q)/κ and Young’s in-
equality |yz| � ε|y|q/(q−1) + ε1−q|z|q, where

y = |Aα(x,u,∇2u)|(Gκ−1 U (1−q)/κ−1ψt)(q−1)/q, |α| = 1,

z = kR−1G(κ+q−1)/q U ((q−1)/κ+1)(q−1)/qψt/q−1

and ε is an appropriate positive number, to obtain

I1 � (q−1)a(M)
4

∫
Ω2R(x0)

ΦGκ−1 U (1−q)/κ−1vk
0ψt dx

+ c33

∫
Ω2R(x0)

g1v
k
0ψt U −q dx+

c33 kq

Rq

∫
Ω2R(x0)

vk
0ψt−q dx.

(4.41)

Estimate for I2 . Using the first equality in (4.12), Young’s inequality, the in-
equality G � U (1−q)/κ , (4.30) and (4.2), we establish that if ε > 0, α , β ∈ Λ , |α|= 2
and |β | = 1, then

k2R−2|Aα(x,u,∇2u)|Gκ−2 U 2(1−q)/κψt−2

= |Aα(x,u,∇2u)|(Gκ−1 U (1−q)/κ−1ψt)(p−1)/pk2R−2ψ2t/q

×G(κ−p−1)/pU (p−1)/p−(q−1)(p+1)/κpψ2t/κ−2

� ε|Aα (x,u,∇2u)|p/(p−1)Gκ−1 U (1−q)/κ−1ψt

+ ε(1+ ε−κ/2)kqR−qψt−κ a.e. in Ω2R(x0),

(4.42)

k2|Aα(x,u,∇2u)|Gκ−2 U 2(1−q)/κ−2 |Dβ u|2 ψt−2

= |Aα(x,u,∇2u)|(Gκ−1 U (1−q)/κ−1ψt)(p−1)/p

×|Dβu|2 (Gκ−1 U (1−q)/κ−1ψt)2/q

× k2G(κ−2)/κ U (κ+2)(1−q−κ)/κ
2
ψ2t/κ−2

� ε(|Aα (x,u,∇2u)|p/(p−1) + |Dβu|q)Gκ−1 U (1−q)/κ−1ψt

+ ε1−κ/2 kκR−qψt−κ a.e. in Ω2R(x0).

(4.43)

From (2.4), (4.37), (4.42), (4.43), taking into account (4.32) and the suitable choice of
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ε , we deduce the estimate

I2 � (q−1)a(M)
4

∫
Ω2R(x0)

ΦGκ−1 U (1−q)/κ−1vk
0ψt dx

+ c34

∫
Ω2R(x0)

g2 vk
0ψt U −q dx+

c34 kl

Rq

∫
Ω2R(x0)

vk
0ψt−l dx.

(4.44)

From (4.40), (4.41), (4.44), (4.32) and (4.2) it follows that∫
Ω2R(x0)

ΦGκ−1 U (1−q)/κ−1vk
0ψt dx

� c35 kl

Rq

∫
Ω2R(x0)

vk
0ψt−l dx+

c35 kl

Rq−n/τ

∫
Ω2R(x0)

(g1 +g2 +g4)vk
0ψt−l dx.

Estimating the last two integrals by Hölder’s inequality with the exponents τ and
τ/(τ − 1) and taking into account (4.31) and (4.32), we obtain that for every k � k
and t ∈ (l,C0k] the following inequality holds:

∫
Ω2R(x0)

ΦGκ−1 U (1−q)/κ−1vk
0ψt dx

� c36 kl

Rq−n/τ

(∫
Ω2R(x0)

(vk
0ψt−l)τ/(τ−1) dx

)(τ−1)/τ
. (4.45)

Define ER(x0) = {x ∈ Ω3R/2(x0) : U (x) � 2κ/(1−q)(M(2R)+Rr)}.
We shall suppose that

|ER(x0)| �= 0. (4.46)

If (4.46) is not true, then (4.5) is a simple consequence of the inequalities

M(2R) � ω(2R)/2 and U (x) > 2κ/(1−q)(M(2R)+Rr) a.e. in Ω3R/2(x0).

