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L2 –CONCENTRATION FOR A COUPLED

NONLINEAR SCHRÖDINGER SYSTEM
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(Communicated by Shangbin Cui)

Abstract. In this work we adapt Bourgain’s ideas in [2] to a coupled system and we prove the L2 -
concentration of blow-up solutions for two-coupled nonlinear Schrödinger equations at critical
dimension.

1. Introduction

In this work we consider the following nonlinear Schrödinger system⎧⎪⎪⎨⎪⎪⎩
iut + Δu+(α|u|2p + β |u|p−1|v|p+1)u = 0, (x,t) ∈ Rn×R,

ivt + Δv+(α|v|2p + β |v|p−1|u|p+1)v = 0,

u(x,0) = u0(x), v(x,0) = v0(x), x ∈ Rn,

(1.1)

where u and v are complex-valued functions and α and β are real constants and p
is a constant not less than 1. This system is a model for propagation of polarized
laser beams in birefringent Kerr medium in nonlinear optics (see, [1, 8, 9, 13] and the
references therein for a complete discussion of the physics of the problem). The system
(1.1) with p = 1 is known as Kerr nonlinearity in the physical literature.

In the case np < 2, it has been proven by Fanelli and Montefusco [7] that the
Cauchy problem to (1.1) is globally well posed in H1(Rn)×H1(Rn) and in the case
np = 2 they showed that there exists a constant c0 such that the Cauchy problem (1.1) is
globally well posed in H1(Rn)×H1(Rn) with the condition ‖u0‖L2 +‖v0‖L2 < c0 and
moreover they also showed that there exists a pair (u0,v0) such that ‖u0‖L2 +‖v0‖L2 =
c0 and the corresponding solution blows up in a finite time (see also [6, 7, 10, 15]). On
the other hand, the solution of the Cauchy problem (1.1) exists globally for other initial
data, especially for a class of sufficiently small data (see [4, 7, 11]).

Well-posedness issues, the blow-up phenomenon and a sharp threshold of blow-
up solution for the IVP (1.1) has been studied in the literature, see for example in
[4, 6, 7, 10, 11, 15, 18] and references therein.
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The Hamiltonian associated with the system (1.1) is given by

E(t) := E(u,v) =
1
2
‖(∇u,∇v)‖2

2−
α

2(p+1)
‖(u,v)‖2p+2

2p+2−
β

(p+1)
‖uv‖p+1

p+1 = E(0)

where

‖( f ,g)‖r =
(∫

R2
| f |r + |g|r dx

)1/r

and ‖ f‖r =
(∫

R2
| f |r dx

)1/r

.

In particular if p = 1, the Hamiltonian associated with (1.1) is of the form

E(t) =
1
2
‖(∇u,∇v)‖2

2−
α
4
‖(u,v)‖4

4−
β
2
‖uv‖2

2 = E(0). (1.2)

In this paper, we analyze the L2 -concentration on small balls for two-coupled
nonlinear Schrödinger equations (1.1) at critical dimension (n = 2, p = 1) with data in
H1 and L2 i.e. to the following system:⎧⎪⎪⎨⎪⎪⎩

iut + Δu+(α|u|2 + β |v|2)u = 0, (x,t) ∈ R2 ×R,

ivt + Δv+(α|v|2 + β |u|2)v = 0,

u(x,0) = u0(x), v(x,0) = v0(x), x ∈ R2,

(1.3)

when t approaches T ∗ > 0, where T ∗ is the maximal time of existence of a solution
(u(t),v(t)) in X ×X where X = H1 or X = L2 . More precisely we will prove

THEOREM 1. If u(t),v(t) ∈ H1 , t ∈ [0,T ∗) are solutions of the IVP (1.3) with
α > 0 , β > 0 and (u(t),v(t)) blows up at finite time T ∗ , then there exists x0 ∈ R2

such that
limsup
t↗T ∗

sup
x0∈R2

∫
|x−x0|�(T ∗−t)1/2

|u(x, t)|2 dx � c, (1.4)

and
limsup
t↗T ∗

sup
x0∈R2

∫
|x−x0|�(T∗−t)1/2

|v(x,t)|2 dx � c, (1.5)

where c = c(‖u0‖2 +‖v0‖2) > 0 .

