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Abstract. In this paper we consider a first order dynamic equation on time scales in which the
right hand side is a Δ -Carathéodory function, which is not necessarily continuous. We generalize
this discontinuous dynamic equation using Henstock–Kurzweil Δ -integral and establish results
concerning existence of solutions using simple analysis. Uniqueness of solutions is obtained
using an Osgood type condition. Moreover we introduce the concept of Henstock–Kurzweil
Δ -equi-integrability and study continuous dependence and convergence of solutions.

1. Introduction

The theory of time scales was successfully proposed by S. Hilger [14], in order
to create a theory that could unify both discrete and continuous calculus. Since then
the theory of time scales has received a lot of attention and constitutes quite an active
research area. Many researchers have studied dynamic equations on time scale domains
and presented some important results, this can be witnessed by the works [1], [7], [9],
[11], [15], [16], [21]. Such equations are extensively useful in mathematical models
to exhibit several phenomena in physics, control theory, economics etc. To the best of
my knowledge, most of the existing theory has been developed and still evolving in
the framework of Riemann and Lebesgue type delta and nabla integrals [4], [12], [18]
which do not cover general theory. Taking into consideration highly oscillating func-
tions, these integrals fail to integrate all derivatives. Thus it is worthwhile to introduce a
theory that gives us the possibility to study more general problems. In this connection,
recently, B. Satco [19], [20] tried to extend several important results using Henstock–
Kurzweil Δ-integral introduced by A. Peterson and B. Thompson [17]. This work
motivates us to study dynamic equations on time scale domains in Henstock–Kurzweil
Δ-integral setting. In this paper we have attempted to extend the basic notions and re-
sults for the first order dynamic equation on time scales involving a Δ-Carathéodory
function using Henstock–Kurzweil Δ-integral.

Throughout this paper we are dealing with the first order dynamic equations de-
fined by {

xΔ(t) = f
(
t,x(t)

)
, t ∈ T,

x(a) = x0
(1.1)
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where x : T → R , f : T×R → R is a Δ-Carathéodory function and T = [a,b]T is a
finite time scale interval with minT = a and maxT = b . We shall call such equations
as Δ-Carathéodory dynamic equations.

The paper is organized as follows. In Section 2, we recall some basic concepts
and results from time scales calculus and necessary facts about Henstock–Kurzweil
Δ-integral. The Section 3 contains generalization of (1.1) using Henstock–Kurzweil
Δ-integral. Section 4 deals with existence and uniqueness results pertaining to the
equation (1.1). In Section 5, we study continuous dependence of the solution on initial
condition and its convergence.

2. Preliminaries

This section contains some preliminary concepts and results that will be used
throughout the paper. The following definitions and theorems related to time scales
can be found in [2], [3], [5].

A time scale T is an arbitrary nonempty closed subset of R , with the subspace
topology inherited from the standard topology of R . For t ∈ T , we define two op-
erators, σ : T → T , the forward jump operator and ρ : T → T , the backward jump
operator as σ(t) = inf{s ∈ T : s > t} and ρ(t) = sup{s ∈ T : s < t} respectively. We
assume that σ(M) = M and ρ(m) = m if T has maximum M and minimum m . The
points in the time scale T are classified, with the help of jump operators σ and ρ as
follows: A point t ∈ T is said to be right-scattered, left-scattered, right-dense, left-
dense, dense and isolated if σ(t) > t , ρ(t) < t , σ(t) = t , ρ(t) = t , σ(t) = t = ρ(t)
and ρ(t) < t < σ(t) respectively. For any x : T → R , the corresponding forward shift
xσ : T → R is defined as xσ (t) = x

(
σ(t)

)
for any t ∈ T . The forward graininess func-

tion μ : T → [0,∞) is defined by μ(t) = σ(t)− t . If T has a left-scattered maximum
M , then we derive a new set from T as T

κ = T\ {M} otherwise T
κ = T . That is,

T
κ =

{
T\ (

ρ(supT),supT
]

if supT < ∞,

T if supT = ∞.

DEFINITION 1. [5] Let f : T → R be a given function. Then its extension, f , to
R is defined as

f (t) =

{
f (t) if t ∈ T,

f (ti) if t ∈ (
ti,σ(ti)

)
, for some i ∈ I,

where I ⊂ N and {ti}i∈I ⊂ T is such that {ti}i∈I =
{
t ∈ T : t < σ(t)

}
.

DEFINITION 2. [2] A function x : T → R is said to be Δ-differentiable at t ∈ T
κ

if, for given any ε > 0, there is a neighborhood U of t , U = (t−δ ,t +δ )∩T for some
δ > 0 and a number xΔ(t) , such that for all s ∈U we have∣∣∣∣x(σ(t)

)− x(s)− xΔ(t)
(
σ(t)− s

)∣∣∣∣ � ε
∣∣σ(t)− s

∣∣.
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The number xΔ(t) , if exists, is unique and is called the delta derivative of x at t .

THEOREM 1. [2] Let x : T → R be a strictly increasing function and x(T) = T̃

is a time scale. Then 1/xΔ = (x−1)Δ̃ ◦ x at points where xΔ is nonzero.

