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NON–COMPACTNESS AND QUADRATIC INTEGRAL EQUATIONS
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(Communicated by M. Pašić)

Abstract. Classical fixed point theorems often begin with the assumption that we have a mapping
P of a non-empty, closed, bounded, convex set G in a Banach space into itself. Then a number
of conditions are added which will ensure that there is at least one fixed point in the set G .
These fixed point theorems have been very effective with many problems in applied mathematics,
particularly for integral equations containing a term∫ t

0
A(t− s)v(t,s,x(s))ds,

because such terms frequently map sets of bounded continuous functions into compact sets. But
there is a large and important class of integral equations from applied mathematics containing
such a term with a coefficient function f (t,x) which destroys all compactness. Investigators have
then turned to Darbo’s fixed point theorem and measures of non-compactness to get a (possibly
non-unique) fixed point. In this paper:

a) We offer an elementary alternative to measures of non-compactness and Darbo’s theo-
rem by using progressive contractions. This method yields a unique fixed point (unlike Darbo’s
theorem) which, in turn, by default yields asymptotic stability as introduced in [1].

b) We lift the growth requirements in both x and t seen using Darbo’s theorem.
c) We offer a technique for finding the mapping set G .

1. Introduction

By way of a quadratic integral equation we offer an elementary alternative to
Darbo’s fixed point theorem and measures of non-compactness, lift the growth require-
ments in both x and t found in the Darbo method, and develop a method for finding a
fixed point mapping set. Our method is progressive contractions and it yields a unique
global fixed point. The uniqueness then automatically yields asymptotic stability [3] as
defined by Banas and Rzepka [1] to deal with the non-uniqueness from Darbo’s theo-
rem. Briefly, a solution x is asymptotically stable if for any ε > 0 there is a T > 0 such
that for any other solution y then t > T implies that |x(t)− y(t)|< ε .

Integral equations of the form

x(t) = g(t,x(t))+
∫ t

0
A(t− s)v(t,s,x(s))ds
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have been studied very effectively by means of a number of classical fixed point theo-
rems because of compactness of the integral operator [4]. They are of the exact form
for Krasnoselskii’s fixed point theorem for the sum of two operators when g is a con-
traction, v is continuous, and A satisfies mild conditions [10, p. 31].

There is a large class of integral equations from diverse areas of applied mathe-
matics of that form which can be handled in the same way illustrated here. But there are
calculations which are very important to understand and so we will focus on an exact
form of A and deal with the equation

x(t) = g(t,x(t))+ f (t,x(t))
∫ t

0
(t − s)β−1v(t,s,x(s))ds, (1)

where 0 < β < 1 and the functions f and v satisfy a type of Lipschitz condition with
respect to x . That poses a growth condition in x which we are able to remove as
shown in Section 3. This equation was studied in a very informative paper by Darwish
and Henderson [7]. The challenge here is that the coefficient function f destroys the
compactness of the integral part of the map. We refer to a paper by Darwish [6] for a
description of a wide set of real-world problems governed by this equation.

With the failure of the integral term to define a compact map, investigators have
turned to Darbo’s fixed point theorem and measures of non-compactness to obtain a
non-unique global solution. It is most informative to study the conditions on f and v
and the subsequent calculations found in Darwish and Henderson [7, pp. 76-82].

The idea here is to examine Darbo’s fixed point theorem which we found in our
three motivating papers [6, p. 48], [7, p. 78], and [1, p. 2] which differ in several ways,
but an in-depth study is found in [8]. In spite of differences there is the common theme
that there is a Banach space (B,‖·‖) containing a non-empty, closed, bounded, convex
set G with a continuous mapping P : G → G which is a contraction with respect to a
measure of non-compactness.

In our effort to offer an elementary alternative we focus on all except the last. That
is, suppose that we take from this theorem only the condition that the natural mapping
defined by (1) does map such a set G into itself. By asking that g be a contraction and
that f and v satisfy Lipschitz type conditions in the set G itself, can we conclude that
there is a unique global solution of (1) residing in G? Moreover, Darbo’s theorem does
not give uniqueness which can be extremely important in real-world problems since
G may have been constructed to include only points favorable to the problem at hand,
while some points outside G could promote a disaster.