REMARK 1. i) There exists symmetry in the nonlinearity, i.e., when interchanging
u with v in the system (1.1), it remains the same.

ii) Observe also that if tn ↗ T ∗ , then u(tn) and v(tn) do not have a strong limit
in L2 . This result is proved by contradiction using the conservation of the Hamiltonian
and the Gagliardo-Nirenberg inequality (see [5]).

Next we have also the same result with data in L2 .

THEOREM 2. If u(t),v(t) ∈ L2 , t ∈ [0,T ∗) are solutions of the IVP (1.3) with
α > 0 , β > 0 and (u(t),v(t)) blows up at finite time T ∗ , then there exists x0 ∈ R2

such that (1.4) and (1.5) hold.
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Initially the rate of the L2 -norm concentration was obtained by Tsutsumi and
Merle (see [14, 17]) for radially symmetric solutions to the critical nonlinear Schrödinger

iut + Δu+ |u|2pu = 0, (x,t) ∈ Rn ×R, np = 2. (1.6)

Recently Martel and Raphael [12], gave the first example of solution blowing up in
finite time with a rate strictly above the pseudo-conformal one. Such solution concen-
trates K bubbles at a point.

Adapting ideas of Tsutsumi and Merle to a coupled system and considering radi-
ally symmetric blow-up solutions of (1.3), the rate of L2 -concentration was obtained
recently by Z. Lü and Z. Liu in [19] with initial data in H1 ×H1 and the condition
0 < β < α . See also [20], for the L2 concentration for radially symmetric blow-up
solutions of two-coupled nonlinear Schrödinger equations with harmonic potential.

Adapting an argument of Bourgain [2] to a coupled system in the bidimensional
case, we obtain the L2 -norm concentration to the system (1.3) without the use of radi-
ally symmetric solutions and without the condition 0 < β < α . In the following three
sections we give in details the proofs of Theorems 1 and 2 by using this idea (in [2]
there are some parts that are true but that are not proven, see for example the estimate
of the term I2 in Section 2).

We denote by C a general constant, that may vary from line to line. For x,y ∈ R ,
x � y means that there exist C > 0 such that x �Cy , x∼ y means that x � y and y � x .

2. Proof of Theorem 1

Proof of Theorem 1. Let ψ := u(t) , φ := v(t) , 0 � t < T ∗ with t really close to
T ∗ . In Section 4, (see (4.14)) we will prove the following inequality:

λ := ‖∇(ψ ,φ)‖2 � 1

(T ∗ − t)1/2
� 1, 0 � t < T ∗. (2.1)

The L2 conservation and the conservation of the Hamiltonian (1.2), imply

‖(ψ ,φ)‖2 = ‖(u0,v0)‖2 = c0, ‖(ψ ,φ)‖4
4 � 2

α + β
λ 2− 4

α + β
E(u0,v0) � λ 2. (2.2)

We define

ψ̂ j(ξ ) := ψ̂(ξ )χ{2 j<|ξ |�2 j+1} and S(ψ) :=

(
∑
j∈Z

|ψ j|2
)1/2

,

and similarly we define φ j and S(φ) . Using the Litlewood-Paley theorem we get

‖(ψ ,φ)‖4 ∼ ‖(S(ψ),S(φ))‖4,

then by (2.2) we have

‖S(ψ)‖4
4 +‖S(φ)‖4

4 � λ 2.
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In order to simplify the calculations, in the next we will consider only ‖S(ψ)‖4
4 ,

the same estimates we obtain to the other term ‖S(φ)‖4
4 . Therefore we will consider

that ∫
R2

∑
j
|ψ j|2 ∑

j�i
|ψi|2 +

∫
R2

∑
j
|ψ j|2 ∑

i� j
|ψi|2 := I1 + I2 � λ 2. (2.3)

Following the notation in [2] we denote the diadyc numbers by N = 2 j , N′ = 2i , ψN :=
ψ j , ψN′ := ψi ,

∑
j�i

|ψi|2 := ∑
N�N′

|ψN′ |2,

etc., we set
N0 := λk0, (2.4)

where k0 is a constant which will be chosen after, and we consider

ρψ = sup
N>N0

‖ψN‖∞

N
, ρφ = sup

N>N0

‖φN‖∞

N
(2.5)

for all diadyc number N , we have

‖ψN‖∞ � N‖ψN‖2, ‖φN‖∞ � N‖φN‖2 (2.6)

then
ρψ ,ρφ � 1. (2.7)

In the I1 and I2 estimates, the goal is to try to get N0 in all the estimates.

