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L2—-CONCENTRATION FOR A COUPLED
NONLINEAR SCHRODINGER SYSTEM

XAVIER CARVAJAL AND PEDRO GAMBOA

(Communicated by Shangbin Cui)

Abstract. In this work we adapt Bourgain’s ideas in [2] to a coupled system and we prove the L -
concentration of blow-up solutions for two-coupled nonlinear Schrodinger equations at critical
dimension.

1. Introduction

In this work we consider the following nonlinear Schrodinger system

iy + Au+ (oclu)®? + BlulP~ [P u = 0, (x,) e R" xR,
ive + Av+ (ae|v[*P + BIv [P~ Hu| Pty = 0, (1.1)
u(x,0) = up(x), v(x,0) = vo(x), xeR",

where u and v are complex-valued functions and o and 8 are real constants and p
is a constant not less than 1. This system is a model for propagation of polarized
laser beams in birefringent Kerr medium in nonlinear optics (see, [1, 8, 9, 13] and the
references therein for a complete discussion of the physics of the problem). The system
(1.1) with p =1 is known as Kerr nonlinearity in the physical literature.

In the case np < 2, it has been proven by Fanelli and Montefusco [7] that the
Cauchy problem to (1.1) is globally well posed in H'(R") x H'(R") and in the case
np =2 they showed that there exists a constant ¢ such that the Cauchy problem (1.1) is
globally well posed in H!(R") x H'(R") with the condition ||uo]|;2 + ||vo||;2 < co and
moreover they also showed that there exists a pair (uo,vo) such that ||uo||,2 + |[voll 2 =
co and the corresponding solution blows up in a finite time (see also [6, 7, 10, 15]). On
the other hand, the solution of the Cauchy problem (1.1) exists globally for other initial
data, especially for a class of sufficiently small data (see [4, 7, 1 1]).

Well-posedness issues, the blow-up phenomenon and a sharp threshold of blow-
up solution for the IVP (1.1) has been studied in the literature, see for example in
[4,6,7,10, 11, 15, 18] and references therein.
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The Hamiltonian associated with the system (1.1) is given by

N 22— Bt = k()

1
E(t):=E(u,v) = EH(V%V")H%— 2p+2 (p+1) p+1

o
2(p+1)

1/r 1/r
el = ([ +lera) ana sl = ([ Irrax)

In particular if p = 1, the Hamiltonian associated with (1.1) is of the form
1 o B
E(r) = EII(VM,VV)Hﬁ - ZII(W)H?‘ —5 luv]}3 = E(0). (1.2)

In this paper, we analyze the L?-concentration on small balls for two-coupled
nonlinear Schrodinger equations (1.1) at critical dimension (n =2, p = 1) with data in
H' and L? i.e. to the following system:

ity + Au+ (alu)® + Bv[*)u = 0, (x,t) e R* xR,
vy +Av+ (ae|v> 4 Blu*)v = 0, (1.3)
u(x,0) = up(x), v(x,0) = vo(x), x€R?

when ¢ approaches 7% > 0, where 7™ is the maximal time of existence of a solution
(u(t),v(t)) in X x X where X = H' or X = L. More precisely we will prove

THEOREM 1. If u(t),v(t) € H', t € [0,T*) are solutions of the IVP (1.3) with
a >0, B>0 and (u(t),v(t)) blows up at finite time T*, then there exists xo € R?
such that
limsup sup lu(x,1)|*dx > c, (1.4
1/T* xoeR2 Y [—xo| S(T*—1)1/?
and
limsup sup lv(x,0)[*dx > ¢, (L.5)
1T xyeR2 Y =30 | S(T*—1)1/2

where ¢ = c(||uo||]2 + ||vol|2) > 0.

REMARK 1. 1) There exists symmetry in the nonlinearity, i.e., when interchanging
u with v in the system (1.1), it remains the same.

ii) Observe also that if #, /" T*, then u(z,) and v(¢,) do not have a strong limit
in L?. This result is proved by contradiction using the conservation of the Hamiltonian
and the Gagliardo-Nirenberg inequality (see [5]).

Next we have also the same result with data in LZ.

THEOREM 2. If u(t),v(t) € L?, t € [0,T*) are solutions of the IVP (1.3) with
o >0, B>0 and (u(t),v(t)) blows up at finite time T*, then there exists xo € R>
such that (1.4) and (1.5) hold.
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Initially the rate of the L?>-norm concentration was obtained by Tsutsumi and
Merle (see [14, 17]) for radially symmetric solutions to the critical nonlinear Schrédinger

iy + Au+ [u*Pu = 0, (x,1) eR"XR, np=2. (1.6)

Recently Martel and Raphael [12], gave the first example of solution blowing up in
finite time with a rate strictly above the pseudo-conformal one. Such solution concen-
trates K bubbles at a point.

