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DIRECTED VS REGULAR DIFFUSION STRATEGY:

EVOLUTIONARY STABILITY ANALYSIS OF A

COMPETITION MODEL AND AN IDEAL FREE PAIR

MD. KAMRUJJAMAN

Abstract. In this study, we consider a reaction-diffusion competition model describing popula-
tion dynamics of two competing species and the interactions between them in a heterogeneous
environment. The main goal of this paper is to study the impact of different diffusion strategies
on the outcome of competition between two populations while the first species is distributed ac-
cording to the resource function and the second population is following the regular dispersion.
We focus on how directed diffusion in the habitat influences selection. The two populations differ
in the diffusion strategies they employ as well as in their environmental intensities. We establish
the main results which determine that the competing species may either coexist, or one of them
may bring the other to extinction. If higher carrying capacity is incorporated for the directed
dispersal population then competitive exclusion of a regularly diffusing population is inevitable.
We consider the case when both populations manage to coexist and there is an ideal free pair
with identical carrying capacity, and the relevant coexistence equilibrium is a global attractor.
The coexistence solution is also presented by showing the influence of diffusion coefficients. In
a series of examples, the results have been justified and illustrated numerically.
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