DEFINITION 3. [2] A function x : T → R is said to be rd-continuous if it is
continuous at every right-dense point in T and its left sided limits exist at left dense
points in T . The set of all rd-continuous functions x : T → R will be denoted by
Crd(T,R) .

Now we recall some notions of measure theory on time scales from [5], [10], [13].
For ã, b̃ ∈ T , by the time scale interval [ã, b̃]T , we mean [ã, b̃]∩T . Let F be the family
of all intervals of the form [ã, b̃)T = {t ∈ T : ã � t < b̃} , where ã , b̃ ∈ T with ã � b̃ .
The interval [ã, ã)T is understood as the empty set. Let m1 : F → [0,∞] be a function
defined as m1

(
[ã, b̃

)
T
) = b̃− ã . That is, m1 assigns to each interval [ã, b̃)T its length.

Now using the pair (F,m1) , we generate the outer measure m∗
1 on the family of all

subsets of T as follows.
For each subset E of T , if there exists at least one finite or countable collection of

intervals [ai,bi)T ∈ F (i = 1,2, . . .) such that E ⊂ ∪i[ai,bi)T , then we define m∗
1(E) =

inf ∑i m1
(
[ai,bi)T

)
, where the infimum is taken over all the coverings of E by a finite

or countable collection of intervals [ai,bi)T ∈ F . If there is no such covering of E ,
then we set m∗

1(E) = +∞ . A subset A ⊂ T is said to be Δ-measurable if m∗
1(E) =

m∗
1(E ∩A)+m∗

1(E \A) for all subsets E ⊂ T . Now the restriction of m∗
1 to the family

M(m∗
1)= {A⊂T : A is Δ-measurable} defines a countably additive measure, denoted by

μΔ , on M(m∗
1) , and is called Lebesgue Δ-measure. A property that holds everywhere

except for a set of Δ-measure zero is said to hold Δ-almost everywhere or Δ-a.e.

DEFINITION 4. [10] A function x : T→R = [−∞,+∞] is said to be Δ-measurable
if for every α ∈ R , the set f−1

(
[−∞,α)

)
=

{
t ∈ T : f (t) < α

}
is Δ-measurable.

DEFINITION 5. [5] A function x : T→R is said to be simple if it takes only finite
number of distinct values, say, α1,α2, . . . ,αn , n∈ N . If Aj =

{
t ∈ T : x(t) = α j

}
, then

x = ∑n
j=1 α jχAj , where χAj : T → R is the characteristic function of Aj .

THEOREM 2. [10] Let x : T → R be a Δ-measurable function. Then there exists
a sequence

(
xn

)
of Δ-measurable simple functions such that xn(t)→ x(t) for all t ∈T .

DEFINITION 6. [19] A function x : T → R is said to be absolutely continuous in
the restricted sense on E ⊂ T if, for given every ε > 0, there exists δ > 0 such that,
whenever

{
[ci,di]T : 1 � i � n

}
is a finite pairwise disjoint family of subintervals of

T with ci,di ∈ E satisfying ∑n
i=1 μΔ

(
[ci,di]T

)
< δ we have ∑n

i=1 osc
(
x, [ci,di]T

)
< ε .

We write x ∈ Δ-AC∗ . x is said to be a generalized absolutely continuous function in
the restricted sense if x is continuous on E and E can be written as countable union of
sets on each of which x is Δ-AC∗ . In this case we write x ∈ Δ-ACG∗ . If x is uniformly
continuous on E and E can be written as countable union of sets on each of which x
is Δ-AC∗ , then we say that x is uniformly Δ-ACG∗ and write x ∈ Δ-UACG∗ .
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The following definitions and theorem are taken from [17].

DEFINITION 7. We say that δ = (δL,δR) is a Δ-gauge for [a,b]T provided δL(t)>
0 on [a,b)T , δR(t) > 0 on (a,b]T , δL(a) � 0, δR(b) � 0 and δR(t) � μ(t) for all
t ∈ [a,b)T .

DEFINITION 8. A partition P of [a,b]T is a division of [a,b]T defined by P ={
a = t0 � ξ1 � t1 � ξ2 � t2 . . .tn−1 � ξn � tn = b

}
with ti > ti−1 for 1 � i � n and

ti, ξi ∈ T . We call the points, ξi , tag points associated with the subinterval [ti−1,ti]T of
[a,b]T . We denote such partitions by P =

{
ξi, [ti−1,ti]T

}n
i=1 .

DEFINITION 9. If δ is a Δ-gauge for [a,b]T , then we say that a partition P is
δ -fine if ξi − δL(ξi) � ti−1 < ti � ξi + δR(ξi) for 1 � i � n .

DEFINITION 10. We say that f : [a,b]T → R is Henstock–Kurzweil Δ-integrable
on [a,b]T provided there is a real number I such that given any ε > 0 there is a Δ-
gauge δ , for [a,b]T such that for all δ -fine partitions P =

{
ξi, [ti−1, ti]T

}n
i=1 of [a,b]T

we have
∣∣I−∑n

i=1 f (ξi)(ti − ti−1)
∣∣ < ε . The number I is called as Henstock–Kurzweil

Δ-integral of f on [a,b]T and we write I = (HK)
∫ b
a f (t)Δt .

