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BOUNDS FOR GLOBAL SOLUTIONS OF A REACTION DIFFUSION

SYSTEM WITH THE ROBIN BOUNDARY CONDITIONS

KOSUKE KITA AND MITSUHARU ÔTANI

(Communicated by P. Souplet)

Abstract. In this paper, we are concerned with the large-time behavior of solutions of a reaction
diffusion system arising from a nuclear reactor model with the Robin boundary conditions, which
consists of two real-valued unknown functions. It is shown that global solutions of this system
are uniformly bounded in a suitable norm with respect to time.

1. Introduction

We consider the asymptotic behavior of global solutions of the initial boundary
value problem for a reaction diffusion system:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂t u1−Δu1 = u1u2−bu1, t > 0, x ∈ Ω,

∂t u2−Δu2 = au1, t > 0, x ∈ Ω,

∂νu1 + αu1 = ∂νu2 + βu2 = 0, t > 0, x ∈ ∂Ω,

u1(0,x) = u10(x) � 0, u2(0,x) = u20(x) � 0, x ∈ Ω.

(1)

Here Ω is a bounded domain in R
N with smooth boundary ∂Ω , and ν denotes the unit

outward normal vector on ∂Ω . Furthermore u1 , u2 are real-valued unknown functions
and a , b are given positive constants. We also assume α � 0 and β > 0. This prob-
lem is introduced in 1968 by Kastenberg and Chambré [13] for the purpose to give
mathematical model of a nuclear reactor, where u1 represents the neutron flux and u2

represents the fuel temperature.
This model is studied by many authors under various (linear) boundary conditions,

see, e.g., [6], [7], [10], [11], [12], [24] and [25]. They investigated the existence of
positive steady-state solutions and the asymptotic behavior of solutions. In our previous
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work [14], we also studied the initial-boundary value problem for this system with
nonlinear boundary conditions:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂t u1−Δu1 = u1u2−bu1, t > 0, x ∈ Ω,

∂t u2−Δu2 = au1, t > 0, x ∈ Ω,

∂νu1 + αu1 = ∂νu2 + β |u2|γ−2u2 = 0, t > 0, x ∈ ∂Ω,

u1(0,x) = u10(x) � 0, u2(0,x) = u20(x) � 0, x ∈ Ω,

(2)

where γ � 2. We showed the existence and the ordered uniqueness of positive sta-
tionary solution for N ∈ [1,5] . For nonstationary problem, we proved that any positive
stationary solution plays a role of threshold to separate global solutions and finite time
blowing-up solutions. More precisely, if the initial data is less than or equal to positive
stationary solutions, then solutions of (2) exists globally and tends to zero as t → ∞ ,
and if the initial data is strictly larger than positive stationary solutions, then solutions
of (2) blow up in finite time. For general initial data, however, this result does not say
anything about the asymptotic behavior of global solutions. When we assume that so-
lutions exist globally, it is natural to ask whether global solutions blow up at ∞ or not.
We here restrict ourselves to the case where γ = 2, for the technical reason. Bounds for
global solutions of this system with the homogeneous Dirichlet boundary conditions
is already studied by Quittner [22] for the case where N = 2. This strong restriction
on N arises from applying Hardy type inequality (see [4]). As for the Robin boundary
conditions, by making use of the good properties of the first eigenfunction of Laplacian
with Robin boundary conditions, we can discuss the case where N = 2,3.

This kind of problem is well known for the scalar problem:⎧⎪⎨
⎪⎩

∂t u(t,x)−Δu(t,x) = f (u(t,x)), t > 0, x ∈ Ω,

u(t,x) = 0, t > 0, x ∈ ∂Ω,

u(0,x) = u0(x), x ∈ Ω.

(3)

For simplicity, assume that f (u) = |u|p−2u and p is Sobolev subcritical, that is, p ∈
(2, pS) , where pS is the Sobolev critical exponent defined by pS = ∞ for N = 1,2 ;
pS = 2N

N−2 for N = 3. The boundedness of global solutions of (3) was first discussed by
[19, 20] in the abstract setting of the form ut + ∂ϕ1(u)− ∂ϕ2(u) = 0 in L2(Ω) . Here
∂ϕ i are subdifferentials of lower semi-continuous convex and homogeneous function-
als ϕ i ( i = 1,2) on L2(Ω) , where it is shown that every global solution of (3) is
uniformly bounded in H1

0 (Ω) with respect to time. Ni-Sacks-Tavantzis [18] studied
(3) for the case where Ω is convex domain and proved every positive global solution of
(3) is uniformly bounded in L∞(Ω) with respect to time provided that p ∈ (2,2+ 2