The method we employ is called progressive contractions and it is critical to note
that it only applies to Volterra operators which are non-anticipative maps extensively
discussed in [5, p. 84]. At the risk of belaboring the obvious we feel it is crucial
to explain “non-anticipative”. It proceeds as follows. For a given set of functions G
which map the interval [0,E]→ ℜ , if φ ∈G then the natural mapping defined by (1) is

(Pφ)(t) = g(t,φ(t))+ f (t,φ(t))
∫ t

0
(t− s)β−1v(t,s,φ(s))ds, t ∈ [0,E].
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A fixed point of P is a point φ ∈G with (Pφ)(t) = φ(t) for 0 � t � E . In other words,

φ(t) = g(t,φ(t))+ f (t,φ(t))
∫ t

0
(t− s)β−1v(t,s,φ(s))ds

is an identity in t . In particular, if t1 > 0 then

φ(t1) = g(t1,φ(t1))+ f (t1,φ(t1))
∫ t1

0
(t1 − s)β−1v(t1,s,φ(s))ds,

which shows us most clearly that φ(t1) depends only on the values of φ for 0 � t � t1.
More to the point, no matter what happens to the fixed point for t > t1 , the value of the
fixed point at t1 is not changed.

2. The assumptions and a fixed point

In our work here we begin with the Banach space (B,‖ · ‖E) of continuous func-
tions φ : [0,E] → ℜ where E is an arbitrary positive number. After finishing our work
we will then consider the sequence of fixed points on the intervals [0,1], [0,2], ..., [0,n]
and use a limiting technique to prove that there is a solution on [0,∞) without any resort
to Zorn’s lemma as is so often the case [9, p. 42].

The assumption that the natural mapping P : G→G enables us to consider the pair
(G,‖ · ‖E) as a complete metric space of continuous functions in that closed, bounded,
convex, non-empty set G . This is the entire space in which we work. It is complete
because it is a closed subset of the Banach space B .

This work is inspired in large measure by a paper by Darwish and Henderson [7].
In that paper the authors assume global Lipschitz conditions controlling the growth rate
of a different sort than ours here. Moreover, since ours need only hold in G they can be
much less restrictive than if they were global. There are many examples to illustrate this
but suffice it to note that f (t,x) = x2 does satisfy a Lipschitz condition with constant
2D if the bound on G is D . In Section 3 we reduce the growth condition even more.

We will be considering spaces G1, ..,Gn being G restricted to the intervals, re-
spectively, [0,T1], ..., [0,Tn] with Tn = E. If Pi is P restricted to Gi then Pi : Gi → Gi

and (Gi,‖ · ‖) is again a complete metric space.
Here is the merit of the present work. Each Pi will become a very simple contrac-

tion mapping with unique fixed point φi . The φi will piece together to get a unique
solution on [0,E] . We will then continue as in the first paragraph of this section to get
the global unique solution.

Next, notice that with v continuous, if x is continuous then

lim
t↓0

∫ t

0
(t − s)β−1v(t,s,x(s))ds = 0.

Hence, if g is a contraction with solution φ then

(Pφ)(0) = φ(0) = g(0,φ(0)),
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and this is a unique solution φ(0) . If the solution of (1) is not unique then all others,
say φ j , satisfy φ j(0) = φ(0).

Now it is imperative that G be chosen so that some function ψ contained in the
interior of G satisfies

φ(0) = ψ(0) (2)

and this is always assumed.
Here are the formal assumptions on f ,g,v . We assume that there exist α ∈ (0,1) ,

J > 0 and a function L : [0,∞) → [0,∞) so that x,y ∈ G,0 � t � E implies:

| f (t,x)− f (t,y)| � L(t) |x− y|, (3)

|v(t,s,x)− v(t,s,y)| � J|x− y|, (4)

|g(t,x)−g(t,y)|� α|x− y|, (5)

so that there is a unique x(0) with

g(0,x(0)) = x(0). (6)

We also assume that there is a function ψ in the interior of G with

ψ(0) = x(0). (7)