THEOREM 3. (Monotone Convergence Theorem) Let
(
fn

)
be a sequence of Hens-

tock–Kurzweil Δ-integrable functions on [a,b]T such that fn � fn+1 Δ-a.e. in [a,b]T .
Then f is Henstock–Kurzweil Δ-integrable on [a,b]T and limn→∞

∫ b
a fn(t)Δt =

∫ b
a f (t)Δt .

3. Generalized dynamic equations

H. Gilbert [12] has given the notion of Carathéodory function on time scales in the
following way.

A function f : T×R → R is said to be a Δ-Carathéodory function if it satisfies
the following conditions:

(C-i) The map t 	→ f (t,x) is Δ-measurable for every x ∈ R .
(C-ii) The map x 	→ f (t,x) is continuous Δ-a.e. t ∈ T .
(C-iii) For every real number r > 0 there exists a function hr ∈ L1

Δ
(
T, [0,∞)

)
such

that
∣∣ f (t,x)∣∣ � hr(t) Δ-a.e. t ∈ T and for x ∈ R with x ∈ Br(x0) =

{
x ∈ R : |x− x0| �

r
}

.
With this function f , the equation (1.1) is said to be Δ-Carathéodory dynamic

equation.
According to I. L. D. Santos [18], a function x : T → R is said to be the solution

of Δ-Carathéodory dynamic equation (1.1) if x(t) satisfies the following conditions:
(i) x(t) is absolutely continuous on each compact time scale subinterval J of T .
(ii) xΔ(t) = f

(
t,x(t)

)
Δ-a.e. t ∈ T and x(a) = x0 .

On the lines of T. S. Chew and F. Flordeliza [6], we generalize the Δ-Carathéodory
dynamic equation (1.1) using Henstock–Kurzweil Δ-integral as follows.

Equation (1.1) is said to be generalized Δ-Carathéodory dynamic equation if the
function f : T×R → R satisfies the following conditions:
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(C-i) The map t 	→ f (t,x) is Δ-measurable for every x ∈ R .
(C-ii) The map x 	→ f (t,x) is continuous Δ-a.e. t ∈ T .
(GC-iii) For every real number r > 0 there exist two Henstock–Kurzweil Δ-

integrable functions gr(t) and hr(t) on T such that gr(t) � f (t,x) � hr(t) Δ-a.e. t ∈T

and for x ∈ R with x ∈ Br(x0) =
{
x ∈ R : |x− x0| � r

}
.

In this case, the function f is said to be the generalized Δ-Carathéodory function.

DEFINITION 11. A function x : T → R is said to be a solution of generalized
Δ-Carathéodory dynamic equation (1.1) if x(t) satisfies the following conditions:

(i) x(t) is Δ-ACG∗ function on each compact time scale subinterval J of T .
(ii) xΔ(t) = f

(
t,x(t)

)
Δ-a.e. t ∈ T and x(a) = x0 .

We observe that if the functions gr(t) and hr(t) are Δ-Lebesgue integrable func-
tions on T , then equation (1.1) reduces to the dynamic equation considered by I. L. D.
Santos [18] and the function x : T → R reduces to the corresponding Δ-Carathéodory
solution. Also, condition (GC-iii) can be written as 0 � f (t,x)− gr(t) � hr(t)− gr(t)
Δ-a.e. t ∈ T and x ∈ Br(x0) . Then hr(t)−gr(t) is nonnegative Henstock–Kurzweil Δ-
integrable function and by Theorem 2.19 of [17] it is a Δ-Lebesgue integrable function,
and f (t,x)− gr(t) satisfies condition (C-iii). Thus our generalized Δ-Carathéodory
dynamic equation (1.1) is essentially first order dynamic equation of the form xΔ(t) =
F(t,x)+G(t) , where F(t,x) is Δ-Lebesgue integrable function and G(t) is Henstock–
Kurzweil Δ-integrable function on T , that is, a first order dynamic equation perturbed
by Henstock–Kurzweil Δ-integrable function.

4. Existence and uniqueness of solutions

In this section we investigate the results concerning existence of solution of the
generalized Δ-Carathéodory dynamic equation (1.1) and its uniqueness. The follow-
ing theorem establishes existence of solutions, the proof of which is analogous to the
Theorem 3.1 of [6].

THEOREM 4. Let f : T ×R → R be a generalized Δ-Carathéodory function.
Then the dynamic equation (1.1) has generalized Δ-Carathéodory solution in T .

Proof. Since f is a generalized Δ-Carathéodory function, by (GC-iii) there exist
two Henstock–Kurzweil Δ-integrable functions gr(t) and hr(t) on T such that for
all x ∈ Br(x0) , gr(t) � f (t,x) � hr(t) Δ-a.e. t ∈ T . The function hr(t)− gr(t) is
Henstock–Kurzweil Δ-integrable on T and hr(t)−gr(t) � 0, by Theorem 2.19 of [17],
hr(t)−gr(t) is Δ-Lebesgue integrable on T .