N ) .
Furthermore they also showed that if p � pS , then (3) has a global solution whose L∞

norm goes to ∞ as t → ∞ in the case where N � 3. Cazenave-Lions [5] dealt with more
general nonlinear term f (u) (including f (u) = |u|p−2u ) and showed that every global
solution allowing sing-changed solution is bounded in L∞(Ω) uniformly in time pro-
vided that p ∈ (2, pCL) , where pCL = ∞ when N = 1 ; pCL = 2+ 12

3N−4 when N � 2. (
Note that pCL � pS for any N ∈N ). Giga removed this restriction on p in his paper [9]
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for positive global solutions, that is, he showed every positive global solution of (3) is
uniformly bounded in L∞(Ω) for any p∈ (2, pS) . Quittner [23] removed the restriction
of the positivity of solutions, i.e., he proved that every global solution of (3) (allowing
sing-changed solution) is uniformly bounded in L∞(Ω) for any p ∈ (2, pS) .

Proofs for the boundedness of global solutions of (3) deeply rely on the fact that
the energy functional E(u) , defined by E(u) = 1

2

∫
Ω |∇u|2dx− 1

p

∫
Ω |u|pdx , becomes a

Lyapunov function, in other words, (3) possesses the variational structure. In addition
to that, in [9] the rescaling argument is introduced and in [23] the bootstrap argument
based on the interpolation and the maximal regularity is used.

Unfortunately for our system, we can not apply the arguments similar to those of
[9] and [23], since (1) does not possess the variational structure.

To cope with this difficulty, making much use of the special form of our system,
we first show the uniform bound for the L1 -norm with the positive weight ϕ1 , the first
eigenfunction of the Laplace operator with the Robin boundary condition. To derive the
uniform H1 -bound, we rely on some energy method with a special device (see Lemma
3.2). Furthermore by applying Moser’s iteration scheme such as in Nakao [17], we
derive the uniform L∞ -bound via H1 -bound.

2. Existence of local solutions

Throughout this paper, we denote by ‖ · ‖p and ‖ · ‖ the norm in Lp(Ω) (1 �
p � ∞) and H1(Ω) respectively. We also simply write u(t) instead of u(t, ·) . In
this section, we prepare a couple of results concerning the local well-posedness. The
following result is proved in [14] as Theorem 3.1.

THEOREM 2.1. Let (u10,u20) ∈ (L∞(Ω))2 , then there exists T = T (‖ui0‖∞) >
0 ( i = 1,2 ) such that (2) possesses a unique solution (u1,u2) ∈ (L∞(0,T ;L∞(Ω))∩
C([0,T ];L2(Ω)))2 satisfying

√
t∂t u1,

√
t∂t u2,

√
tΔu1,

√
tΔu2 ∈ L2(0,T ;L2(Ω)). (4)

Furthermore, if the initial data is nonnegative, then the local solution (u1,u2) for (2)
is nonnegative.

In order to treat the case where the data belong to H1(Ω) , we need to fix some abstract
setting. Let H := L2(Ω)×L2(Ω) and for u = (u1,u2) ∈ H we put

D(φ) := { u ∈ H ; u1,u2 ∈ H1(Ω), u2 ∈ Lγ (∂Ω)},

φ(u) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2

∫
Ω
(|∇u1(x)|2+b|u1(x)|2+ |∇u2(x)|2)dx

+
∫

∂Ω

(
α
2
|u1(x)|2 +

β
γ
|u2(x)|γ

)
dσ if u ∈ D(φ),

+∞ if u �∈ D(φ).



230 K. KITA AND M. ÔTANI

Then φ is a lower semi-continuous convex function from H into [0,∞) and its subdif-
ferential ∂φ is given by

∂φ(u) = {w ∈ H ; w = (−Δu1 +bu1,−Δu2)} ∀u ∈ D(∂φ),

D(∂φ) = { u = (u1,u2) ; u1,u2 ∈ H2(Ω), ∂νu1 + αu1 = ∂νu2 + β |u2|γ−2u2 = 0 }.

Then we have

THEOREM 2.2. Let N � 5 . Assume that (u10,u20)∈D(φ) . Then there exists T =
T (φ(u0)) > 0 such that (2) possesses a unique solution (u1,u2) ∈ (C([0,T ];L2(Ω)))2

satisfying
∂tu1,∂t u2,Δu1,Δu2 ∈ L2(0,T ;L2(Ω)). (5)

Furthermore, if the initial data is nonnegative, then the local solution (u1,u2) for (2)
is nonnegative.

