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HOLDER CONTINUITY UP TO THE BOUNDARY OF
SOLUTIONS TO NONLINEAR FOURTH-ORDER ELLIPTIC
EQUATIONS WITH NATURAL GROWTH TERMS

SALVATORE BONAFEDE AND MYKHAILO V. VOITOVYCH

(Communicated by Cristina Trombettt)

Abstract. In a bounded open set Q C R", n > 3, we consider the nonlinear fourth-order partial
differential equation Yjq/—1» (=) DA g (x,u,Du, D*ut) + B(x,u, Du,D*u) = 0. It is assumed
that the principal coefficients {Aa}‘a‘zl‘z satisfy the growth and coercivity conditions suitable
for the energy space Wz{}f(Q) =Wh(Q)NW2P(Q), 1 < p<n/2, 2p < q<n. The lower-order
term B(x,u, Du,D?u) behaves as b(u){|Dul? + [D?u|P } + g(x) where g € L*(Q), T>n/q. We
establish the Holder continuity up to the boundary of any solution u € WZI;(Q) NL*(Q) by using

the measure density condition on d€2, an interior local result and a modified Moser method with
special test function.

1. Introduction

In this paper, we shall deal with nonlinear fourth-order elliptic equations in the
divergent form

(—l)la‘DaAa(x,u,Vgu)—|—B(x,u,V2u):0 in Q, (1.1)

lo|=1,2
where Q is a bounded open set of R", n >3, oo = (oy,...,0,) is an n-dimensional
multiindex with nonnegative integer components ¢;, i = 1,...,n, |a| =0+ + 0y,

% =9lel/gxP...0x% and Vou = {D%u: |o| = 1,2}.
The coefficients A, and B for almost every x € Q and for every s € R and & =
{&q R :|a| = 1,2} satisfy the following strengthened coercivity condition:

Y a5 8)ea>c{ T El'+ X &l - A0 (12)

lo]=1,2 o =1 o[ =2

and the natural (g, p)-growth condition:

Be.s, ) <b(sH{ 3 &al'+ T &l } + () (13)
2

lo[=1 lor=
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where C >0, p € (1,n/2), g € (2p,n), b: R, — Ry is a continuous nondecreasing
function and f;, i = 1,2 are nonnegative functions from L*(Q), T >n/q.
Note that in the case n > g > mp, m > 2, nonlinear elliptic equations in the diver-
gence form
> (—1)*D*Ag(x,u,...,D"u) =0 inQ, (1.4)

[ <m

with the condition

Y AdwOiezal T Gli+ 3 I}

I<|o|<m lo|=1 lot|=m

—cr Y |&alPr —ea|&l?— fx) (1.5)

1<|a|<m

where ¢y, ¢, are positive constants, f € L' (Q) with 7. > 1, f >0, {py} isasetof ex-
ponents and & = {&, : || < m}, have been introduced in [36], where the boundedness
and Holder continuity have been established for arbitrary weak solutions from

W (Q) = W@ NWTP Q) (Wh8(Q) = Wh(Q)n WP (@),

In particular, for m = 2, the structure of equation (1.4) with condition (1.5) is deter-
mined by the inequality of the form (1.2).

A regularity condition at the boundary (like the Wiener condition) for solutions of
equations in the form (1.4), (1.5) was established in [38]. However, equations with the
natural growth condition were not considered in [36], [38].

One of the decisive factors in [36] and in subsequent investigations of equations
with strengthened coercivity is the fact that, due to the inequality ¢ > mp, the chain
rule for weak differentiation in Wnlqj?,(Q) (Wnﬁj?,(g)) is valid (see, e.g., [27, Lemma
2.2], [28, Lemma 3.5], [40, Lemmas 3.1, 3.2], Lemma 3.4). Due to this fact, in the case
n > g > mp, there is an analogy with the known methods in the theory of second-order
equations, when the superposition %(u) of the solution u# and some specially selected
function / is used as a test function. However, the use of this analogy for high order
equations encounters a number of significant difficulties. First, the function 4 must be
smoother than a Lipschitz function. Secondly, it is necessary to appropriately take into
account the terms associated with the derivatives A1) (i), i > 2 in the corresponding
integral identities.

The noted mathematical difficulties are further amplified for equations with the
natural growth condition, like (1.3). Because in this case, preliminary regularization
of the lower-order term is required in order to obtain existence results and the function
h should be chosen so as to neutralize the influence of the lower-order term for fur-
ther considerations. All this is a reason for a separate consideration of equations with
natural growing terms. In this regard we refer to [1], [2], [3], [33], [34] for second
order equations and, especially, to [39]-[4 1], where the existence of bounded general-
ized solutions of the homogeneous Dirichlet problem for equations, like (1.1)-(1.3), is
proved. Next, following the approach of [36], appropriately modified, in [42] has been
established the interior local result on Holder continuity of bounded generalized solu-
tions of the same equation. For existence results of unbounded solutions to fourth-order
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equations with natural growth condition and L' -data see [12]. We also cite papers [11],
[14], [15], [16], [17], [18] on the regularity of solutions of second-order equations with
L!-data.