Define F : T×Br(x0) → R by

F(t,x) = f

(
t,x+

∫ t

a
gr(s)Δs

)
−gr(t).
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This function F is a Δ-Carathéodory function satisfying 0 � F(t,x) � hr(t)−gr(t) for
all (t,x) ∈ Ω , where Ω =

{
(t,x) ∈ T×Br(x0) :

∣∣x+
∫ t
a gr(τ)Δτ − x0

∣∣ � r
}

. By Theo-
rem 5 of [18], there is a function y : T → R such that yΔ(t) = F

(
t,y(t)

)
Δ-a.e. t ∈ T

and y(a) = x0 .
Define φ(t) = y(t)+

∫ t
a gr(τ)Δτ for t ∈ T . Then

φΔ(t) = yΔ(t)+gr(t) Δ-a.e. t ∈ T

= F
(
t,y(t)

)
+gr(t)

= f

(
t,y+

∫ t

a
gr(τ)Δτ

)
−gr(t)+gr(t)

= f

(
t,y+

∫ t

a
gr(τ)Δτ

)
and φ(a) = y(a) = x0 .

Note that the function φ is Δ-ACG∗ on T because y is Δ-ACG∗ on T and gr is
Henstock–Kurzweil Δ-integrable there. This completes the proof. �

EXAMPLE 1. Let T =
{
t = 1

n : n ∈ N
}∪{0} .

Let f (t,x) = h(t,x)+ g(t) , where
∣∣h(t,x)

∣∣ � H(t) , ∀ t ∈ T and x ∈ Br(x0) and
H(t) is Lebesgue Δ-integrable on T .

Define g : T → R by

g(t) =

{
(−1)n n if t = 1

n ,

L if t = 0,

where L is any constant.
g is neither Δ-integrable on T nor Lebesgue Δ-integrable on T . But it is Henstock–

Kurzweil Δ-integrable on T .
Note that ∀ t ∈ T and x ∈ Br(x0) , g(t)−H(t) � f (t,x) � g(t)+H(t) .
Thus f (t,x) is generalized Δ-Carathéodory function and by Theorem 4 the dy-

namic equation (1.1) has a solution in T .
When h(t,x) = 0, the function x : T → R defined by

x(t) =

⎧⎪⎨⎪⎩
0 if t = 1,

∑n
k=2

(−1)k+1

k−1 if t = 1
n ,

−ln(2) if t = 0

is a solution of (1.1) with f as defined above and x(0) = −ln(2) .

A new existence result for solution of (1.1) is established as follows.

THEOREM 5. Let f : T×R → R be a Δ-Carathéodory function. Assume that(
Fn

)
is a sequence of Δ-UACG∗ functions on T such that Fn → x uniformly Δ-a.e. on

T , where Fn(t) =
∫ t
a φn(τ)Δτ ,

(
φn(τ)

)
is a sequence of Δ-measurable simple functions.

Then the dynamic equation (1.1) has generalized Δ-Carathéodory solution x(t) .
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Proof. Since f
(
t,x(t)

)
is Δ-measurable in t , by Theorem 3.13 of [10], there exist

a nondecreasing sequence of Δ-measurable simple functions
(
φn(t)

)
on T such that

φn(t) → f
(
t,x(t)

)
for all t ∈ T . Since φn(t) is Henstock–Kurzweil Δ-integrable and

φn(t) � φn+1(t) Δ-a.e. on T and for all n ∈ N , by monotone convergence theorem,
f
(
t,x(t)

)
is Henstock–Kurzweil Δ-integrable on T and

∫ t

a
f
(
τ,x(τ)

)
Δτ = lim

n→∞

∫ t

a
φn(τ)Δτ.

Define Fn(t) =
∫ t
a φn(τ)Δτ + x0 . Then

(
Fn

)
is a sequence of Δ-UACG∗ functions and

Fn(t) → x(t) , t ∈ T . Therefore

lim
n→∞

Fn(t) =
∫ t

a
f
(
τ,x(τ)

)
Δτ + x0.

That is,

x(t) =
∫ t

a
f
(
τ,x(τ)

)
Δτ + x0,

which gives equation (1.1). Now since Fn is a sequence of uniformly Δ-ACG∗ functions
converges to x and x is primitive of Henstock–Kurzweil Δ-integrable function f on
T , it follows that x is Δ-ACG∗ on T . This completes the proof. �

The inequality which is useful for further analysis is given in the following result.

THEOREM 6. Suppose g : [0,∞) → [0,∞) is continuous nondecreasing function
and y : T → [0,∞) is bounded function such that g ◦ y : T → [0,∞) is rd-continuous.
Let G : T → R be a strictly increasing function such that GΔ(u) = 1/g(u) �= 0 for
u ∈ T . Then for all t ∈ T and for some constant l � 0

y(t) � l +
∫ t

a
g
(
y(τ)

)
Δτ (4.1)

implies y(t) � G−1
(
Gσ (l)+ t − a

)
, where G−1 : T̃ = G(T) → T is the inverse of G :

T → R .

Proof. Let α = min T̃ , β = max T̃ . Denote G(a) = α , G(b) = β and y(t) =
l +

∫ t
a g

(
y(τ)

)
Δτ . Let T ∈ T be such that α − (t − a) < G(T ) < β − (t − a) for all

t ∈ T . For s ∈ [
α −G(T ),β −G(T )

]
T̃
, set G−1

(
G(T ) + s

)
= u . Then u ∈ T and

therefore GΔ(u) = 1/g(u) �= 0, that is, GΔ(
G−1(G(T )+ s)

)
= 1/g

(
G−1

(
G(T )+ s

))
.