Adapting ideas of Tsutsumi and Merle to a coupled system and considering radi-
ally symmetric blow-up solutions of (1.3), the rate of L?-concentration was obtained
recently by Z. Lii and Z. Liu in [19] with initial data in H! x H! and the condition
0 < B < o. See also [20], for the L? concentration for radially symmetric blow-up
solutions of two-coupled nonlinear Schrodinger equations with harmonic potential.

Adapting an argument of Bourgain [2] to a coupled system in the bidimensional
case, we obtain the L?-norm concentration to the system (1.3) without the use of radi-
ally symmetric solutions and without the condition 0 < 8 < ¢. In the following three
sections we give in details the proofs of Theorems | and 2 by using this idea (in [2]
there are some parts that are true but that are not proven, see for example the estimate
of the term I, in Section 2).

We denote by C a general constant, that may vary from line to line. For x,y € R,
x <y means that there exist C > 0 such that x < Cy, x ~y means that x <y and y S x.

2. Proof of Theorem 1

Proof of Theorem 1. Let v :=u(t), ¢ :=v(t), 0 <t < T* with ¢ really close to
T*. In Section 4, (see (4.14)) we will prove the following inequality:

A=V(y.9)[22 >1, 0<t<T" (2.1)

1
(T* _ t) 1/2
The L? conservation and the conservation of the Hamiltonian (1.2), imply
2 22 4

2

1w, 0)l2 = [I(w0, vo)ll2 = o, [I(w,)3>

We define
1/2
yi(§) = ‘T/(é)X{21<|§\<21+1} and  S(y):= (Z |Wj|2> )
j€z
and similarly we define ¢; and S(¢). Using the Litlewood-Paley theorem we get

1w, 9)ll4 ~ [[(S(w),S(@))lla,
then by (2.2) we have

ISC)IZ+ IS5 2 A%
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In order to simplify the calculations, in the next we will consider only [|S(y)]|3,
the same estimates we obtain to the other term |S(¢)||3. Therefore we will consider

that
LEWPEIwl+ [ SwPElwP=n+nz22 @3
J J

Jjzi iz

Following the notation in [2] we denote the diadyc numbers by N =2/, N =2/, yy :=

Vi, Yn =i, ) )
Dlwil =3 lwwl,
jzi N=N'
etc., we set
N() = lk(h (2-4)

where kg is a constant which will be chosen after, and we consider

[yl ]|
= sup ———, = sup ——— (2.5)
pw N>180 N p¢ N>180 N
for all diadyc number N, we have
[unlle SNIwnll2s  [[on]le S Nlowll2 (2.6)
then
Py:Py S 1. 2.7

In the /; and I, estimates, the goal is to try to get Ny in all the estimates.
Estimate of I : We will consider two cases

DIfFN<Ny.
In this case we have

L=} /RZWN\z > |+ > /RZW/N|2 > Iy [* == J1 +

N<Ny N<N'<Ny N<Ny N'>Ny

and using (2.6) we get

VR I VORI

N<Ny N<N'<Ng

SWB Y [ wP X vy
N<N, /R

N<N'<Ny
2 2772
SN RIEY:
N<N, /R
)
S IwllaNg.

Using Cauchy-Schwartz inequality three times, Bernstein inequality in R%: |lyw|; <
N?/P=2/4||yy|| ,, where 1 < p < g < oo with g=4, p="2 (see Appendix in [16]) (2.5)



Differ. Equ. Appl. 11, No. 1(2019), 129-142. 133

and (2.6), give

1/2 | 1/2
n< X [l T Nl (T 5
N<N, /R N'=Ny

N/>N0

1/2
1
SR ||wN4< > [ N’w“)
0 N'>Ny

N<Ny

1/2
1/2 > N||wN||2< Y, )pulvwlle [, ZN’wNﬂ)

N<N N'>N,

1/2
<Sp N Y wNn%( 3 (N’)3WN/II%>

NgN() N’ >N0

1/4 1/4
Spy°N ”W%( > <N’>2||w%) ( > <N’>4wa‘)

N/>N() N/>N()

Sy Ny w3202

1/2
SNy lwlEa”,
where in the last inequality was used the inequality (2.7).

1) If N > Ny.