In this paper, we establish Holder continuity up to the boundary of any solution
ue Wnlqj?,(Q) NL>(Q) to equation (1.1) under the conditions (1.2), (1.3). The proof
follows [42] with additional modifications of test functions near the boundary 0Q,
which are suggested by the papers [8], [29] and [42]. In particular, due to the chain rule
(see below Lemma 3.4), we can use (see below Lemma 4.1)

v=_{9exp(A|ul) —1)signu, {eC7(Bp), BpNIQL#0D

as a test function to obtain the estimate

[ (2 oo+ 3 ip%upr)grax
QNBp N gl=1 =2

<cpn<14_pfq_i_nllgix{ 3 D“§q+(§,2|D°‘C|p}>’

=1

which is the key to the proof. In this case, a suitable choice of A makes it possible to
neutralize the lower order term.

We remark that the Holder regularity in particular subsets of Q for solutions of
nonlinear fourth-order elliptic equations with the strengthened coercivity condition and
L' -right-hand sides was studied in [7]. In addition, the integral functionals in the form

I(u)z/Q{A(x7V2u)+Ao(x7u)}dx

were considered in [6], [9]. It was assumed that A(x,&) is convex respect to & and
satisfies the following growth condition: for almost every x € Q and for every & =
{éa€R: o] =1,2},

of T vwlEal’+ T )&l } - F) <AE)

lo[=1 o[ =2

<az{|z VO IEal+ Y n)lEal” 4 700,
o|=1

o[ =2

where &,¢, are positive constants, f is a nonnegative function belonging to suitable
Lebesgue space and v, u are positive measurable functions. The boundedness and
Holder regularity of minimizers to such functionals was obtained by using a modified
Moser method with a special test function.

Finally, principal results on continuity at boundary points of solutions to nonlinear
second-order elliptic equations were established in [22], [23], [26], [32], [37]. For the
local interior results see, for example, [10], [13], [30], [31], [33], [34] in the case of
second-order equations and systems, as well as [19], [20], [21] for high-order elliptic
equations with strengthened coercivity. Moreover, the papers [4], [5], [10], [13], [22],
[23], [30], [33], [34] cover the second-order equations with natural growth conditions.
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The present paper is organized as follows. In Section 2 we formulate the hy-
potheses, we state our problem and the main result. Section 3 consists of preliminary
Lemmas needed to prove the main result. In Section 4 we prove the main result on the
Holder continuity up to the boundary of solutions of the Dirichlet problem for equation
(1.1) assuming that the lower-order term has the natural (g, p)-growth.

2. Main result

Let n€ N, n> 2, and let Q be a bounded open set of R”. We shall use the
following notation: R = [0,+); dQ is the boundary of Q, Q = QU JQ is the
closure of Q; By (y) :={x € R":|x—y| < p} is the open ball with center y and radius
p > 0; when not important, we shall omit denoting the center as follows: B, = B, (y);
A is the set of all n-dimensional multi-indices o such that || = 1 or || = 2; R™?
is the space of all mappings & : A — R; if u € W>!(Q), then Vou: Q — R™?, and for
every x € Q and for every o € A, (Vau(x))o = D%u(x). If E C R" is a measurable
set, then |E| is the n-dimensional Lebesgue measure of the set E. If T € [1, 40|, then
|- l7(£) is the norm in the usual Lebesgue space L*(E).

Let p € (1,n/2) and g € (2p,n). We denote by W;f(Q) the set of all functions in

W14(Q) that have the second-order generalized derivatives in L”(Q). The set WZI.;{(Q)
is a Banach space with the norm

I/p
= o |\P
Jul = o+ ( 3 [ 1Doulrax) "

lo|=2

We denote by W;;’(Q) the closure of the set Ci (€2) in Wzl_’lf(Q).
We consider the equation

> (—1)*D*Aq (x,u,Vou) + B(x,u,Vou) =0 in Q 2.1)

aeA
under the following assumptions:

(A1) Forevery a €A, Ag : QxRxR"> —R and B: QxR xR"? — R are Carathéo-
dory functions, i.e. for every (s,&) € R x R™?, the functions Aq(-,s,&) and
B(-,s,&) are measurable on Q and, for almost every x € Q, the functions Ay (x, -, )
and B(x,-,-) are continuous in R x R™?2,

(A2) For almost every x € Q and for every (s,&) € R x R™? the following inequalities

hold:
EAAa(mé)éa%(IS){'Z el 3 Eal’} o), @22
ae al=1 o|=2
> Males O <a(sh{ X el + X Gl o). @3
o =1 o =1 |o|=2

Y Aales O <arllsD] X leal'+ T (Gl ol @4

|o|=2 o =1 o =2
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Bees ) <b(s){ T lEal'+ ¥ Ll }+eat), @3

lo|=1 |or|=2

where a: Ry — (0, +-c0) is a continuous nonincreasing function, a;,as,b: Ry —
R, are continuous nondecreasing functions, go,g1,82,83 are nonnegative sum-
mable functions on Q.