Proof. Put u(t) = (u1(t),u2(t)) and

B(u) := { b ∈ H ; b = (−u1u2,−au1)},

then (2) can be reduced to the following abstract evolution equation in H :

d
dt

u(t)+ ∂φ(u(t))+B(u(t)) = 0, u(0) = (u10,u20). (6)

We are going to apply Theorem II of [21]. To do this, we have to check three assump-
tions. The compactness assumption (A.1) requires that the set { u ∈ H ; φ(u)+ |u|2H �
L } is compact in H for all L > 0, which is assured by the Rellich-Kondrachov theo-
rem. The demiclosedness assumption (A.2) on B(u) is assured by the continuity of the
mapping (u1,u2) 	→ (−u1u2,−au1) in R

2 .
The last assumption to check is the boundedness assumption (A.4):

|B(u)|2H � k |∂φ(u)|2H + �(φ(u)+ |u|H) ∀u ∈ D(∂φ), (7)

where k ∈ [0,1) and �(·) : [0,∞) → [0,∞) is a monotone increasing function. We note
that

|B(u)|2H � ‖u1‖2
4‖u2‖2

4 +a2‖u1‖2
2, ∃C > 0 such that C(‖u1‖2 +‖u2‖2) � φ(u)+1.

(8)
Hence for N � 4, (7) holds true with k = 0 and �(r) = Cr2 . As for the case where
N = 5, Gagliardo-Nirenberg interpolation inequality gives

‖v‖4 � C‖v‖
1
4
H2‖v‖

3
4 .

Then by Young’s inequality, (7) is satisfied with �(r) = Cr3 . Thus the local existence
part is verified.
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To prove the uniqueness part, let u1 = (u1
1,u

1
2), u2 = (u2

1,u
2
2) be solutions of (2)

and put δui = u1
i −u2

i (i = 1,2). Then δui satisfy

∂tδu1−Δδu1 +bδu1 = δu1u
1
2 + δu2u

2
1, (9)

∂tδu2−Δδu2 = aδu1, (10)

∂νδu1 + αδu1 = ∂ν δu2 + β (|u1
2|γ−2u1

2−|u2
2|γ−2u2

2) = 0. (11)

Multiplying (9) by δu1 and (10) by δu2 , we have by (11)

1
2

d
dt
‖δu1(t)‖2

2 +‖∇δu1‖2
2 + α‖δu1‖2

2,∂Ω +b‖δu1‖2
2

�
∫

Ω
(|δu1|2 |u1

2|+ |δu1| |δu2| |u2
1|)dx, (12)

1
2

d
dt
‖δu2(t)‖2

2 +‖∇δu2‖2
2 + β

∫
∂Ω

(|u1
2|γ−2u1

2−|u2
2|γ−2u2

2)δu2 dσ

� a
∫

Ω
|δu1| |δu2|dx, (13)

where ‖v‖2
2,∂Ω =

∫
∂Ω v2dσ . Let N � 5, then since H1(Ω) and H2(Ω) are embedded

in L
10
3 (Ω) and L10(Ω) respectively, by Young’s inequality we find that for any ε > 0

there exists Cε > 0 such that∫
Ω
|δui| |δu j| |w|dx � C ‖δui‖ ‖δu j‖2 ‖w‖H2(Ω)

� ε (‖∇δui‖2
2 +‖δui‖2

2)+Cε‖δu j‖2
2‖w‖2

H2(Ω).

Hence, by adding (12) and (13), we obtain

d
dt

(‖δu1(t)‖2
2+‖δu2(t)‖2

2) � C(‖u1
2‖2

H2(Ω)+‖u2
1‖2

H2(Ω)+1) (‖δu1(t)‖2
2+‖δu2(t)‖2

2),

Thus since u1
2,u

2
1 ∈ L2(0,T ;H2(Ω)) , the uniqueness follows from Gronwall’s inequal-

ity. The nonnegativity of solutions can be proved by exactly the same argument as in
the proof of Theorem 3.1 in [14].

3. Main result and proof

In what follows we always consider the case where γ = 2 and we are concerned
with global solutions of (1). We put H1 = {(w1,w2) ∈ H1(Ω)×H1(Ω) ; w1,w2 �
0,w1,w2 �≡ 0} and V = {(w1,w2) ∈ L∞(Ω)× L∞(Ω) ; w1,w2 � 0,w1,w2 �≡ 0} . Our
main theorem can be stated as follows.