Using Cauchy-Schwartz inequality two times and inequalities (2.5) and (2.6), we
obtain

L=} /ZIWN\2 > lwwl®
N>Ny 7R

N'>N

/ Pyl Y, lwwl?

N>N0 N'>N

Sov 3wl 3 N2 [yl

N>Ny N'>N
Spyrt Y

N>Ny

12 | 12
5914/12( > NZWNH%) ( > m)

N>Ny N>Ny

A
§Pwlzﬁo-
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Estimate of I, : We will consider two cases
I If N <Ny.
The inequality (2.6) gives

h=3 [ lwP Y vl
N<N, /R

N'<N
SO IS WD
N<Ny /R N'<N (2.8)
SV W NI YR M
N<NO R ngN()
SV
~ Y0 IV 2

II)If N > Np.
We split 1 in two terms

=% /2WN|2 > lwl+ Y /2|WN|2 > lyw P =Li+1L,
N>No /R No<N'<N N>Ny /R Ni<No

the estimate for L, is similar with (2.8), thus
Ly SN [lwll3-

And in order to estimate L; we will use the inequality (2.5), it follows that

L=3 [w? T lwP
N>Ny /R

No<N'<N

SID W NI NGO
N>Ny /R

No<N'<N

P Y [wE Y w3
N>Ny

No<N'SN
Sey > / N[y ?
R2
N>Ny
242

S PyA”.
Now combining the inequality (2.3) with the above estimates of /; and I and consid-
ering the similar estimates to the other terms obtained of ||S(¢)]|5, we get

22<C (VI3 1NN 2222 wIB+ 19 18)+ (py-+po) ANg ' +(ph+p)A2)

where C > 0 is a universal constant. Finally considering the L? conservation of u and
v, let co = ||yl]l2 + 1102 = |luoll2 + ||vol|2, using that Ng = Ako (see (2.4)) and (2.7),
we obtain 12

1< C(63k3+ko g+ (py +po)ky ! +pi+p£) :
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and taking ko such that

1
okt +k(1)/2c(2) <=,
C
we arrive to
0<k < (Pw+p¢)k2+p5,+p¢2,, (2.9)
where 12
1 — Cefkg — Cky'“c§
ky = ——0 o O and ky=4ky!

note that (2.9) implies

Bk
pw>k3:\/k1+zz—32>07 and py > ks > 0.

The definition of p, implies that there exists « € R? and

N>Ny2 ——
0% (T* —1)1/2
1
such that [y (@)l > 11—3 and there exists » € R? and N > Ny 22— such that
N (T*—1)1/2
9B~ ks e comsider the firt cace hanens. o
N 2 e consider the first case happens, the second case is similar
lyw(@)| 1 [ = S ks
= — — —_ = d 2 —,
R L Gy K
where
Fx) = xp1<pn<2y (%),
and choosing M > 0 such that
2
o 3
d < —
(Awﬂé) 5) 8¢o
we obtain | : '
n 3
— —Sula—=)dé > —,
3 g Pl e >
using Cauchy-Schwartz inequality we concluded that
: ( é ) H
~lwla—= ) xge<my| = ks
N N {I&|<Mm} 5
or equivalently
1
2 2
u(x)|“dx Z k5, NZ——+
/|a—x‘<%‘ ( )‘ ~ (T*_t)l/2

and this inequality proves the Theorem 1. [
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3. Proof of Theorem 2

Consider the Cauchy problem associated to the linear parts of (1.1),

{iwt—i—Aw:O, xeR2 1 €R, G.1)

w(0) = wy.

The solution to (3.1) is given by w(x,7) = U (t)wp(x), where w/(7\t)(§) = e 18P (E).
In order to prove the Theorem 2 we need the following lemmas of Harmonic Analysis
that have been proven by Bourgain in [2]

LEMMA 1. Let f € L2, | f|l2 = 1. For given € >0, there are functions (f,)1<r<r
such that

R < R(e)
each ]?r is supported by a square box
T, C R2 of size A,
and

-~ 1
<o Il > € e),
-

U @) f = XU @Sl 2y < €

r

LEMMA 2. Let suppg C T C R? where T is a square of size A with center &

1
and |g] < 1 Then, for given € > 0, there is a collection (Qy)1<,<pr(e) 0f regions of
the form
0, ={(x1)eR}x+2& €l 1€}, (3.2)

where 1. is an interval in R* of size 1/A and J, an interval in R of size 1/A? such

that
1/4
(/ |U(t)g|4dxdt) <e. (3.3)
RI\UQ,

Following the ideias of Borgain in [2], we consider 0 < Ty < T*, w = u(Tp) and
¢ = v(Tp), the integral equations give

u(t) =U(t—To)y +L(u,v),
(1) =U(t =To)9 +L(vu),

where )
L(u,v) = —ia/ Ut — ) (juPu+ [v[2u)ds.
Ty
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Let 0 < y <1 and we take Ty < Ty < T* such that