Note that we can find M > 0 with

M = max
0�s�t�2E,|x|�r

{|g(t,x)|, | f (t,x)|, |v(t,s,x)|} ,

where r is a bound of the set G .
Firstly, select T1 ∈ (0,E] to satisfy

c0 := α +
M(J +L∗)

β
Tβ
1 < 1, (8)

with
L∗ = sup

t∈[0,2E]
L(t) . (9)

Then, let T ∈ (0,δ ) be such that

c := α + γ +
M(J +L∗)

β
T β < 1, (10)

where γ ∈ (0,1−α) and δ are as in Theorem 1.
We divide the interval [T1,E] into n− 1 equal segments of length less than or

equal to T . Thus, we have

0 = T0 < T1 < ... < Tn = E.

Now we are starting the process called progressive contractions, a technique we
devised some time ago and which has been illustrated in several papers (see, [2]).
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Let G1 be the complete metric space of functions φ in G restricted to the interval
[0,T1] and let (G∗

1,‖ · ‖) be the complete metric space of all continuous functions φ in
G1 satisfying φ(0) = x(0) with x(0) given in (6).

To see that this is a complete metric space, let xn be a Cauchy sequence in G∗
1

and note that it is also a Cauchy sequence in G1 which is certainly complete since it
is a closed subset of a Banach space. Thus this sequence has a limit in G1 which is a
continuous function and so it is also in G∗

1 .
Next, notice that if P1 is P restricted to 0 � t � T1 then P : G→G =⇒ P1 : G1 →

G1 because P is a Volterra operator. But if any function φ in G1 satisfies φ(0) = x(0)
then (Pφ)(0) = x(0) and so P1 : G∗

1 → G∗
1 .

The metric is that induced by the supremum norm which we will always denote
by ‖ · ‖ letting the context define the interval over which the supremum is taken. We
are all set to show that P1 is a contraction mapping on the complete metric space with
a unique fixed point. That will be Step 1.

THEOREM 1. Let E > 0 and let G be a closed, bounded, convex, non-empty set in
the Banach space (B,‖ ·‖) of continuous functions φ : [0,E] → ℜ with the supremum
norm. Let P be the natural mapping G→B defined by (1) and assume that P(G)⊆G.
Moreover, suppose that the above notation (8)-(10) and conditions (3)–(7) hold and that
there exist δ ,γ > 0 such that

L(u+h)
∫ u

0
(u+h− s)β−1sup

x∈G
|v(u+h,s,x(s))|ds � γ < 1−α , (11)

for all h ∈ [0,δ ] and any u ∈ [T1,E] with T1 defined in (8). Then P has a unique fixed
point in G. Moreover, as this holds for any E > 0 these fixed points can be parlayed
into a unique fixed point on [0,∞) which is asymptotically stable.

Proof. Step 1: We will show that the mapping P1 defined above is a contraction
with unique fixed point φ1 ∈G∗

1 and φ1(0) = x(0) . Let x,y ∈G1 and L∗ defined in (9),
and notice that for t ∈ [0,T1] we have

|(P1x)(t)− (P1y)(t)| � |g(t,x(t))−g(t,y(t))|

+
[

f (t,x(t))
∫ t

0
(t− s)β−1v(t,s,x(s))ds− f (t,x(t))

∫ t

0
(t− s)β−1v(t,s,y(s))ds

]
+ | f (t,x(t))− f (t,y(t))|

∫ t

0
(t− s)β−1|v(t,s,y(s))|ds

�α‖x− y‖+ | f (t,x(t))|J‖x− y‖
∫ t

0
(t − s)β−1ds+L∗‖x− y‖M

∫ t

0
(t− s)β−1ds

�α‖x− y‖+MJ‖x− y‖
∫ t

0
(t− s)β−1ds+L∗M‖x− y‖

∫ t

0
(t− s)β−1ds

=‖x− y‖
[

α +M(J +L∗)
tβ

β

]
� ‖x− y‖

[
α +

M (J +L∗)
β

T β
1

]
= c0‖x− y‖,
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and so
‖(P1x)− (P1y)‖ � c0‖x− y‖

as required. We conclude that there exists a unique solution x1 of the equation (1)
defined on the interval [0,T1] .