But, by derivative of inverse, we have
(
G−1(p)

)Δ =
(

1
GΔ ◦G−1

)
(p) for p ∈ [α,β ]

T̃
.

Therefore
(
G−1(p)

)Δ =
(
g ◦G−1

)
(p) .
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Now for t ∈ T∫ t

a
g

(
G−1(G(T )+ τ −a

))
Δτ =

∫ t

a
(g ◦G−1)

(
G(T )+ τ −a

)
Δτ

=
∫ t

a
(G−1)Δ(

G(T )+ τ −a
)
Δτ

= G−1(G(T )+ t−a
)−G−1(G(T )+a−a

)
= G−1(G(T )+ t−a

)−T.

Therefore T +
∫ t
a g

(
G−1

(
G(T )+ τ −a

))
Δτ = G−1

(
G(T )+ t−a

)
. Let T = σ(l) for

some l ∈ T
κ such that Gσ (l) < α −b+a . Then

σ(l)+
∫ t

a
g

(
G−1(Gσ (l)+ τ −a

))
Δτ = G−1(Gσ (l)+ t−a

)
. (4.2)

The function G−1 is now bounded. So combing (4.1) and (4.2), we obtain y(t)−
G−1

(
Gσ (l)+ t−a

)
� l +

∫ t

a
g
(
y(τ)

)
Δτ −σ(l)−

∫ t

a
g

(
G−1(Gσ (l)+ τ −a

))
Δτ

= l−σ(l)+
∫ t

a

[
g
(
y(τ)

)−g
(
G−1(Gσ (l)+ τ −a)

)]
Δτ.

By boundedness of y and G−1 , and since g is nondecreasing, we get∣∣∣∣g(
y(τ)

)−g

(
G−1(Gσ (l)+ τ −a

))∣∣∣∣ < M

for some M > 0 and for all τ ∈ T .
Therefore y(t)−G−1

(
Gσ (l)+ t−a

)
� l−σ(l)+M(t−a) .

If Λ =
{
t ∈ T : y(t) < G−1

(
Gσ (l)+ τ −a

)
for a � τ � b

}
, then one can see that

supΛ = maxT = b . Hence y(t) � G−1
(
Gσ (l)+ t − a

)
for t ∈ T . This completes the

proof. �
We present local uniqueness of solution of (1.1), using an Osgood type condition.

THEOREM 7. Assume that the function f : T×Br(x0)→ R satisfies the condition
| f (t,x)− f (t,y)|� g

( |x− y|) where g : T → [0,∞) is a function such that its extension
g : [0,∞) → [0,∞) is an increasing function with g(0) = 0 and g(s) > 0 for s ∈ (0,∞)
and for every k > 0

∫ k
0 1/g(s)ds = ∞ . Then the generalized Δ-Carathéodory dynamic

equation (1.1) has unique solution in T .

Proof. Assume that x(t) and y(t) are two solutions of the generalized Δ-Carathéo-
dory dynamic equation (1.1). Then x,y : T→R are such that x(t)= x0+

∫ t
a f

(
τ,x(τ)

)
Δτ
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and y(t) = x0 +
∫ t
a f

(
τ,y(τ)

)
Δτ . Let z(t) = x(t)− y(t) for all t ∈ T . Therefore

|z(t)| =
∣∣∣∣∫ t

a

[
f
(
τ,x(τ)

)− f
(
τ,y(τ)

)]
Δτ

∣∣∣∣
�

∫ t

a

∣∣ f (τ,x(τ)
)− f

(
τ,y(τ)

)∣∣Δτ

�
∫ t

a
g
( |z(τ)|)Δτ

�
∫ b

a
g
( |z(τ)|)Δτ.

If GΔ(u) = 1/g(u) , then by Theorem 6 we can write∣∣z(t)∣∣ � G−1(Gσ (0)+b−a
)

G

(∣∣z(t)∣∣) � Gσ (0)+b−a

G

(∣∣z(t)∣∣)−Gσ (0) � b−a

∫ ∣∣z(t)∣∣
σ(0)

GΔ(r)Δr � b−a

∫ ∣∣z(t)∣∣
σ(0)

1
g(r)

Δr � b−a.

But from Theorems 19 and 20 of [22] ,
∫ ∣∣z(t)∣∣

σ(0)
1

g(r)Δr =
∫ ∣∣z(t)∣∣
0

1
g(s)ds .

Therefore
∫ ∣∣z(t)∣∣
0 1/g(s)ds � b−a which gives ∞ � b−a , a contradiction.

Hence we must have
∣∣z(t)∣∣ = 0. and therefore the dynamic equation (1.1) has

unique solution in T . This completes the proof. �

REMARK 1. If the conditions given in Theorem 7 do not hold, then the dynamic
equation (1.1) may have more than one solutions. For example:

Let f : T×Br(0) → R be defined by

f (t,x) =

⎧⎪⎨⎪⎩
1

2
(√

t +
√

σ(t)
) for x < t,

1(√
t +

√
σ(t)

) for x � t,

where Br(0) =
{
x ∈ R : |x| � r

}
, r > 1 and T =

{
t = 1

n : n ∈ N
}∪{0} . The function

f does not satisfies conditions given in Theorem 7 as
∫ 1
0 f

(
t,x(t)

)
Δt = 1. In this case

x1(t) =
√

t and x1(t) =
√

t/2 are two solutions of equation (1.1).