THEOREM 3.1. Let N = 2,3 and α � 2β . Assume that (u10,u20) ∈ H1 and
(u1,u2) is the corresponding global solution of (1) satisfying the same regularity given
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in Theorem 2.2. Then there exist constants Mi = Mi(‖u10‖,‖u20‖) > 0 (i = 1,2) such
that

sup
t�0

‖u1(t)‖ � M1, sup
t�0

‖u2(t)‖ � M2. (14)

Moreover if (u10,u20) ∈ V and (u1,u2) is the corresponding global solution of (1)
satisfying the same regularity given in Theorem 2.1. Then there exist constants M′

i =
M′

i(‖u10‖∞,‖u20‖∞) > 0 (i = 1,2) such that

sup
t�0

‖u1(t)‖∞ � M′
1, sup

t�0
‖u2(t)‖∞ � M′

2. (15)

We divide the proof into several steps. We first derive the L1 -estimate of the solutions.
In this step, we rely on the properties of the first eigenvalue and the corresponding
eigenfunction of −Δ with the Robin boundary conditions :

LEMMA 3.2. ([8]) Let λ1 and ϕ1 be the first eigenvalue and the corresponding
eigenfunction for the problem:{

−Δϕ = λ ϕ , x ∈ Ω,

∂νϕ + γϕ = 0, x ∈ ∂Ω,
(16)

where Ω is smooth bounded domain in R
N and γ > 0 . Then λ1 > 0 and there exists a

constant Cγ > 0 such that

ϕ1(x) � Cγ x ∈ Ω.

Actually, it is easy to see that ϕ1 > 0 in Ω by the strong maximum principle as
the same method for the eigenvalue problem with the Dirichlet Laplacian. Furthermore
suppose that there exists x0 ∈ ∂Ω such that ϕ1(x0) = 0. Then the boundary condition
assures ∂ν ϕ1(x0) = −γϕ1(x0) = 0. On the other hand, we know ∂ν ϕ1(x0) < 0 by
Hopf’s strong maximum principle. This is contradiction, i.e., ϕ1(x) > 0 on Ω .

The second step is to derive uniform L2 -estimates and third one is to derive uni-
form H1 -estimates. In the last step, we get uniform L∞ bounds for global solutions of
(1) applying Moser’s iteration scheme (see [1] and [17]).

(1) Uniform estimates in L1

Let λ1 and ϕ1 be the first eigenvalue and the corresponding eigenfunction of (16)
respectively. We here normalize ϕ1 so that ‖ϕ1‖1 = 1. Multiplying ϕ1 by the first and
second equations of (1) , we get

(∫
Ω

u1ϕ1dx
)

t
+(b+ λ1)

∫
Ω

u1ϕ1dx+(α − γ)
∫

∂Ω
u1ϕ1dσ =

∫
Ω

u1u2ϕ1dx, (17)

(∫
Ω

u2ϕ1dx
)

t
+ λ1

∫
Ω

u2ϕ1dx+(β − γ)
∫

∂Ω
u2ϕ1dσ = a

∫
Ω

u1ϕ1dx. (18)
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Multiplying (17) by a and substituting (18) and equation (1) to the second term of the
left-hand side and the right-hand side respectively, we have

a
(∫

Ω
u1ϕ1dx

)
t
+(b+ λ1)

((∫
Ω

u2ϕ1dx
)

t
+ λ1

∫
Ω

u2ϕ1dx+(β − γ)
∫

∂Ω
u2ϕ1dσ

)

+a(α − γ)
∫

∂Ω
u1ϕ1dσ =

∫
Ω

(∂t u2−Δu2)u2ϕ1dx (19)

Then differentiating (18) with respect to t once and substituting (19) to the right-hand
side, we obtain(∫

Ω
u2ϕ1dx

)
tt
+(b+2λ1)

(∫
Ω

u2ϕ1dx
)

t
+λ1(b+λ1)

∫
Ω

u2ϕ1dx

+a(α−γ)
∫

∂Ω
u1ϕ1dσ+(β−γ)

(∫
∂Ω

u2ϕ1dσ
)

t
+(β−γ)(b+λ1)

∫
∂Ω

u2ϕ1dσ

=
∫

Ω
(∂t u2−Δu2)u2ϕ1dx

=
1
2

(∫
Ω

u2
2ϕ1dx

)
t
+

∫
Ω
|∇u2|2ϕ1dx+

λ1

2

∫
Ω

u2
2ϕ1dx+

(
β− γ

2

)∫
∂Ω

u2
2ϕ1dσ . (20)

Finally choosing γ = α+2β
2 > 0, we deduce(∫

Ω
u2ϕ1dx

)
tt

+(b+2λ1)
(∫

Ω
u2ϕ1dx

)
t
+ λ1(b+ λ1)

∫
Ω

u2ϕ1dx

− α
2

(∫
∂Ω

u2ϕ1dσ
)

t
− α

2
λ1

∫
∂Ω

u2ϕ1dσ

� 1
2

(∫
Ω

u2
2ϕ1dx

)
t
+

λ1

2

∫
Ω

u2
2ϕ1dx.