Estimate of I2 : We will consider two cases

I) If N � N0 .
In this case we have

I2 = ∑
N�N0

∫
R2

|ψN |2 ∑
N�N′�N0

|ψN′ |2 + ∑
N�N0

∫
R2

|ψN |2 ∑
N′>N0

|ψN′ |2 := J1 + J2,

and using (2.6) we get

J1 � ∑
N�N0

∫
R2

|ψN |2 ∑
N�N′�N0

(N′)2‖ψN′ ‖2
2

� ‖ψ‖2
2 ∑

N�N0

∫
R2

|ψN |2 ∑
N�N′�N0

(N′)2

� ‖ψ‖2
2 ∑

N�N0

∫
R2

|ψN |2N2
0

� ‖ψ‖4
2N

2
0 .

Using Cauchy-Schwartz inequality three times, Bernstein inequality in R2 : ‖ψN‖q �
N2/p−2/q‖ψN‖p , where 1 � p � q � ∞ with q = 4, p = 2 (see Appendix in [16]) (2.5)
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and (2.6), give

J2 � ∑
N�N0

∫
R2

|ψN |2
(

∑
N′>N0

N′|ψN′ |4
)1/2(

∑
N′�N0

1
N′

)1/2

� 1

N1/2
0

∑
N�N0

‖ψN‖2
4

(
∑

N′>N0

∫
R2

N′|ψN′ |4
)1/2

� 1

N1/2
0

∑
N�N0

N‖ψN‖2
2

(
∑

N′>N0

(N′)2ρψ‖ψN′ ‖2

∫
R2

N′|ψN′ |2
)1/2

� ρ1/2
ψ N1/2

0 ∑
N�N0

‖ψN‖2
2

(
∑

N′>N0

(N′)3‖ψN′ ‖3
2

)1/2

� ρ1/2
ψ N1/2

0 ‖ψ‖2
2

(
∑

N′>N0

(N′)2‖ψN′ ‖2
2

)1/4(
∑

N′>N0

(N′)4‖ψN′ ‖4
2

)1/4

� ρ1/2
ψ N1/2

0 ‖ψ‖2
2λ 3/2

� N1/2
0 ‖ψ‖2

2λ 3/2,

where in the last inequality was used the inequality (2.7).

II) If N > N0 .

Using Cauchy-Schwartz inequality two times and inequalities (2.5) and (2.6), we
obtain

I2 = ∑
N>N0

∫
R2

|ψN |2 ∑
N′�N

|ψN′ |2

� ∑
N>N0

∫
R2

ρψN2‖ψN‖2 ∑
N′�N

|ψN′ |2

� ρψ ∑
N>N0

‖ψN‖2 ∑
N′�N

N′2
∫

R2
|ψN′ |2

� ρψλ 2 ∑
N>N0

‖ψN‖2

� ρψλ 2

(
∑

N>N0

N2‖ψN‖2
2

)1/2(
∑

N>N0

1
N2

)1/2

� ρψλ 2 λ
N0

.
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Estimate of I1 : We will consider two cases
I) If N � N0 .
The inequality (2.6) gives

I1 = ∑
N�N0

∫
R2

|ψN |2 ∑
N′�N

|ψN′ |2

� ∑
N�N0

∫
R2

|ψN |2 ∑
N′�N

(N′)2‖ψN′ ‖2
2

� N2
0 ∑

N�N0

∫
R2

|ψN |2 ∑
N′�N0

‖ψN′ ‖2
2

� N2
0‖ψ‖4

2.

(2.8)

II) If N > N0 .
We split I1 in two terms

I1 = ∑
N>N0

∫
R2

|ψN |2 ∑
N0�N′�N

|ψN′ |2 + ∑
N>N0

∫
R2

|ψN |2 ∑
N′�N0

|ψN′ |2 := L1 +L2,

the estimate for L2 is similar with (2.8), thus

L2 � N2
0‖ψ‖4

2.