DEFINITION 1. A generalized solution of (2.1) is a function u € W;’;(Q) NL*(Q)
such that for every function v € Wzl.;i(Q) NL*(Q),

/Q { 2 Ag (x,u,Vou)D%v —|—B(x7u,V2u)v} dx =0. (2.6)

acEA

The existence of a solution u € W; g(Q) NL~(Q) for equation (2.1) is proved in
[39], [40] under additional assumptions on the coefficients {Ay}yea and B and on the
functions go, g1, g2, g3. In particular, it was assumed that

(A3) g0 81+ 82, 83 €LT(Q), T>n/q.

The local Hélder continuity in € of every solution u € Wzlj(Q) NL=(Q) to (2.1)
under the assumptions (A1), (A2), (A3) is proved in [42].

Examples illustrating the fulfilment of the assumptions (A1) and (A2) are given in
[42, Examples 2.4-2.6].

The main result of the present article is a theorem on the Holder continuity up to
the boundary of any generalized solution u € W;f(Q) NL~(Q) to equation (2.1) under
assumptions (A1), (A2), (A3) and the following assumption on 9dQ:

(A4) there exist ¢,, R. > 0 such that for every y € dQ and R € (0,R.],

IBR(y) \ Q| = c«|Br(y)|. 2.7)

THEOREM 1. Assume that conditions (A1), (A2), (A3) and (A4) are satisfied. Let
ue VQVzl’If(Q) NL>(Q) be a generalized solution of equation (2.1) and M = [|ul|;=(q)-
Then there exists a function i : Q — R such that i =u a.e. in Q and for every x,
yeQ,

|i(x) —a(y)] < Clx -yl

where the positive constants C and € depend only on n, p, q, T, R., |Q

aj(M), a;(M), b(M) and maxo<;<3|gill<-

, M, a(M),
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3. Auxiliary results

The following is the well-known Sobolev inequality for functions in W“I(ﬁ),
0 C R"; see for example [24, Theorem 7.10].

LEMMA 3.1. Set q* =nq/(n—q). Let U be a bounded open set in R". Then
Wh4(0) C L¥*(0). Furthermore, there exists a positive constant ¢, , depending only
on n and q such that, for every function u € WH4(0),

(/ﬁ‘mq*dx)l/q* gcn’q(alzzlfﬁl)aﬂqu)l/q. G

The proof of the following lemma is given in [35, Chapter 1, §2, Lemma 4].

LEMMA 3.2. Let f € WW(BP). Suppose there exists a measurable subset G C
By, and positive constants C' and C" such that

|G| > C'p", m(a;lx|f| <.

Then
deg( pq / DY 9dx p”fq
/Bp |f| < 2 BP ‘ f‘ >

lor|=1
where C is a positive constant depending only on n, ¢, C', C".

The following lemma is due to John and Nirenberg [25] (see also [24, Theorem
7.21)).

LEMMA 3.3. Let f € WYY(O) where O is a convex domain in R". Suppose
there exists a positive constant K such that

D / D% fldx < Kp"™' for all balls By.
IOC‘ZI ﬁﬁBP

Then there exist positive constants oy and C depending only on n such that
/ exp <g|f— (f)(j\) dx < C(diam 0)"
o K
where & = 69| 0| (diam 0) ™", (f)o =tk [, fdx.

LEMMA 3.4. Let h be an odd function on R such that h € C'(R), h € C*(R\
{0}) and I has a discontinuity of the first kind at the origin. Let u € Wzlg (Q)NL=(Q).

Then h(u) € W;’;(Q) NL>(Q) and the following assertions hold:
(i) for every n-dimensional multi-index o, |o| =1,

D%h(u) =W (u)D%u a.e. in Q;
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(ii) for every n-dimensional multi-index o, |o| = 2,
D%h(u) = W (u)D%u+ h”(u)DﬁuDyuH{M#O} a.e. inQ,

where oo =3+,

Bl = |yl =1 and lj,.oy is the indicator of the set {u# 0}.

For the proof of this fact, see [40, Lemma 3.2].
The following result is discussed in [24, Lemma 8.23].

LEMMA 3.5. Let ® be a non-decreasing function on an interval (0,Rg)] satisfy-
ing, for all R < Ry, the inequality

o(VR) < 0 w(R)+ ¢(R)

where @ is also non-decreasing function and 0 < ¥,0 < 1. Then, for any 6 € (0,1)
and R < Ry, we have

o(R) < C((}%)Sw(Ro) + qo(RaR(l{é))

where C =C(9,0) and € = £(9,0,0) are positive constants.