(21)

We now set

y(t) :=w′(t)+(b+λ1)w(t)−1
2

∫
Ω

u2
2 ϕ1 dx−α

2

∫
∂Ω

u2 ϕ1 dσ , w(t) :=
∫

Ω
u2 ϕ1 dx.

Since ∂t u2 ∈ L2(0,T ;L2(Ω)) implies that there exists s0 ∈ (0,1) such that |y(s0)|< ∞ .
Then (21) yields

y′(t) � −λ1 y(t), hence y(t) � y(s0) e−λ1(t−s0) � −|y(s0)| =: −C0 ∀t � s0.

Hence by virtue of Schwarz’s inequality and Young’s inequality, we get

−C0 � y(t) = w′(t)+ (b+ λ1)w(t)− 1
2

∫
Ω

u2
2ϕ1 dx− α

2

∫
∂Ω

u2ϕ1 dσ

� w′(t)+ (b+ λ1)w(t)− 1
2
w2(t)

� w′(t)− 1
4

w2(t)+ (b+ λ1)2 ∀t � s0,
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i.e.,

w′(t) � 1
4
w2(t)−C1, C1 := C0 +(b+ λ1)2 > 0 ∀t � s0, (22)

whence follows

w(t) � 2C
1
2
1 =: C2 ∀t � s0, (23)

Indeed, if there exists t1 � s0 such that

1
4
w2(t1)−C1 > 0, (24)

then from (22) , (24) we can deduce that there exists t2 > t1 such that

lim
t→t2

w(t) = +∞,

which contradicts the assumption that w(t) exists globally. Thus (23) holds and the
following global bound for w(t) is established.

sup
t�0

∫
Ω

u2 ϕ1 dx � C2 := max
(
C2, max

0�s�s0
w(s)

)
. (25)

Next we derive a uniform estimate for
∫

Ω u1ϕ1dx . Using the facts that u1 =
1
a(∂t u2−Δu2) and (u1,u2) are nonnegative in (17), we can get

d
dt

(∫
Ω

u1ϕ1dx
)

� −(b+ λ1)
∫

Ω
u1ϕ1 dx = −(b+ λ1)

1
a

∫
Ω
(∂t u2−Δu2)ϕ1 dx

= −b+ λ1

a
w′(t)− (b+ λ1)λ1

a
w(t)+

(b+ λ1)α
2a

∫
∂Ω

u2ϕ1dσ

� −b+ λ1

a
w′(t)− (b+ λ1)λ1

a
w(t).

For η ∈ (0,1) , integrating this inequality over (t,t + η) and using (25), we obtain

[∫
Ω

u1ϕ1dx

]t+η

t
� −b+ λ1

a
(w(t + η)−w(t))− (b+ λ1)λ1

a

∫ t+η

t
w(τ)dτ

� −b+ λ1

a
C2− (b+ λ1)λ1

a
C2 =: −C3,

where C3 > 0 is independent of t and η . This implies that

∫
Ω

u1(t)ϕ1 dx � C3 +
∫

Ω
u1(t + η)ϕ1 dx. (26)
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Integrating (26) over η ∈ (0,1) and using integration by parts, we get

∫
Ω

u1(t)ϕ1dx � C3+
∫ 1

0

∫
Ω

u1(t+η)ϕ1 dx dη

=C3+
∫ t+1

t

∫
Ω

u1(τ)ϕ1 dx dτ

=C3+
1
a

∫ t+1

t

∫
Ω
(∂t u2−Δu2)ϕ1 dx dτ

=C3+
1
a

(w(t +1)−w(t))+
λ1

a

∫ t+1

t
w(τ)dτ− α

2a

∫ t+1

t

∫
∂Ω

u2ϕ1 dσ dτ

� C3+
1+ λ1

a
C2 =: C4,

which concludes that

sup
t�0

∫
Ω

u1ϕ1dx � C4. (27)

Thus, from (25) , (27) and Lemma 3.2, we can derive the following estimates:

sup
t�0

‖u1(t)‖1 � C5, sup
t�0

‖u2(t)‖1 � C6. (28)

(2) Uniform estimates in L2

We here try to get L2 uniform bounds of solutions of (1) . Since (17) gives

∫
Ω

u1u2ϕ1dx � d
dt

(∫
Ω

u1ϕ1 dx
)

+(b+ λ1)
∫

Ω
u1ϕ1 dx,

it follows from (27) that

sup
t�0

∫ t+1

t

∫
Ω

u1u2 dx dτ � C7. (29)

Multiplying the second equation of (1) by u2 and using integration by parts, we get

1
2

d
dt
‖u2(t)‖2

2 +‖∇u2(t)‖2
2 + β‖u2(t)‖2

2,∂Ω = a
∫

Ω
u1u2 dx.