And in order to estimate L1 we will use the inequality (2.5), it follows that

L1 = ∑
N>N0

∫
R2

|ψN |2 ∑
N0�N′�N

|ψN′ |2

� ∑
N>N0

∫
R2

|ψN |2 ∑
N0�N′�N

(N′)2ρ2
ψ

� ρ2
ψ ∑

N>N0

∫
R2

|ψN |2 ∑
N0�N′�N

(N′)2

� ρ2
ψ ∑

N>N0

∫
R2

N2|ψN |2

� ρ2
ψλ 2.

Now combining the inequality (2.3) with the above estimates of I1 and I2 and consid-
ering the similar estimates to the other terms obtained of ‖S(φ)‖4

4 , we get

λ 2 �C
(
(‖ψ‖4

2+‖φ‖4
2)N

2
0 +N1/2

0 λ 3/2(‖ψ‖2
2+‖φ‖2

2)+(ρψ+ρφ )λ 3N−1
0 +(ρ2

ψ+ρ2
φ )λ 2

)
,

where C > 0 is a universal constant. Finally considering the L2 conservation of u and
v , let c0 = ‖ψ‖2 + ‖φ‖2 = ‖u0‖2 + ‖v0‖2 , using that N0 = λk0 (see (2.4)) and (2.7),
we obtain

1 � C
(
c4
0k

2
0 + k1/2

0 c2
0 +(ρψ + ρφ)k−1

0 + ρ2
ψ + ρ2

φ

)
,
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and taking k0 such that

c4
0k

2
0 + k1/2

0 c2
0 <

1
C

,

we arrive to
0 < k1 � (ρψ + ρφ )k2 + ρ2

ψ + ρ2
φ , (2.9)

where

k1 =
1−Cc4

0k
2
0 −Ck1/2

0 c2
0

C
and k2 = k−1

0

note that (2.9) implies

ρψ � k3 =

√
k1 +

k2
2

4
− k2

2
> 0, and ρφ � k3 > 0.

The definition of ρ , implies that there exists a ∈ R2 and

N > N0 � 1

(T ∗ − t)1/2

such that
|ψN(a)|

N
� k3

4 and there exists b ∈ R2 and N > N0 � 1

(T ∗ − t)1/2
such that

|φN(b)|
N

� k3
4 . We consider the first case happens, the second case is similar

|ψN(a)|
N

=
1
N

∫
R2

f̂ (−ξ )u
(

a− ξ
N

)
dξ � k3

4
,

where
f (x) = χ{1<|x|�2}(x),

and choosing M > 0 such that(∫
|ξ |�M

| f̂ (ξ )|2dξ
)1/2

� k3

8c0

we obtain
1
N

∫
|ξ |<M

f̂ (−ξ )u(a− ξ
N

)dξ � k3

8
,

using Cauchy-Schwartz inequality we concluded that

1
N

∥∥∥∥u(a− ξ
N

)
χ{|ξ |<M}

∥∥∥∥
2
� k3,

or equivalently ∫
|a−x|< M

N

|u(x)|2dx � k2
3, N � 1

(T ∗ − t)1/2

and this inequality proves the Theorem 1. �
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3. Proof of Theorem 2

Consider the Cauchy problem associated to the linear parts of (1.1),{
iwt + Δw = 0, x ∈ R2, t ∈ R,

w(0) = w0.
(3.1)

The solution to (3.1) is given by w(x,t) =U(t)w0(x) , where ŵ(·,t)(ξ ) = e−it|ξ |2 ŵ0(ξ ) .
In order to prove the Theorem 2 we need the following lemmas of Harmonic Analysis
that have been proven by Bourgain in [2]

LEMMA 1. Let f ∈ L2 , ‖ f‖2 = 1 . For given ε > 0 , there are functions ( fr)1�r�R

such that
R < R(ε)

each f̂r is supported by a square box

τr ⊂ R2 of size Ar

and

| f̂r| < 1
Ar

, ‖ fr‖2 > ε ′(ε),

‖U(t) f −∑
r

U(t) fr‖L4(dxdt) < ε.

