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SECOND ORDER TWO–PARAMETRIC

QUANTUM BOUNDARY VALUE PROBLEMS

YOUSEF GHOLAMI

Abstract. In this paper we study second order two-parametric quantum boundary value prob-
lems. The main aims of this paper are presented in two steps. In the first step, we consider
second order two-parametric quantum boundary value problems with general nonlinearities and
by the use of Krasnoselskii fixed point theorem on positive cones we provide some sufficient con-
ditions to reach the existence, multiplicity and nonexistence of positive solutions. At the and of
this step, some illustrative examples are given to show practical implementability of the obtained
theoretical results. In the second step, we consider the corresponding two-parametric quantum
eigenvalue problems and in the light of Lyapunov inequalities, we present a lower bound esti-
mation for positive eigenvalues. We complete this step with a numerical evaluation to identify
validity of the obtained lower bound.
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