4. Proof of Theorem 1

Suppose that the assumptions (A1)—(A4) are satisfied. Let u € W;’;(Q) NL=(Q)
be a generalized solution of equation (2.1). Denote by # the extension of u to 0 on
R"\ Q. From the definition of Wzl_’[f(Q) it follows that for any open bounded set Q' D

Q. uc Wzl’;(Q’) and for every oo € A, D% = D% a.e. in Q and D*u =0 a.e. in
Q'\ Q. We set M = ||ul|=(q), thus

| <M< 4eo ae.in R". 4.1
By ¢i, i=0,1,..., we shall denote positive constants depending only on

data= (l’l, p:4q, 7T, R., |Q‘7 M, a(M)val(M)vaZ(M>7b(M>7OH<1?I<)(3 ||ngT)

SIS

Fixing xo € dQ for every R > 0 we set Qg(xg) = QN Bg(xo),

uw(R)=ess inf u, M(R)=ess sup u, (R)=M(R)— u(R).
BR(XO) BR(XQ)

By (2.7), it is obvious that t(R) < 0 and M(R) > 0 for every R > 0. We fix a positive
number r such that

-2
r<min{1—i,u}. (4.2)
q
For every R € (O,min{l, %R*}] we shall establish the inequality

®(R) < cow(2R)+R" (4.3)
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with ¢ € (0,1). This inequality, Lemma 3.5 and [42, Theorem 2.3] imply the validity
of Theorem 1.

To prove (4.3), we fix R € (0,min{1, }R.}] and define a function ¥y : Bog(xo) — R
as follows:

2e(2R) )
Vo(x) = N eR) —am i TMER) 2 0CR)/2, "
In 2em(2R) if M(2R) < (2R) /2.

W)~ LK) + R

We denote by vy the restriction of the function vy on Qyg(xp). It is easy to see that
(4.3) follows from the estimate

V0l 2= (Bg (xo)) < €1 (4.5)

or, which is the same thing, from the inequality |[vol|z=(q.(x,)) < ¢1. For definiteness
we assume that the function vy is defined by the first line in (4.4). We can also assume
that

o(2R) > R’ (4.6)

and therefore, vy > 1 a.e. in Bog(xp), otherwise inequality (4.3) holds.
To derive inequality (4.5), we need some integral estimates of the function z and
its derivatives in the balls B, that intersect d€2. We set

=Y [Du|?+ Y |Dul’.
= jo|=2

LEMMA 4.1. Let { € C5(R") be a function such that
{=0inR"\B, and 0<{<I. 4.7)

Then there exists a positive constant ¢, such that

qagffdxgczp"(up*unéax{ Y g+ Y \D"‘qp}). (4.8)

Bp P al=1 of=2

Proof. We assume that B, NQ # 0, otherwise ® =0 in B, and (4.8) is trivial.
We set A = b(M)/a(M) and define the function #: R — R by

h(s) = (e“““ —1)signs, seR.
Elementary calculations show that
aM)h' —bM) |h| =b(M) inR. (4.9)

For every x € Q we set
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By Lemma 3.4,.h(u) € WZI;{(Q) NL*(Q). Therefore, v; € Wzl”;(Q) NL*(Q) and the
following assertions hold:
(a) for every n-dimensional multi-index o, |ot| =1,

D%y = h (u)D%u? + qh(u) {97 'D¥¢  ae.inQ,
(b) for every n-dimensional multi-index o, |a| =2,
|D%vy — 1 (u)D%u §1|

< |h"<u>|{lﬁz D} L0y §q+2qh’(u){|ﬁ2 |Dﬁu|}{lﬁz DPglfee!
=1 =1 =1
+alg =D h@I{ 3 IDPEP}ET2 4 gl IDUGIC! ae inQ.
IB|=1

By (2.6), we have

/ { Z Ag(x,u, Vou)D%vy + B(x,u, Vou) vy } dx=0.
Q

aEA

From this equality, using (2.2), (2.5), (4.1), (4.7), and assertions (a) and (b), we deduce
that

4
[ @) ) M) )]} £ < 3, 1M [ (a-+R0)
Q i=1 Q
where Q, =QNB,,

li=q2 /Q |Ag(x,u, Vou)| D | |1(u)| {9V dix,

acEA

b= 3 [ Walv Va0 [DPul /0| Ty S,
lal=2|B|=1"<

=g 3 5 [ Palon V)l IDPCP I

=2 |B|=1

L=24% ¥ ¥ [ a2l [DPul [DTEH 1) 61

lo|=2[B|=1yI=1

From this and (4.9) it follows that

b(M)/ q)qux§11+12+13+14+€AM/ (g3+2go) %dx. (4.10)
Qp Qp

Further, to obtain suitable estimates for the terms on the right-hand side of (4.10),
we argue similarly to the proof of [42, Lemma 4.1].
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Estimate for I;. Using the Young’s inequality with the exponents ¢g/(¢ — 1) and
q,(2.3), (4.1) and (4.7), we obtain

4 3, Malou V0l D G ¢
lor|=1
_ b

S 6 /Qp qux+C3/ grdx+c3p” max > DG

B jal=1
Using the Young’s inequality with the exponents p/(p — 1) and p, (2.4), (4.1) and
(4.7), we obtain

q 3, Pateu V] D5 [ £ d
lor|=2
_bv)

S 6 /Qp qux+C4/ gadx+cap” maxz |D*EP.