Hence by virtue of Poincaré - Friedrichs’ inequality ‖v‖2
2 � C−1

F (‖∇v‖2
2 + β‖v‖2

2,∂Ω) ,
we have

1
2

d
dt
‖u2(t)‖2

2 +CF‖u2(t)‖2
2 � a

∫
Ω

u1u2 dx. (30)

Applying Gronwall’s inequality to (30) , we get

‖u2(t)‖2
2 � e−2CFt‖u20‖2

2 +
∫ t

0
2a

(∫
Ω

u1u2 dx
)
e−2CF (t−τ) dτ. (31)
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In order to obtain uniform bounds of L2 -norm for u2 with respect to t , we need to
confirm that the second term of right hand side of (31) is bounded. For any t � 0, we
can express t = n+ ε with some n ∈ N∪{0} and ε ∈ [0,1) . Then, by virtue of (29) ,
it follows that

∫ t

0

(∫
Ω

u1u2dx
)
e−2CF (t−τ) dτ

=
∫ t

t−1

(∫
Ω

u1u2 dx
)
e−2CF (t−τ) dτ +

∫ t−1

t−2

(∫
Ω

u1u2 dx
)
e−2CF (t−τ) dτ

+ · · ·+
∫ t−(n−1)

t−n

(∫
Ω

u1u2 dx
)
e−2CF (t−τ) dτ +

∫ t−n

0

(∫
Ω

u1u2 dx
)
e−2CF (t−τ) dτ

� e−0
∫ t

t−1

(∫
Ω

u1u2 dx
)
dτ + e−2CF

∫ t−1

t−2

(∫
Ω

u1u2 dx
)
dτ

+ · · ·+ e−2(n−1)CF

∫ t−(n−1)

t−n

(∫
Ω

u1u2 dx
)
dτ + e−2nCF

∫ t−n

0

(∫
Ω

u1u2 dx
)
dτ

� C7

(
1+ e−2CF + e−4CF + · · ·+ e−2nCF

)

= C7
1− e−2(n+1)CF

1− e−2CF
� C7

1− e−2CF
.

Therefore we obtain from (31)

‖u2(t)‖2
2 � e−2CFt‖u20‖2

2 +
2aC7

1− e−2CF
∀t � 0.

This implies that there exists C8 > 0 such that

sup
t�0

‖u2(t)‖2 � C8. (32)

Note that the above argument can be done without any restriction on dimension N .

We next derive a uniform L2 -estimate of u1 for N � 3. Multiplying the first
equation of (1) by u1 and using integrating by parts, we have

1
2

d
dt
‖u1(t)‖2

2 +‖∇u1(t)‖2
2 + α‖u1(t)‖2

2,∂Ω +b‖u1(t)‖2
2 =

∫
Ω

u2
1u2 dx.

We here adopt (‖∇v‖2
2 +b‖v‖2

2)
1/2 as the H1 norm for u1 . By using Hölder’s inequal-

ity, the interpolation inequality and the embedding theorem (‖v‖6 � C9‖v‖ ), it holds
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that

1
2

d
dt
‖u1(t)‖2

2 +‖u1(t)‖2 �
∫

Ω
u2

1u2 dx

� ‖u1(t)‖2
4‖u2(t)‖2

� ‖u1(t)‖
1
5
1 ‖u1(t)‖

9
5
6 ‖u2(t)‖2

� C
1
5
5 C8C

9
5
9 ‖u1(t)‖ 9

5 � 1
2
‖u1(t)‖2 +C10,

which implies
1
2

d
dt
‖u1(t)‖2

2 +
1
2
‖u1(t)‖2 � C10.

Hence we obtain
‖u1(t)‖2

2 � e−t‖u10‖2
2 +2C10

(
1− e−t) ,

i.e.,
sup
t�0

‖u1(t)‖2 � C11. (33)

(3) Uniform estimates in H1

Now we are in the position to derive a uniform H1 bounds of solutions of (1). Multi-
plying the second equation of (1) by −Δu2 , we obtain

1
2

d
dt

(‖∇u2(t)‖2
2 + β‖u2(t)‖2

2,∂Ω)+‖Δu2(t)‖2
2 = −a

∫
Ω

u1Δu2 dx

� 1
2
‖Δu2(t)‖2

2 +
a2

2
‖u1(t)‖2

2.

Here we define the H1 -norm of u2 by

‖u2‖2 := ‖∇u2‖2
2 + β‖u2‖2

2,∂Ω.