REMARK 2. The conditions given in the Theorem 7 do not guarantee the existence
of a solution of equation (1.1), as shown in the next example.
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Let [0,1)T be a time scale interval that contains a countable infinite subset ∪∞
i=1{ri}

with σ(ri) = ri .
Let f : [0,1]T ×Br(0) → R defined by

f (t,x) =

⎧⎪⎨⎪⎩
0 for x �= 0, t �= ri

1 for x �= 0, t = ri or x = 0, t �= ri

2 for x = 0, t = ri .

f is generalized Δ-Carathéodory function and satisfies condition given in Theorem 7
with g ≡ 0. For this function f , dynamic equation (1.1) has no solution.

5. Continuous dependence on initial condition and convergence of solutions

In this section we first obtain a result which describes the continuous dependence
of solution of (1.1) on the initial condition.

THEOREM 8. Assume that the function f : T×Br(x0) → R satisfies the condi-
tion

∣∣ f (t,x)− f (t,y)
∣∣ � g

( |x− y|) where g : T → [0,∞) is an increasing continuous
function such that GΔ(u) = 1/g(u) �= 0 for u ∈ T . Let x and y be the solution of
xΔ(t) = f

(
t,x(t)

)
, x(a) = x0 and yΔ(t) = f

(
t,y(t)

)
, y(a) = y0 respectively in T . Then∣∣x(t)− y(t)

∣∣ � G−1

(
G

( |x0− y0|
)
+ t−a

)
for all t ∈ T .

Proof. Since x and y are the solutions of xΔ(t)= f
(
t,x(t)

)
, x(a)= x0 and yΔ(t)=

f
(
t,y(t)

)
, y(a) = y0 in T respectively, we have

x(t) = x0 +
∫ t

a
f
(
τ,x(τ)

)
Δτ and y(t) = y0 +

∫ t

a
f
(
τ,y(τ)

)
Δτ .

Therefore for all t ∈ T

∣∣x(t)− y(t)
∣∣ � |x0− y0|+

∫ t

a

∣∣∣∣ f (τ,x(τ)
)− f

(
τ,y(τ)

)∣∣∣∣Δτ

� |x0− y0|+
∫ t

a
g

(∣∣x(τ)− y(τ)
∣∣)Δτ.

By Theorem 6 we have
∣∣x(t)− y(t)

∣∣ � G−1

(
G

( |x0− y0|
)
+ t−a

)
, which shows that

the solutions of equation (1.1) depend continuously on the initial condition. To em-
phasize the dependence on the initial condition, we denote the solutions of (1.1) by

φ(t,a,x0) . Thus
∣∣φ(t,a,x0)−φ(t,a,y0)

∣∣ � G−1

(
G

( |x0 − y0|
)
+ t−a

)
for all t ∈ T .

This completes the proof. �
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COROLLARY 1. Under the assumption of the above theorem we have the follow-
ing.

∣∣φ(t,a,x0)−φ(s, ã,y0)
∣∣ � G−1

(
G

( |x0− y0|
)
+ t−a

)
+G−1

(
G

(
M |ã−a|)+ t− ã

)
+M |t− s| ,

where M = supt∈T

∣∣ f (t, ã,y0)
∣∣ .

Proof. We write∣∣φ(t,a,x0)−φ(s, ã,y0)
∣∣ �

∣∣φ(t,a,x0)−φ(t,a,y0)
∣∣+ ∣∣φ(t,a,y0)−φ(t, ã,y0)

∣∣
+

∣∣φ(t, ã,y0)−φ(s, ã,y0)
∣∣. (5.1)

Consider∣∣φ(t,a,x0)−φ(t,a,y0)
∣∣ � |x0− y0|+

∫ t

a

∣∣∣∣ f (τ,φ(τ,a,x0)
)− f

(
τ,φ(τ,a,y0)

)∣∣∣∣Δτ

� |x0− y0|+
∫ t

a
g

(∣∣φ(τ,a,x0)−φ(τ,a,y0)
∣∣)Δτ ,

which yields

∣∣φ(t,a,x0)−φ(t,a,y0)
∣∣ � G−1

(
G

( |x0− y0|
)
+ t−a

)
. (5.2)

Assuming 0 � a < ã < t ,

∣∣φ(t,a,y0)−φ(t, ã,y0)
∣∣ �

∫ t

a

∣∣∣∣ f (τ,φ(τ,a,y0)
)− f

(
τ,φ(τ, ã,y0)

)∣∣∣∣Δτ

=
∫ ã

a

∣∣∣∣ f (τ,φ(τ,a,y0)
)− f

(
τ,φ(τ, ã,y0)

)∣∣∣∣Δτ

+
∫ t

ã

∣∣∣∣ f (τ,φ(τ,a,y0)
)− f

(
τ,φ(τ, ã,y0)

)∣∣∣∣Δτ

�
∫ ã

a

∣∣∣∣ f (τ,φ(τ,a,y0)
)∣∣∣∣Δτ

+
∫ t

ã

∣∣∣∣ f (τ,φ(τ,a,y0)
)− f

(
τ,φ(τ, ã,y0)