B a2

Summing the last two inequalities, we obtain

L <—— d)C‘fdx—i-cs/ (81 +g2)dx+csp" max Dy 4.11)
Qp Qp Bp

where

Py = Y DU+ Y DL

lo[=1 o[ =2

Estimates for I, I3 and I4. It is obvious that

-1 2 2
P2 2497y go1=(p-1)2+ (@), 4.12)
p q qp p p
Using this equalities, the Young’s inequality, (2.4), (4.1) and (4.7), we obtain
b(M
L < Q/ (I)qux+c6/ godx—+cep”, (4.13)
8 Jo, Q
b(M) " n
Iz < —/ cI)C‘fdx—i—m/ grdx+c7p maxcbg—kﬁp , (4.14)
8 Q Q, By
b(M) " n
L < —= @qux—FCg/ g2dx+cgp maxd>§+c8p . (4.15)
8 Q Q, By

From (4.10), (4.11), (4.13)—(4.15) it follows that
b(M) q
< n n
3 /QPCDC dx\09(/gpgdx+p n}g%xcbg—kp )

where g = go+ g1 + g2 + g3. By Holder’s inequality and the inequality T > n/q we
have

. s <z [Bol /7 < crnp™ .
)

The last two inequalities and (4.1) imply inequality (4.8). The proof is complete. [l
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LEMMA 4.2. Let By, C Bog(xg) and let § € C5(R") be a function such that con-
dition (4.7) be satisfied. Then there exists a positive constant ¢y such that

/ ®fdx
By, (M(2R) —u+R")4
<cl1p"<p‘q+n§aX{ 2 Deg+ Y \D"‘C\”} (4.16)
P al=1 |oe|=2
+p2p—qr%ax D ‘Dac‘p+p—q(q—2p)/(q—p)n};ax > |Dag|qp/(q—p)>.
P al=2 P lal=1

In particular, if |ID*) < Kp~ 1%l for any oo € A, then

®Lid
/B (M(2R)C—u)_c|_ RY Scen(K+1)p" . (4.17)
P

Proof. We assume that B, N€Q # 0, otherwise ® =0 in B, and (4.16) is triv-
ial. For every x € Bag(xg), we set U(x) = M(2R) —u(x) +R". Note that due to the
inequality M(2R) > ®(2R)/2 we have

U™ — (M(2R) +R")' 79| < 29710179 ace. in Qor(xo). (4.18)

We define the function v, : Q — R by

o) = [U'79(x) — (M(2R) + R")' 4] £4(x) if x € Qor(x0),
: B 0 if)CEQ\BQR(.XO).

Simple calculations show that v, € W;’;(Q) NL*(Q) and due to (4.7) and (4.18)
the following assertions hold:
(c) for every n-dimensional multi-index o, |ot| =1,

D%y — (g — 1)U 1¢9D%| < 247 U1 ¢4 1 D¥¢|  ae. in QNBp,
(d) for every n-dimensional multi-index o, |a| =2,
D%, —(q—1)U™989D%u

<@ UL DY gl - )20 UG Y IDPEP

IB[=1
+2q(q-Duig S okl Y D))
IB[=1 IBI=1
+q(g—-1HUg Y IDPu> ae. inQNB,.
IBI=1

In virtue of (2.6) we have

/Q{ 2 Ag(x,u, Vou)D%vy + B(x,u, Vou) vz}dx:O.

aEA
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Hence by using (2.2), (2.5), (4.1), (4.7), (4.18) and assertions (c) and (d), we obtain

5
a(M)/ d)UqudxécB(ZIH—/ (go—|-g3)U’1dx> (4.19)
Qp i=1 Qp
where Qp =QNBy,

I = 2/ A (x,u, Vou)| |D¥C| U9 0 ax,
Qp

acEA

L=y 2/ |Ag (x, 10, Vo) | DB ul2U~1=4 £ i,
lal=2|B|=1 "<

K= 3 3 [ MalouVanlDPLPUT g0 2ax
jal=2|B|=1"<

L=3 3 % [ MabuVau) [DPul[DE U0 ax,
lal=2BI=11=1"%
Ig:/ QU1 dx.
Qp

Further, to obtain suitable estimates for the terms on the right-hand side of (4.19),
we argue similarly to the proof of [42, Lemma 4.2].

Estimate for I{. Using the Young’s inequality with the exponents ¢/(¢ — 1) and
q,(2.3), (4.1) and (4.7), we obtain

2/ |Ag(x, 1, Vo) | [DOC| U= 9 dx
Qp

la|=1

a(M) (4.20)
< d)ququx—i-cm/ g1U 1dx+ c14p" max 2 |D*C)9.