Then it holds that CF‖u2‖2 � ‖Δu2‖2
2 , since

(CF)
1
2 ‖u2‖2 ‖u2‖ � ‖∇u2‖2

2 + β‖u2‖2
2,∂Ω = (−Δu2,u2) � ‖Δu2‖2‖u2‖2,

where (·, ·) denotes the inner product of L2 . Hence we obtain

d
dt
‖u2(t)‖2 +CF‖u2(t)‖2 � a2C2

11,

whence follows
sup
t�0

‖u2(t)‖ � C12. (34)
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In order to derive the uniform H1 -estimate for u1 , we prepare the following func-
tional φ1(u1) :

φ1(u1) :=
1
2
(‖∇u1‖2

2 + α ‖u1‖2
2,∂Ω +b ‖u1‖2

2) u1 ∈ H1(Ω).

Then it is easy to see

φ1(u1) =
1
2
(‖∇u1‖2

2 + α ‖u1‖2
2,∂Ω +b ‖u1‖2

2) � b
2
‖u1‖2

2, (35)

‖−Δu1 +b u1‖2‖u1‖2 � |(−Δu1 +b u1,u1)| = 2 φ1(u1) � 2
√

φ1(u1)

√
b
2
‖u1‖2,

whence follows
2b φ1(u1) � ‖−Δu1 +b u1‖2

2. (36)

Multiplication of the first equation of (1) by −Δu1 +bu1 and integration over Ω yield

(∂t u1,−Δu1 +b u1)+‖−Δu1 +b u1‖2
2 = (u1u2,−Δu1 +b u1)

� 1
2
(‖u1u2‖2

2 +‖−Δu1 +b u1‖2
2). (37)

Here we note

(∂t u1,−Δu1 +b u1) =
d
dt

φ1(u1(t)).

Hence, in view of (37) and (36), we obtain

d
dt

φ1(u1(t))+b φ1(u1(t)) � 1
2
‖u1u2‖2

2.

Here by Hölder’s inequality, (32), (33), (34),(35) and Young’s inequality, we get

‖u1u2‖2
2 =

∫
Ω

u2
1 u2

2 dx =
∫

Ω
u

1
2
1 u

1
2
2 u

3
2
1 u

3
2
2 dx

�
(∫

Ω
u1u2 dx

) 1
2
(∫

Ω
u3

1u
3
2 dx

) 1
2

� C
1
2
11C

1
2
8 ‖u1(t)‖

3
2
6 ‖u2(t)‖

3
2
6

� b φ1(u1(t))+C13.

Hence it follows that

d
dt

φ1(u1(t))+
b
2

φ1(u1(t)) � C13

2
.

Therefore, applying Gronwall’s inequality, we deduce

φ1(u1(t)) � φ1(u1(0)) e−
b
2 t +

C13

b
.
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which implies that
sup
t�0

‖u1(t)‖ � C14. (38)

(4) Uniform estimates in L∞

Since Theorem 2.1 assures that there exists s1 ∈ (0,1) such that u(s1) ∈ H1(Ω) and
‖u(t)‖∞ is bounded on [0,s1] , we can assume without loss of generality that (u10,u20)∈
H1 ∩V . To derive L∞ bounds via H1 bounds, we rely on the following Alikakos -
Moser’s iteration scheme, which plays an essential role in our argument.

LEMMA 3.3. ([17]) Assume that v ∈ W 1,2
loc ([0,∞);L2(Ω))∩ L∞

loc([0,∞);L∞(Ω) ∩
H1(Ω)) satisfies

d
dt
‖v(t)‖r

r + c1r
−θ1‖|v(t)| r

2 ‖2 � c2r
θ2 (‖v(t)‖r

r +1) a.e. t ∈ [0,∞), (39)

for all r ∈ [2,∞) , where c1 > 0 and c2 , θ1 , θ2 � 0 . Then there exist some constants
d1 , d2 , d3 and d4 � 0 such that

sup
t�0

‖v(t)‖∞ � d12
θ2+(θ1+θ2)d2M0,

where M0 = max(1,d3‖v0‖∞,supt�0 ‖v(t)‖d4
2 ) .

In order to apply Lemma 3.3, we deform (1) in the following way:

∂t u1−Δu1 +u1 = u1u2−b u1 +u1, (40)

∂t u2−Δu2 +u2 = a u1 +u2. (41)

Hereafter we employ the usual H1 norm (‖∇v‖2
2+‖v‖2

2)
1/2 for u1 and u2 . Multiplying

(40) by |u1|r−2u1 (r � 2) and using integration by parts, we obtain

1
r

d
dt
‖u1(t)‖r

r +(r−1)
∫

Ω
|∇u1|2|u1|r−2 dx+

∫
∂Ω

|u1|r dσ +‖u1(t)‖r
r

=
∫

Ω
ur

1u2 dx−b ‖u1(t)‖r
r +‖u1(t)‖r

r.