H”HL;?L?TO.TI] = |lulle =7y, and IIvHL;tL?,Om

=l oz, = 7 (3.4)
the Holder inequality gives

v Paell s < WPl Nl o = 19 Zallael 5,
and using that (4,4) is a pair of exponents admissible, applying the Strichartz’ inequal-
ity
(1) = Ut = To) Wl gy 1y S 7 (3.5)
triangle inequality, (3.4) and (3.5) implies
Ut — )W a1y ~ ¥
Similarly we have

U= T0)9ll a7, ~ 7, and |[v(e) = Ut =To)9ll sz ) S 7

By (3.4), (3.5), Holder inequality and by the definition of ¥ it follows that

/ u(r)’ |

/RZ u(t) (Ut —To)w+L(u,v)) (Ut —To) v+ L(u, v))zdxdt (3.6)

w0 Ua=Ty) TE=T5)y) dxdi+0(7).

From now on the rest of the proof is a consequence of the above lemmas. We will give
some details: In fact using the Lemma 1 with £ = y? and f = U(—Ty)y, then

UGt -To)y=U()f =S UWf+ 2,

where .Z =U(1)f — X, U(t)f is such that [|.Z| j4 g4y < € = y%. Similarly as in (3.6)
we get

_ TOTl/Rzu(f) Z U () fr, Z U (1) fr Y. UD)fr |dxdi+O(y).

r <R r2<R r3<R()/2)
(3.7)

The number of terms into above integral is smaller than R ()/2)3 . Thus, there is ry,r,r3 <
R(7%) such that

/ |Lut W@, @ T U0 s > Leimm. G8)
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In the proof of Lemma 1, we have suppf, C1 C suppf: supp ¥/, where 7, is a square
of size A,. Supossing that A, = max{A, ,A,,, A, },letbe T asquare of size A~ A, ,
such that 7,; C 7, j=1,2,3. Let P; the Fourier restriction wrt x-variable ﬂ/ =1V,
using Plancherel’s formula and properties of the Fourier transform we have

/TTI/ () (- )dxdt = /TO / Pou(t) (-++) (=) (- -)dxdr. (3.9)

Since (4,4) is a pair of exponents admissible, applying the Strichartz’ estimate we
obtain

(U0 frlla < fll2 < Wl 7=1,2,3.
Using (3.8), (3.9) and Holder inequality we can show that

/ [ VPt W0)5,) Pl 2 0P, (3.10)

Now, applying Lemma 2 with g = f,, , A=A, and € =1 there are {Q;}, 1 <s<R(¢)
be the regions (3.2). From (3.4), (3.3) and (3.10) it follows that

2
Pe(t) (U (1) fr,) Pelxdt 2 —— = 1. 3.1
I, P W) P 2 s = (310

In the same way as in [2] we can show that there exist 7 € [Tp,7]] and an interval
Iy =1 —2t& of size 1/A <ny (T —1)'/? such that

[ 1Paute) Pz 2 .
I

As Pou = i, then P =7 ' (y;) u, also since x(&) = yz, (A~1/2E), where 1 is
a square of size 1, then
Pru= 04 %u,

where 04 (&) = Z 1 (x1)(E) = AF ' ()g,) (A/2E). 1t’s not difficult to see that

[16alle= = 117~ (xo)l= < 2l = A, (3.12)
and
16all2 = 17~ (o)l 2 = llxell 2 = AV, (3.13)
Thus let M = M (11, ||luol|;2) > 1 very large, such that
_ CAn}
/ 16al* (y)dy = A T () P )y < —— - (3.14)
bl> y>M 16]Juo||7,
We have
Pru(x / B4 ()u(x —y)dy = et Oa(y)u(x —y)dy
V< M
2 (3.15)
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and from (3.14)

L, = / 0 (y)u(x—y)dy

V> 17

1/2

A1/2 C1/2

<</ w e§<y>dy> Juoll > < ==,
y

>0
and in L; using Cauchy-Schwartz inequality and (3.12) we obtain

ol

NSy al/z

1)2
0y ulx—y)dy S 17 ( L e§<y>|u<x—y>|2dy>

1/2

1/2

GA(y)Iu(x—y)lzdy> :