20c13 Jo, Q, By e

We use the Young’s inequality with the exponents p/(p — 1) and p, (2.4), (4.1) and
(4.7) to obtain

2/ |Ag(,1, Vaud) | DO | U9 9
2

|o|=2
a(M) —q7q —q oaF\P P4 £a4—p
< QU ¢%dx+cis | gU 9dx+cis Y, |D*E|PUP~1L9P dx,
20c13 Ja, Q =27 <%

whence, taking into account the inequalities U > R", p/2 < R < 1 and (4.2), we derive

2/ |Ag(t,10, Vour) | DAL U9 €0

jol=2 %
M
<A )/ d)U‘qudx+cls/ gU 9dx+cigp™ " max Y [DUL|P.
20c¢13 Ja, Q, Bp lot|=2

4.21)
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Summing inequalities (4.20) and (4.21), we obtain

M
Iié a( )/ (I)Uichdx-l-Cn/ (g1+g)U 9dx
10¢13 Jo, Q, 422)
—q+2 ’
+cl4p”n}3ax Y, ID*C|+ci6p™ 1 pn}gax Y, ID*EP.

Pal=1 Pal=2
Estimate for I5. We use (4.1), the first equality in (4.12), Young’s inequality, (2.4)
and (4.7) to obtain

Ié < a(M)
10C13 Qp

QU 1¢%dx+ Clg/ f) Uiqu—FClg/ U—ata=r)/(a=2p) C4dx.

Qp Qp
Estimating the last integral in this inequality by means of the inequalities U > R",
p/2 <R <1 and (4.2), we obtain

< 40
106‘13 Qp

oU—1 quX—FClg/ U 9dx+cop™ 9. (4.23)
Qp

Estimates for Iy and Ij. Using the reasoning similar the proof of (4.23), we obtain

M
Iééa( )/ q)U_qudx-l-Czo/ g U 9dx
10¢13 Jo, Q) 424)
+ ¢cp0 p" max 2 D19+ cpop™ 7,
Bo Ja=1
M
L"g iléc) dDU_qudx—l-czl/ g U 1dx
13/, o 4.25)

+021pn—q(q—2p)/(q—p)nll;ax Z |D°‘C|‘”’/(‘1_1’).

P lel=1

Estimate for If. We use Young’s inequality and Lemma 4.1, to obtain

Ig < a(M)
10C13 QP

QUG dxtenp”(p 0t max] 3 peCl+ 3 D% ).

lo|=1 lor|=2
Collecting (4.19), (4.22)—(4.25) and the above inequality, we obtain
a(M)
2 J,
<en(ptp'max{ 3 "¢+ ¥ (0°¢) )
Bo Lot =2

n—q+2p ar|p n—q(q—2p)/(g—p) a #1qr/(q—p)
+p" 1 max 3 DAL+ p max ¥ D%

P lal=2 P al=1

QU 1{%dx

+ gU—qu)
Qp
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where g = go+ g1 + g2+ g3. Finally, to obtain (4.16), we estimate the last integral
in this inequality by means of Holder’s inequality and the relations (4.2), U > R" and
p/2 < R < 1. Inequality (4.17) is a trivial consequence of (4.16). The proof is com-
plete. 0

LEMMA 4.3. For every K > 1 there is a positive constant ¢ = ¢(data, k) such
that limy_. 1. c(data, k) = +e and

/ Vo dx < cR". (4.26)
Q3p/2(x0)

Proof. First, we estimate from above the average integral

1

= Vo dx
|B3r/2(x0)] Big/2(%0)

(VO)Bz»R/z (x0)

by a constant depending only on data. For this purpose we choose a function | €
Cy (R™) such that

0<6 <1inR*, i =1in BgR/z()C())7 £ =0in ]Rn\B7R/4()C())7
ID*¢| < KR for o] = 1,2,

where K| is an absolute constant, not depending on R. We have
Vo € WH(Baga(x0)).-

Moreover by (2.7)
[Bag/2(x0) \ Q| > c24R"

and by the inequalities (4.6) and M(2R) > ®(2R)/2,
1<V <1+1In4 on B3R/2(X())\Q.

Taking into account these facts and using Holder’s inequality, Lemmas 3.2 and 4.2 and
the properties of the function &}, we obtain

1/q
(VO)BZ»R/Z(XO) S C25R_n/q(/ v dx)
Bgya(xo)
q (4.27)
< C26R1—n/q(/ q)cl dx _'_Rnfq) Va < ¢
Big/a(xo) (M(2R) —u+R")?