)∣∣∣∣Δτ

� M |ã−a|+
∫ t

ã

∣∣∣∣ f (τ,φ(τ,a,y0)
)− f

(
τ,φ(τ, ã,y0)

)∣∣∣∣Δτ

� M |ã−a|+
∫ t

ã
g

(∣∣φ(τ,a,y0)−φ(τ, ã,y0)
∣∣)Δτ,
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which yields

∣∣φ(t,a,y0)−φ(t, ã,y0)
∣∣ � G−1

(
G

(
M |ã−a|)+ t− ã

)
. (5.3)

Now ∣∣φ(t, ã,y0)−φ(s, ã,y0)
∣∣ =

∣∣∣∣∫ t

s
f (τ, ã,y0)Δτ

∣∣∣∣
�

∫ t

s

∣∣ f (τ, ã,y0)
∣∣Δτ.

That is, ∣∣φ(t, ã,y0)−φ(s, ã,y0)
∣∣ � M |t− s| , (5.4)

where M = supτ∈T

∣∣ f (τ, ã,y0)
∣∣ . So using (5.2), (5.3) and (5.4), (5.1) becomes

∣∣φ(t,a,x0)−φ(s, ã,y0)
∣∣ � G−1

(
G

( |x0− y0|
)
+ t−a

)
+G−1

(
G

(
M |ã−a|)+ t−a

)
+M |t− s| .

(5.5)

This completes the proof. �
Now we introduce the concept of Henstock–Kurzweil Δ-equi-integrability and a

result needed for the convergence of solutions of equation (1.1).

DEFINITION 12. A family
(
fn

)
of functions is said to be Henstock–Kurzweil Δ-

equi-integrable on T provided given any ε > 0, there exists a Δ-gauge, δ , for T such
that for all n ∈ N ∣∣∣∣∫ b

a
fn −

k

∑
i=1

fn(ξi)(ti − ti−1)
∣∣∣∣ < ε

for all δ -fine partitions P =
{

ξi, [ti−1,ti]T
}k

i=1 of T .

THEOREM 9. If
(
fn

)
is the sequence of Henstock–Kurzweil Δ-equi-integrable

functions on T such that fn → f on T , then f is Henstock–Kurzweil Δ-integrable on
T and limn→∞

∫ b
a fn(t)Δt =

∫ b
a f (t)Δt .

Proof. Since the sequence
(
fn

)
is of Henstock–Kurzweil Δ-equi-integrable func-

tions on T , for given ε > 0, there is a Δ-gauge, δ , for T such that for all n ∈ N∣∣∣∣∫ b

a
fn −

k

∑
i=1

fn(ξi)(ti − ti−1)
∣∣∣∣ < ε

for all δ -fine partitions P =
{

ξi, [ti−1,ti]T
}k

i=1 of T .

We claim that the sequence

(∫ b
a fn(t)Δt

)
is convergent. We have
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∣∣∣∣∫ b

a
fn(t)Δt−

∫ b

a
fm(t)Δt

∣∣∣∣ =
∣∣∣∣∫ b

a
fn(t)Δt−

k

∑
i=1

fn(ξi)(ti − ti−1)

+
k

∑
i=1

fn(ξi)(ti − ti−1)−
k

∑
i=1

fm(ξi)(ti − ti−1)

+
k

∑
i=1

fm(ξi)(ti − ti−1)−
∫ b

a
fm(t)Δt

∣∣∣∣
�

∣∣∣∣∫ b

a
fn(t)Δt−

k

∑
i=1

fn(ξi)(ti − ti−1)
∣∣∣∣

+
∣∣∣∣ k

∑
i=1

fn(ξi)(ti − ti−1)−
k

∑
i=1

fm(ξi)(ti − ti−1)
∣∣∣∣

+
∣∣∣∣ k

∑
i=1

fm(ξi)(ti − ti−1)−
∫ b

a
fm(t)Δt

∣∣∣∣
< ε + ε +

∣∣∣∣ k

∑
i=1

fn(ξi)(ti − ti−1)−
k

∑
i=1

fm(ξi)(ti − ti−1)
∣∣∣∣

= 2ε +
k

∑
i=1

∣∣ fn(ξi)− fm(ξi)
∣∣ |ti − ti−1| .

Since fn → f on T , for given ε > 0, there exists n0 ∈ N such that for all m, n � n0

and for all ξi ∈ T , we have
∣∣ fn(ξi)− fm(ξi)

∣∣ < ε/(b−a) . Therefore∣∣∣∣∫ b

a
fn(t)Δt−

∫ b

a
fm(t)Δt

∣∣∣∣ < 2ε +
k

∑
i=1

ε
(b−a)

|ti − ti−1|

< 2ε + ε = 3ε.