Let GAX\YK% = ¢ . Now combining (3.15), (3.16) and (3.17) we hold
A

cn? <2 / Ldx+2 / 2dx
I I

cnt

§2M2//*|u\2dx+ :
I 2

and from this inequality we obtain

cng 2 2
TI<2M /szll (7 *|u*) dx

using Fubinni equality observe that

L fexm= [ n(rea), g =g(~x),
therefore from (3.19) it follows that

cnt
s < Ll G )

and

supp (x1, * #) C suppyy, +supp 7,

as suppyr, S Z and supp j + we complete the proof of theorem. [
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(3.16)

(3.17)

(3.18)

(3.19)

(3.20)
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4. Proof of the inequality (2.1)

This proof follows the same ideas in [5], for the sake of completeness we make all
details here.

We will make the details to o = [, the general case follows in similar way. We
started by noting that

(Vv Pus [uPv)] S 1(,0) PV ()] 4.1
where |(u,v)|? = |u|*> + |[v|?, the Holder’s inequality gives
IV (VP [PV lags S 1) P2V ) s < 1) [TV 0t 9) - (4.2)

The Hamiltonian conservation:
1 Y 4 o 2
E(u,v) = 5[V (wv)l3 = 7l @)z = 5 lluvllz = E(uo,vo),

implies that
)17 S (14 V()2). (4.3)

Considering 0 <t < 7 < T*, from (4.2), (4.3) and Holder inequality, we obtain
HV(|"|2 |u|2 )HL4/3 ((t,0):L43) ~ S (L[ V(v )HLN((:,T);LZ))HV(WV)HL‘*/S((;,T);LA*)

S+ IV (21220 ) (T =)V @) 1 2y
4.4)

Deriving in the integral solution of the system (1.3) gives
Vu(t')=U(t' —t)Vu(t) — iocf,’/ U(t' —s)V(|u|®u+ |v|*u)ds
V(Y =U{' —1)Vv(t) — iaftt/ U(t' —s)V(|v|>v+ |ul*>v)ds

As u(t),v(t) € H'(R?), t € [0,T*) and since (4,4) is a pair of exponents admissible,
applying the Strichartz’ estimate (see [4], [5] or Theorem 2.3 in [16]) we have

1Vl sy S IV a4 IV QP s gy + HV(Mzu)||L4/3((,,1);L4/3%;t .
and .
V9l e,zyzsy S NVVO N2+ IV CP0) 73 1 gy.0973) + IVAVE a3 gy (4:6)
from (4.5) and (4.6) we get
1V ()l o,y SIUV@ 2+ VYOl 4 N1V (ulPee) | a3 210005,
F IV VPl ey + 1P sy @D
IV /3 2y3)-
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Applying the Strichartz’ estimate with exponents admissible (e0,2) and adding
with (4.7), we get

IV (@) 1=, 00:22) + IV @) 22 20:04)
SV v)ll2+ ||V(|u\2u)||L4/3((,7T);L4/3) + ||V(|v|2u)HL4/3((,71);L4/3) (4.8)
IV 32y + IV ) 3 ey

forall 0 <t <T<T".
Let us define the function

Ji(0) = VIV ()| = oyaz) + IV @) 8. 2))- (4.9)
The inequality (4.4) implies
19wt PV sy < (7= 1)) (4.10)
Analogously as in (4.4) we can show that

||V(|u\214, |V|2V)||L4/3((,7T);L4/3) S(T —1)1/2( 1+ ||V(u7v)||L°°((t,‘r);L2) )||V(u7v)||L4((t,T);L4)

S(r=0)'2 (e,
(@.11)

combining (4.8)—(4.11), follow that

fi(0) SCA+ V() [2) +Clz—0) 2 fi(1)%, (4.12)
as f; is a continuous and increasing function on ]0,7*[, if T* < e the blowup alter-
native said that f;(7) — e when 7 /' T* and from definition of f; also we have that
fi(t) = 1+ ||V(u,v)(r) |2 when 7\, ¢, thus there exists 7 €]t,T*[ such that

fi(w) = (C+ DA+ [V (,v)(1)]|2)- (4.13)

In consequence
L+ [V (u,v) (1) [l < COL+CPX (T = 1) (14 |V (u,v) (1)),

and
1

L+ ([V(u,v)(0)]l2 2 m,

0<t<T* O (4.14)

Acknowledgement. The first author thanks supports from CNPq under grant 304036/
2014-5.
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