LEMMA 2. Let suppĝ ⊆ τ ⊆ R2 where τ is a square of size A with center ξ0

and |ĝ| < 1
A

. Then, for given ε > 0 , there is a collection (Qr)1�r�R(ε) of regions of

the form
Qr =

{
(x,t) ∈ R3;x+2tξ0 ∈ Ir, t ∈ Jr

}
, (3.2)

where Ir is an interval in R2 of size 1/A and Jr an interval in R of size 1/A2 such
that (∫

R3\∪Qr

|U(t)g|4dxdt

)1/4

< ε. (3.3)

Following the ideias of Borgain in [2], we consider 0 < T0 < T ∗ , ψ = u(T0) and
φ = v(T0) , the integral equations give

u(t) = U(t−T0)ψ +L(u,v),

v(t) = U(t−T0)φ +L(v,u),

where

L(u,v) = −iα
∫ t

T0

U(t− s)(|u|2u+ |v|2u)ds.
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Let 0 < γ � 1 and we take T0 < T1 < T∗ such that

‖u‖L4
xL

4
[T0,T1]

:= ‖u‖L4 = γ, and ‖v‖L4
xL

4
[T0,T1]

:= ‖v‖L4[T0,T1] = γ, (3.4)

the Hölder inequality gives

‖|v|2u‖L4/3 � ‖|v|2‖L2‖u‖L4 = ‖v‖2
L4‖u‖L4 ,

and using that (4,4) is a pair of exponents admissible, applying the Strichartz’ inequal-
ity

‖u(t)−U(t−T0)ψ‖L4[T0,T1] � γ3, (3.5)

triangle inequality, (3.4) and (3.5) implies

‖U(t−T0)ψ‖L4[T0,T1] ∼ γ.

Similarly we have

‖U(t−T0)φ‖L4[T0,T1] ∼ γ, and ‖v(t)−U(t−T0)φ‖L4[T0,T1] � γ3.

By (3.4), (3.5), Hölder inequality and by the definition of γ it follows that

γ4 =
∫ T1

T0

∫
R2

u(t)
[
u(t)u(t)

2
]
dxdt

=
∫ T1

T0

∫
R2

u(t)(U(t−T0)ψ +L(u,v))(U(t−T0)ψ +L(u,v))
2
dxdt

=
∫ T1

T0

∫
R2

u(t)(U(t−T0)ψ)(U(t−T0)ψ)
2
dxdt +O(γ6).

(3.6)

From now on the rest of the proof is a consequence of the above lemmas. We will give
some details: In fact using the Lemma 1 with ε = γ2 and f = U(−T0)ψ , then

U(t−T0)ψ = U(t) f = ∑
r

U(t) fr +L ,

where L =U(t) f −∑rU(t) fr is such that ‖L ‖L4(dxdt) < ε = γ2 . Similarly as in (3.6)
we get

γ4=
∫ T1

T0

∫
R2

u(t)

⎛⎝ ∑
r1<R(γ2)

U(t) fr1

⎞⎠⎛⎝ ∑
r2<R(γ2)

U(t) fr2

⎞⎠⎛⎝ ∑
r3<R(γ2)

U(t) fr3

⎞⎠dxdt+O(γ5).

(3.7)

The number of terms into above integral is smaller than R(γ2)3 . Thus, there is r1,r2,r3 <
R(γ2) such that∫ T1

T0

∫
R2

u(t)(U(t) fr1)(U(t) fr2)
(
U(t) fr3

)
dxdt >

γ4

R(γ2)3)
:= η . (3.8)
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In the proof of Lemma 1, we have supp f̂r ⊂ τr ⊂ supp f̂ = suppψ̂ , where τr is a square
of size Ar . Supossing that Ar1 = max{Ar1 ,Ar2 ,Ar3} , let be τ a square of size A ∼ Ar1 ,
such that τr j ⊂ τ , j = 1,2,3. Let Pτ the Fourier restriction wrt x -variable P̂τ ψ = χτ ψ̂ ,
using Plancherel’s formula and properties of the Fourier transform we have∫ T1

T0

∫
R2

u(t)(· · ·)(· · ·)(· · ·)dxdt =
∫ T1

T0

∫
R2

Pτu(t)(· · ·)(· · ·)(· · ·)dxdt. (3.9)

Since (4,4) is a pair of exponents admissible, applying the Strichartz’ estimate we
obtain

‖U(t) fr j‖4 � ‖ fr j‖2 � ‖ψ‖L2 , j = 1,2,3.