For every x ∈ ER(x0) we have G(x) � 1
2 [U (x)](1−q)/κ . Using this fact from

(4.45), we deduce that

∫
ER(x0)

ΦU −qvk
0ψt dx � c37 kl

Rq−n/τ

(∫
Ω2R(x0)

(vk
0ψt−l)τ/(τ−1) dx

)(τ−1)/τ
. (4.47)

Step 4. At this step, using inequality (4.47), we organize an iterative Moser-type
process for the functions vk

0ψt in Ω2R(x0) , which completes the proof of the lemma.
We set

L = ln
2κ/(q−1)+1eω(2R)

M(2R)+Rr ,

J(k,t) =
1
Rn

∫
Ω2R(x0)

vk
0ψt dx+Lk, k > 0, t > 0, (4.48)
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θ =
τ

τ −1
· q
q∗

, l̃ =
(q+ l)q∗

q
. (4.49)

We now prove the following assertion: if k � kq∗/q and l̃ < t � C0k , then

J(k,t) � c38 kl̃[J(kθ ,tθ − l̃)]1/θ . (4.50)

Let k � kq∗/q and l̃ < t � C0k . We set v =
(
max{vk

0 ,Lk})1/q∗ψt/q∗ . It is easy to see
that ∫

Ω2R(x0)
vk
0ψt dx �

∫
B2R(x0)

vq∗dx. (4.51)

Applying inequality (3.1) to the function v ∈ W̊ 1,q(B2R(x0)) and taking into account
(4.32) and the definitions of the functions v and ψ , we obtain∫

B2R(x0)
vq∗dx � c39k

q∗LkRn + c39 kq∗
(∫

ER(x0)
ΦU −qvkq/q∗

0 ψtq/q∗−q dx

+R−q
∫

Ω2R(x0)
vkq/q∗
0 ψtq/q∗−q dx

)q∗/q
.

From this inequality, estimating the first addend in the brackets by means of (4.47) and
the second addend by means of Hölder’s inequality and using (4.48) and (4.49), we
deduce that ∫

B2R(x0)
vq∗dx � c40R

n kl̃[J(kθ ,tθ − l̃)]1/θ .

The last inequality, (4.48) and (4.51) imply (4.50).
Now, we choose a number i0 ∈ N such that θ−i0 > kq∗/q and set C0 = l̃/(1−θ ) ,

ki = θ−i0−i, ti =
l̃ (θ−i0−i−1)

1−θ
, Ji = J(ki,ti), i = 0,1,2, . . . .

Then (4.50) and the inequality θ < 1 imply that for every i = 0,1,2, . . . ,

J 1/ki
i � c41J

θ i0
0 . (4.52)

Due to Lemma 4.3 and to the inequality M(2R) � ω(2R)/2 we have

J θ i0
0 � c42. (4.53)

From (4.52) and (4.53) it follows that

‖v0‖L∞(BR(x0)) = lim
i→∞

( 1
Rn

∫
BR(x0)

vki
0 dx

)1/ki
� limsup

i→∞
J 1/ki
i � c1.

The proof is complete. �
Thus, the validity of (4.3) is established. Then using Lemma 3.5 and the interior

regularity result of [42, Theorem 2.3], we come to the conclusion of Theorem 1. The
proof of Theorem 1 is complete.
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Località Feo di Vito, 89122 Reggio Calabria, Italy
e-mail: salvatore.bonafede@unirc.it

Mykhailo V. Voitovych
Institute of Applied Mathematics and Mechanics

National Academy of Sciences of Ukraine
Gen. Batiouk Str. 19, 84116 Sloviansk, Ukraine

e-mail: voitovichmv76@gmail.com

Differential Equations & Applications
www.ele-math.com
dea@ele-math.com