That is,
∣∣∣∫ b

a fn(t)Δt− ∫ b
a fm(t)Δt

∣∣∣ < 3ε . Therefore
(∫ b

a fn(t)Δt
)

is a Cauchy sequence

in R and hence it is convergent.
Let limn→∞

∫ b
a fn(t)Δt = A . Now∣∣∣∣ k

∑
i=1

f (ξi)(ti − ti−1)−A

∣∣∣∣ =
∣∣∣∣ k

∑
i=1

f (ξi)(ti − ti−1)−
k

∑
i=1

fn(ξi)(ti − ti−1)

+
k

∑
i=1

fn(ξi)(ti − ti−1)−A

∣∣∣∣
�

∣∣∣∣ k

∑
i=1

f (ξi)(ti − ti−1)−
k

∑
i=1

fn(ξi)(ti − ti−1)
∣∣∣∣

+
∣∣∣∣ k

∑
i=1

fn(ξi)(ti − ti−1)−A

∣∣∣∣
< ε + ε = 2ε.
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That is,
∫ b
a f (t)Δt = A . Hence f is Henstock–Kurzweil Δ-integrable on T and

limn→∞
∫ b
a fn(t)Δt =

∫ b
a f (t)Δt . This completes the proof. �

Using the above result we have the following.

THEOREM 10. Assume that
(
fn

)
is the sequence of Henstock–Kurzweil Δ-equi-

integrable functions on T such that fn → f on T . For each n∈N , fn : T×Br(x0)→R

is such that
∣∣ fn(t,x)− fn(t,y)

∣∣ � g
( |x− y|) , where g : T → [0,∞) is a continuous

increasing function with g(0) = 0 and g(t) > 0 for t ∈ T . For each n ∈ N , (xn) is
solution of {

xΔ
n (t) = fn

(
t,xn(t)

)
, t ∈ T,

xn(a) = x0.
(5.6)

Then there is a subsequence
(
yn

)
of

(
xn

)
and a function x : T → R such that yn → x

and x satisfies (1.1) in T .

Proof. From the assumption we have

xn(t) = xn(a)+
∫ t

a
fn

(
τ,xn(τ)

)
Δτ,

which yields ∣∣xn(t)− xn(a)
∣∣ �

∫ t

a

∣∣∣∣ fn(τ,xn(τ)
)∣∣∣∣Δτ. (5.7)

Now ∣∣∣∣ fn(τ,xn(τ)
)∣∣∣∣ =

∣∣∣∣ fn(τ,xn(a)
)
+ fn

(
τ,xn(τ)

)− fn
(
τ,xn(a)

)∣∣∣∣
�

∣∣∣∣ fn(τ,xn(a)
)∣∣∣∣+ ∣∣∣∣ fn(τ,xn(τ)

)− fn
(
τ,xn(a)

)∣∣∣∣
�

∣∣∣∣ fn(τ,xn(a)
)∣∣∣∣+g

(∣∣xn(τ)− xn(a)
∣∣).

Then ∫ t

a

∣∣∣∣ fn(τ,xn(τ)
)∣∣∣∣Δτ � M +

∫ t

a
g

(∣∣xn(τ)− xn(a)
∣∣)Δτ,

where M =
∫ b
a

∣∣∣∣ fn(τ,xn(a)
)∣∣∣∣Δτ . By Theorem 6 we have

∫ t

a

∣∣∣∣ fn(τ,xn(τ)
)∣∣∣∣Δτ � G−1(G(M)+ t−a

)
,

where GΔ(u) = 1/g(u) . So equation (5.7) becomes∣∣xn(t)− xn(a)
∣∣ � G−1(G(M)+ t−a

)
.
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Therefore
|xn(t)| � |xn(t)− xn(a)|+ |xn(a)|

� G−1 (G(M)+ t−a)+ x0

= α,

where α = G−1
(
G(M)+b−a

)
+ x0 . Therefore

(
xn

)
is uniformly bounded on T .

Now for any given ε > 0 we can find δ > 0 such that if |t − t1| < δ , then

∣∣xn(t)− xn(t1)
∣∣ =

∣∣∣∣xn(a)+
∫ t

a
fn

(
τ,xn(τ)

)
Δtτ − xn(a)−

∫ t1

a
fn

(
τ,xn(τ)

)
Δτ

∣∣∣∣
=

∣∣∣∣∫ t

t1
fn

(
τ,xn(τ)

)
Δτ

∣∣∣∣
�

∫ t

t1

∣∣∣∣ fn(τ,xn(τ)
)∣∣∣∣Δτ

� L |t− t1| < L δ∣∣xn(t)− xn(t1)
∣∣ < ε where ε = L δ . Therefore

(
xn

)
is equicontinuous on T .

Thus by Arzelá–Ascoli’s theorem there exists a subsequence
(
yn

)
of

(
xn

)
such

that yn → x uniformly on T .
Also by hypothesis,

yn(t) = x0 +
∫ t

a
fn(τ,yn(τ))Δτ.

Since fn → f on T and
(
fn

)
is Henstock–Kurzweil Δ-equi-integrable on T , by The-

orem 9 it follows that

lim
n→∞

yn(t) = x0 + lim
n→∞

∫ t

a
fn

(
τ,yn(τ)

)
Δτ

x(t) = x0 +
∫ t

a
lim
n→∞

fn
(
τ,yn(τ)

)
Δτ

x(t) = x0 +
∫ t

a
f
(
τ,x(τ)

)
Δτ.

That is, {
xΔ(t) = f

(
t,x(t)

)
, t ∈ T,

x(a) = x0.

This completes the proof. �
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