Using (3.8), (3.9) and Hölder inequality we can show that∫ T1

T0

∫
R2

|Pτu(t)(U(t) fr1) |2dxdt � η2. (3.10)

Now, applying Lemma 2 with g = fr1 , A = Ar1 and ε = η there are {Qs} , 1 � s � R(ε)
be the regions (3.2). From (3.4), (3.3) and (3.10) it follows that∫∫

Q∩(R2×[T0,T1])
|Pτu(t)(U(t) fr1) |2dxdt � η2

R(η)
= η1. (3.11)

In the same way as in [2] we can show that there exist t ∈ [T0,T1] and an interval
I1 = I−2tξ0 of size 1/A � η−1

1 (T − t)1/2 such that∫
I1
|Pτu(t)|2dx � η2

1 .

As P̂τu = χτ û , then Pτu = F−1(χτ)∗u , also since χτ(ξ ) = χτ0(A
−1/2ξ ) , where τ0 is

a square of size 1, then
Pτu = θA ∗ u,

where θA(ξ ) = F−1(χτ)(ξ ) = AF−1(χτ0)(A
1/2ξ ) . It’s not difficult to see that

‖θA‖L∞ = ‖F−1(χτ)‖L∞ � ‖χτ‖L1 = A, (3.12)

and

‖θA‖L2 = ‖F−1(χτ)‖L2 = ‖χτ‖L2 = A1/2. (3.13)

Thus let M = M(η1,‖u0‖L2) � 1 very large, such that∫
|y|> M

A1/2

|θA|2(y)dy = A
∫
|y|>M

|F−1(χτ0)|2(y)dy � CAη2
1

16‖u0‖2
L2

. (3.14)

We have

Pτu(x) =
∫

R2
θA(y)u(x− y)dy =

∫
|y|� M

A1/2

θA(y)u(x− y)dy

+
∫
|y|> M

A1/2

θA(y)u(x− y)dy := L1 +L2,
(3.15)
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and from (3.14)

L2 =
∫
|y|> M

A1/2

θA(y)u(x− y)dy

�
(∫

|y|> M
A1/2

θ 2
A(y)dy

)1/2

‖u0‖L2 � A1/2η1C1/2

4
,

(3.16)

and in L1 using Cauchy-Schwartz inequality and (3.12) we obtain

L1 =
∫
|y|� M

A1/2

θA(y)u(x− y)dy � M

A1/2

(∫
|y|� M

A1/2

θ 2
A(y)|u(x− y)|2dy

)1/2

�M

(∫
|y|� M

A1/2

θA(y)|u(x− y)|2dy

)1/2

.

(3.17)

Let θAχ|y|� M
A1/2

= J . Now combining (3.15), (3.16) and (3.17) we hold

Cη2
1 �2

∫
I1

L2
1dx+2

∫
I1

L2
2dx

�2M2
∫

I1
J ∗ |u|2dx+

Cη2
1

2
,

(3.18)

and from this inequality we obtain

Cη2
1

2
�2M2

∫
R2

χI1

(
J ∗ |u|2)dx, (3.19)

using Fubinni equality observe that∫
R2

f (g ∗ h) =
∫

R2
h( f ∗ g̃) , g̃(x) = g(−x),

therefore from (3.19) it follows that

Cη2
1

4M2 �
∫

R2
|u|2 (χI1 ∗J̃

)
dx, (3.20)

and

supp
(
χI1 ∗J̃

)⊆ suppχI1 + suppJ̃ ,

as suppχI1 � 1
A and suppJ̃ � 1

A we complete the proof of theorem. �
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4. Proof of the inequality (2.1)

This proof follows the same ideas in [5], for the sake of completeness we make all
details here.

We will make the details to α = β , the general case follows in similar way. We
started by noting that

|(∇(|v|2u, |u|2v))| � |(u,v)|2|∇(u,v)|, (4.1)

where |(u,v)|2 = |u|2 + |v|2 , the Hölder’s inequality gives

‖∇(|v|2u, |u|2v)‖4/3 � ‖|(u,v)|2‖2‖∇(u,v)‖4 � ‖(u,v)‖2
4‖∇(u,v)‖4. (4.2)

The Hamiltonian conservation:

E(u,v) =
1
2
‖∇(u,v)‖2

2−
α
4
‖(u,v)‖4

4−
α
2
‖uv‖2

2 = E(u0,v0),

implies that
‖(u,v)‖2

4 � (1+‖∇(u,v)‖2 ). (4.3)

Considering 0 < t < τ < T ∗ , from (4.2), (4.3) and Hölder inequality, we obtain

‖∇(|v|2u, |u|2v)‖L4/3((t,τ);L4/3) � (1+‖∇(u,v)‖L∞((t,τ);L2) )‖∇(u,v)‖L4/3((t,τ);L4)

� (1+‖∇(u,v)‖L∞((t,τ);L2) )(τ − t)1/2‖∇(u,v)‖L4((t,τ);L4).