Hence we have

1
r

d
dt
‖u1(t)‖r

r +(r−1)
∫

Ω
|∇u1|2|u1|r−2 dx+‖u1(t)‖r

r �
∫

Ω
|u1|r|u2|dx+‖u1(t)‖r

r.

Moreover we note

(r−1)
∫

Ω
|∇u1|2|u1|r−2 dx+‖u1(t)‖r

r =
4(r−1)

r2

∫
Ω

∣∣∇|u| r
2
∣∣2 dx+‖ |u1(t)| r

2 ‖2
2

� 4(r−1)
r2 ‖ |u1(t)| r

2 ‖2,
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where we used the fact that r � 2 implies 4(r−1)
r2

∈ (0,1] to the last inequality. Hence
we obtain

1
r

d
dt
‖u1(t)‖r

r +
4(r−1)

r2 ‖|u1(t)| r
2 ‖2 �

∫
Ω
|u1|r|u2|dx+‖u1(t)‖r

r. (42)

By using Hölder’s inequality, interpolation inequality, Sobolev’s embedding theorem
and Young’s inequality, we can get∫

Ω
|u1|r|u2|dx � ‖u1(t)‖r

3r
2
‖u2(t)‖3

� ‖u1(t)‖
r
2
r ‖u1(t)‖

r
2
3r ‖u2(t)‖3

� ‖u2(t)‖3 ‖u1(t)‖
r
2
r ‖ |u1(t)| r

2 ‖6

� C15 ‖u1(t)‖
r
2
r ‖ |u1(t)| r

2 ‖

� 2(r−1)
r2 ‖ |u1(t)| r

2 ‖2 +
C2

15 r2

8(r−1)
‖u1(t)‖r

r,

where we used the fact that ‖u2(t)‖3 is uniformly bounded with respect to time by
virtue of interpolation inequality, Sobolev’s inequality and the global bounds for ‖u2(t)‖2

and ‖u2(t)‖ . Since r � 2, it is easy to see that r2

8(r−1) � r . Then, from these observa-
tions, (42) leads to

1
r

d
dt
‖u1(t)‖r

r +
2(r−1)

r2 ‖ |u1(t)| r
2 ‖2 � C2

15 r ‖u1(t)‖r
r +‖u1(t)‖r

r,

that is,
d
dt
‖u1(t)‖r

r +‖ |u1(t)| r
2 ‖2 � C16 r2(‖u1(t)‖r

r +1
)
. (43)

Here we used the fact that 1 � 2(r−1)
r provided that r � 2. Then u1(t) satisfies (39)

with c1 = 1, c2 =C16 , θ1 = 0 and θ2 = 2. Thus applying Lemma 3.3 to (43) , we see
that there exists C17 > 0 such that

sup
t�0

‖u1(t)‖∞ � C17. (44)

Finally, applying the same argument as above for u2(t) , we have

1
r

d
dt
‖u2(t)‖r

r +
4(r−1)

r2 ‖ |u2(t)| r
2 ‖2 � a

∫
Ω

u1u
r−1
2 dx+‖u2(t)‖r

r. (45)

Since r−1
r � 1 and 1

r � 1, due to (44) we can deduce

a
∫

Ω
u1u

r−1
2 dx � aC17 ‖u2(t)‖r−1

r−1

� aC17

{r−1
r

‖u2(t)‖r
r +

1
r
|Ω|

}

� aC17

(
‖u2(t)‖r

r + |Ω|
)
,
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which implies

1
r

d
dt
‖u2(t)‖r

r +
4(r−1)

r2 ‖ |u2(t)| r
2 ‖2 � C18

(
‖u2(t)‖r

r +1
)
,

for some C18 > 0. Since 2 � 4(r−1)
r , we conclude that

d
dt
‖u2(t)‖r

r +2 ‖ |u2(t)| r
2 ‖2 � C18 r

(
‖u2(t)‖r

r +1
)
. (46)

Then we can apply Lemma 3.3 to (46) with c1 = 2, c2 = C18 , θ1 = 0 and θ2 = 1.
Thus there exists C19 > 0 such that

sup
t�0

‖u2(t)‖∞ � C19. (47)

These a priori bounds (44) and (47) complete the proof.
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[13] W. E. KASTENBERG AND P. L. CHAMBRÉ, On the stability of nonlinear space-dependent reactor
kinetics, Nucl. Sci. Eng., 31 (1968), 67–79.



242 K. KITA AND M. ÔTANI
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