Next, let Byp C Bar(xo), and let {; € G5 (R") be a function such that

0<LHL < TinRY CQZIiHBp, ngOinR"\sz,
D) < Kap 1 for | = 1,2,
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where K> is an absolute constant, not depending on p. Using Holder’s inequality,
Lemma 4.2 and the properties of the function {,, we derive that

1/q
Z / DaVde<CQgpn_n/q< Z/ DaV0|qu>
Bp

o] =1 7P |orf=1

® I dx e
< n—n/q / 2 < n—l.
P ( 5, (M(2R) — i+ R')4 ) 2P

Hence, by Lemma 3.3, we have
/ exp <6‘30‘ Vo — (VO)B3R/2(XO) |>dx < c3 R (4.28)
Bag2(xo

Now let k¥ > 1. Then inequalities (4.27) and (4.28) imply (4.26). The proof is
complete. [J

Now we are ready to prove inequality (4.5).

LEMMA 4.4. There exists a positive constant ¢y such that inequality (4.5) holds.

Proof. The proof is based on obtaining the estimate R~"/¥||7|| L (Brx)) S €1 at
k — 4o by adapting the Moser’s iterative technique. We divide the proof in four steps.

Step 1. Let us introduce some auxiliary functions.

We fix a function yp € G (R) such that

0<w<lonR, wy=1lin[-1,1], wp=0inR\(-3/2,3/2).

We define the function y : R” — R by w(x) = l//o(lx%o‘). Let E C Qor(xo) be a set
such that |[E| =0 and for every x € Qugr(x9) \ E,

L(2R) < u(x) < M(2R). (4.29)
Let % : Q — R be the function such that

20 = {M(ZR) —u(X) + R if x € Qog(xo) \ E,

Za)(ZR) ifx e (Q\BzR(.XO))UE.
Let now
»x=2qp/(q—2p), (4.30)
k> k := max{q, 12Mb(M)/a(M)}, (4.31)
[ :=max{q, s} <t < Cok, (4.32)

and Cp = Cy(n, p,q,T) > 1 is a constant that will be specified below. Define

G = max{%"~9/% — (M(2R)+ R")""9/* 0},
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vo=Ine®@2R)% "), w=G"V}
Due to (4.6), (4.29), 2p < q we have w € W, ¥(Q) N L~(Q),

ID%w — (g — )iy G L (V=1 poy ek =Yy! G* % 1 D%
<enkRIGEY T i |al =1, (4.33)

ID%w — (g — )iy Gt 7 1=/ 1 poy — jk=Yy! G* 9 ' D%u|

<C32k2v’5l//”2G%’2%2(1"1)/%{R’2+%’2 3 |Dﬁu\2} if |o|=2. (434)
B

Putting the function w in (2.6) instead of v and using (2.2), (2.5), (4.33), (4.34)
and the inequalities G < % (1-q)/ * Y <2M+ 1 we deduce that

(g l)a(M)/ OG-0/ Lk dx
Qo (x0)

+ka(M)/ G U Wy dx (4.35)
Qo (x0)
gb(M)/ e w’dx—i—/ gay' U s+ Sk 5
Qor(x0) Qor(x0)
where g4 = 2g0+ (2M + 1)g3,
k
632 Y / A (2, u, Vau)| GZVE W L dx, (4.36)
laf=1 Qr(x0)

f2—6‘32k 2 / \AaxuV2u)|

=2 Qor(x0)
X G”—2%2<1—‘1>/”{R—2+%—2 Y \Dﬁu\2}v’5y/‘—2dx. 4.37)
IBI=1
Step 2. We show that the first term on the right-hand side of inequality (4.35) is
absorbed by the second term in its left-hand side. For this we need the inequality

Uvo < 12M  a.e. in Qop(x0), (4.38)

which follows from (4.1) and from the fact that Ins < s for every s > 0.
Using (4.38), the first term on the right-hand side of inequality (4.35) is estimated
in the following way

b(M)/ O Gy dx < 12Mb(M )/ OGNy dx.  (4.39)
Qg (x0) Q

2R (X0)

Now (4.31), (4.35) and (4.39) imply the inequality
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(g— l)a(M)/ oG -0/ kg
Qor(x0)

<k/ e U dx+ A+ Sy, (4.40)
Qor(x0)

Step 3. Let us estimate from above the quantities .#; and .%,, which are defined
by (4.36) and (4.37) respectively.

Estimate for .%,. We use (2.3), the inequality G < %1~9/# and Young’s in-
equality [yz| < ely|%/(4~1) 4+ £179|z|9, where

v = |Aa(x,u, Vou) (G 2 0yl o) = 1,
z=kR™ 'GP D/a gy a1/t )(a=1)/ay/a-1

and € is an appropriate positive number, to obtain

jl < (q_ l)a(M)/ @kal%(lfq)/%flvléwl‘dx
Qyg(xo)

4
kyft—4
vy 1dx.
/sz(xo) 0

Estimate for .%,. Using the first equality in (4.12), Young’s inequality, the in-
equality G < % 1=9/> _(4.30) and (4.2), we establish that if € >0, or, B € A, |at| =2
and |B| =1, then

3k (4.41)

+033/ gy % dx+
Qr(x0)