(4.4)

Deriving in the integral solution of the system (1.3) gives

∇u(t ′) = U(t ′ − t)∇u(t)− iα
∫ t′
t U(t ′ − s)∇(|u|2u+ |v|2u)ds,

∇v(t ′) = U(t ′ − t)∇v(t)− iα
∫ t′
t U(t ′ − s)∇(|v|2v+ |u|2v)ds.

As u(t),v(t) ∈ H1(R2) , t ∈ [0,T ∗) and since (4,4) is a pair of exponents admissible,
applying the Strichartz’ estimate (see [4], [5] or Theorem 2.3 in [16]) we have

‖∇u‖L4((t,τ);L4) � ‖∇u(t)‖2 +‖∇(|u|2u)‖L4/3((t,τ);L4/3) +‖∇(|v|2u)‖L4/3((t,τ);L4/3),
(4.5)

and

‖∇v‖L4((t,τ);L4) � ‖∇v(t)‖2 +‖∇(|u|2v)‖L4/3((t,τ);L4/3) +‖∇(|v|2v)‖L4/3((t,τ);L4/3), (4.6)

from (4.5) and (4.6) we get

‖∇(u,v)‖L4((t,τ);L4) �‖∇u(t)‖2 +‖∇v(t)‖2 +‖∇(|u|2u)‖L4/3((t,τ);L4/3)

+‖∇(|v|2u)‖L4/3((t,τ);L4/3) +‖∇(|u|2v)‖L4/3((t,τ);L4/3)

+‖∇(|v|2v)‖L4/3((t,τ);L4/3).

(4.7)
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Applying the Strichartz’ estimate with exponents admissible (∞,2) and adding
with (4.7), we get

‖∇(u,v)‖L∞((t,τ);L2) +‖∇(u,v)‖L4((t,τ);L4)

� ‖∇(u,v)‖2 +‖∇(|u|2u)‖L4/3((t,τ);L4/3) +‖∇(|v|2u)‖L4/3((t,τ);L4/3)

+‖∇(|u|2v)‖L4/3((t,τ);L4/3) +‖∇(|v|2v)‖L4/3((t,τ);L4/3),

(4.8)

for all 0 < t < τ < T ∗ .
Let us define the function

ft (τ) = 1+‖∇(u,v)‖L∞((t,τ);L2) +‖∇(u,v)‖L4((t,τ);L4). (4.9)

The inequality (4.4) implies

‖∇(|v|2u, |u|2v)‖L4/3((t,τ);L4/3) � (τ − t)1/2 ft(τ)2. (4.10)

Analogously as in (4.4) we can show that

‖∇(|u|2u, |v|2v)‖L4/3((t,τ);L4/3) �(τ − t)1/2(1+‖∇(u,v)‖L∞((t,τ);L2) )‖∇(u,v)‖L4((t,τ);L4)

�(τ − t)1/2 ft (τ)2,

(4.11)

combining (4.8)–(4.11), follow that

ft (τ) � C(1+‖∇(u,v)‖2)+C(τ − t)1/2 ft (τ)2, (4.12)

as ft is a continuous and increasing function on ]0,T ∗[ , if T ∗ < ∞ the blowup alter-
native said that ft(τ) → ∞ when τ ↗ T ∗ and from definition of ft also we have that
ft(τ) → 1+‖∇(u,v)(t)‖L2 when τ ↘ t , thus there exists τ0 ∈]t,T ∗[ such that

ft (τ0) = (C+1)(1+‖∇(u,v)(t)‖2). (4.13)

In consequence

1+‖∇(u,v)(t)‖2 � C(1+C)2(T ∗ − t)1/2(1+‖∇(u,v)(t)‖2)2,

and

1+‖∇(u,v)(t)‖2 � 1

(T ∗ − t)1/2
, 0 � t < T ∗. � (4.14)
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