KR |Ag (x,u, Vou)| G2 207y =2
= |Aq (x,u, Vou) | (GZ ' (1= 0 ==Lyt (p=1)/pp2 R =22 4

w GF=p=1)/p gy (p=1)/p—(a=1)(p+1)/5p w2t/%—2 (4.42)
< €|Ag (x,u, Vou) [P/ P G# L gy (1=0) =1yt

+e(l+e KR 9y ae. in Qor(x)),

K2 |Ag (x,1, Vau)| G#2 9 21=0) /%2 | pB |2 =2
= |Ag(x,u, Vaur)| (G%fl %(lfq)/%flv,f)(pfl)/p
> \Dﬁu|2 (G%—l 42/(1—11)/%—11!/2)2/11
~ sz(%J)/%%(%H)(lqu%)/%zWzr/%d
< g(|Aa(x’u’V2u)|p/(p71) + |Dﬁu|q)G%fl %(lfrﬁ/%flwt
+e! 2RIy ae. in Qyp(xo).

(4.43)

From (2.4), (4.37), (4.42), (4.43), taking into account (4.32) and the suitable choice of
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e, we deduce the estimate

(¢—1)aM)

7 < / oG =051k g
4 Qog(x0)

(4.44)

— C34 kl k —1
+C34/ gzvkl//’% 9dx+ / vow' ldx.
Qg (x0) 0 R JQyr(x) 0
From (4.40), (4.41), (4.44), (4.32) and (4.2) it follows that

/ oG =05k g
Qg (x0)

Csskl/ 35k / ko il
vy dxt (814824 84)voy' " dx.
R JQyp(xo) 0 Rq n/7 Qor(x0) 0

Estimating the last two integrals by Holder’s inequality with the exponents 7 and
7/(t — 1) and taking into account (4.31) and (4.32), we obtain that for every k > k
and 7 € (I,Cok] the following inequality holds:

/ oG 1=k
Qor(x)

C36kl / k 7/(1—1) (r=1)/7
< . (445
R/t < QzR(Xo) Wt ) ( )

Define Eg(xo) = {x € Q3g/2(x0) : % (x) < 2#/(1=9)(M(2R) +R") }.
We shall suppose that
|Er(x0)| # 0. (4.46)

If (4.46) is not true, then (4.5) is a simple consequence of the inequalities
M(2R) > w(2R)/2 and % (x) >2"/""D(M(2R)+R") a..in Qsg/2(x0).

For every x € Eg(xg) we have G(x) > %[%(x)}(l’q)/%. Using this fact from
(4.45), we deduce that

K (t-1)/x
U Wy dx < T / Ay =)o) gy L @447
/ER(XO) 0 Ra=n/7 ( sz(xo) )

Step 4. At this step, using inequality (4.47), we organize an iterative Moser-type
process for the functions vAy’ in Qog(xo), which completes the proof of the lemma.
We set

27/(a=D+1eg(2R)
MQR)+R '

1

It = o

/ Kyl d L, k>0,1>0, (4.48)
Qg (x0)
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:L.i, f:M (4.49)
-1 g q
We now prove the following assertion: if k > Eq* /q and [ <t < Cyk, then
T(k,t) < c3sk [7(k0,16 — )] 1/°. (4.50)

Let k > kq*/q and [ <t < Cok. We set v = (max{v(’)‘7Lk})l/q* y'/4" | Tt is easy to see

that
/ V! dx < / v dx. @51)
Qog(x0) Bag(xo)

Applying inequality (3.1) to the function ¥ € W'4(Bag(xy)) and taking into account
(4.32) and the definitions of the functions v and y, we obtain

/ v dx < c30kd LFR" + c30 k9 (/ o7 v](;q/q* YT gy
BZR(XO) ER(XO)

+R4 / v’(c)q/q* ylala =4 dx) q*/q.
Qg (x0)

From this inequality, estimating the first addend in the brackets by means of (4.47) and
the second addend by means of Holder’s inequality and using (4.48) and (4.49), we
deduce that

/ v dx < caoR" K (k0,10 —T)]/°.
Bag(xo)

The last inequality, (4.48) and (4.51) imply (4.50). o ;
Now, we choose a number iy € N such that 6770 > kg*/q and set Co =1/(1—9),
[(6~ 0~ —1)

ki = e—io—i7 1= 1-0 )

JiZJ(ki7li)7 i=0,1,2,....

Then (4.50) and the inequality 6 < 1 imply that for every i =0,1,2,...,

1/k;

TV < g8 (4.52)

1

Due to Lemma 4.3 and to the inequality M(2R) > ®(2R)/2 we have
78 <. (4.53)

From (4.52) and (4.53) it follows that

_ . 1 ks 1/ki . k:
HVOHL""(BR(xO)) = lim (—n/ vé"dx) < hmsup]l.l/ "<y
[—00 R BR(XO) .

The proof is complete. [

Thus, the validity of (4.3) is established. Then using Lemma 3.5 and the interior
regularity result of [42, Theorem 2.3], we come to the conclusion of Theorem 1. The
proof of Theorem 1 is complete.
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