Remark. Notice that at this point we have not used (11) and we have established
that there is a solution x1 defined on a sufficiently small interval [0,T1] , i.e., x1 ∈ G1 .
It remains to show that it can be continued on the (arbitrary) interval [0,E] , thus to
[0,∞) , and that is where (11) is used.

Step 2: Clearly if T1 = E then there is nothing else to prove, so now we assume
that 0 < T1 < E . Having obtained the (unique) solution x1 on the interval [0,T1] , we
proceed to prove existence of a (unique) solution to (1) on [0,T1 +T = T2] . Our first
task is to transfer equation (1) by taking

x(t +T1) =g(t +T1,x(t +T1))

+ f (t +T1,x(t +T1))
∫ t+T1

0
(t +T1− s)β−1v(t +T1,s,x(s))ds,

t ∈ [0,E −T1] .

Setting
z(t) := x(t +T1) , t ∈ [0,E −T1] , (12)

in view of x1 being the unique solution obtained on the interval [0,T1] , the transferred
equation is written as

z(t) = g(t +T1,z(t))+ f (t +T1,z(t))
∫ T1

0
(t +T1− s)β−1v(t +T1,s,x1(s))ds

+ f (t +T1,z(t))
∫ t+T1

T1

(t +T1− s)β−1v(t +T1,s,z(s−T1))ds,

for t ∈ [0,E −T1] . By using s = u+T1 in the last integral, we see that equation (1) is
transferred to the equation

z(t) = g(t +T1,z(t))+ f (t +T1,z(t))
∫ T1

0
(t +T1− s)β−1v(t +T1,s,x1(s))ds

+ f (t +T1,z(t))
∫ t

0
(t −u)β−1v(t +T1,u+T1,z(u))du, t ∈ [0,E −T1] . (13)

We consider the set G∗
2 consisting of continuous functions in G restricted on [0,T2]

and coinciding with x1 on [0,T1] , and we define the operator P2 : G∗
2 → B given by

(P2φ) (t) := g(t,φ(t))+ f (t,φ(t))
∫ t

0
(t− s)β−1v(t,s,φ(s))ds, t ∈ [0,T2] .

Note that by our hypothesis that P(G) ⊆ G we have that P2 (G∗
2) ⊆ G . Furthermore, in

view of the definitions of P2 and x1 we may see that

P2φ (t) := x1 (t) , t ∈ [0,T1] , φ ∈ G∗
2, (14)
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and that implies that P2 (G∗
2) ⊆ G∗

2 . For t ∈ [T1,T2] by putting z(t) := φ (t +T1) , t ∈
[0,T2−T1 = T ] we have that

(P2z)(t) : = g(t +T1,z(t))+ f (t +T1,z(t))
∫ T1

0
(t +T1− s)β−1v(t +T1,s,x1(s))ds

+ f (t +T1,z(t))
∫ t

0
(t −u)β−1v(t +T1,u+T1,z(u))du, t ∈ [0,T ] . (15)

Clearly, if a function z satisfies (13) on [0,T ] then by (12) the function x(t) :=
z(t−T1) , t ∈ [T1,T2] satisfies (1) on [T1,T2] , and so, in order to obtain a (unique)
solution to (1) on [0,T2] all we have to do is to prove existence of a (unique) fixed point
of the operator P2 on G∗

2 . In fact, as for any z1,z2 ∈ G∗
2 it holds

(P2z1)(t)− (P2z2) (t) = (P2x1)(t)− (P2x1)(t) = 0, t ∈ [0,T1] , (16)

we may restrict ourselves to showing that P2 given in (15) is a contraction.
Firstly we note that for any z1,z2 ∈ G∗

2 it holds

|g(t +T1,z1 (t))−g(t +T1,z2 (t))| � α |z1 (t)− z2 (t)| , t ∈ [0,T2],

so

|g(t +T1,z1 (t))−g(t +T1,z2 (t))| � α ‖z1 − z2‖ , t ∈ [0,T ] . (17)

As M is a bound of | f | and |v| on the compact set {0 � s � t � E}× [−r,r] and
L∗ is as defined in (9), we have for t ∈ [0,T ] , z1,z2 ∈ G∗

2∣∣∣∣ f (t +T1,z1 (t))
∫ t

0
(t−u)β−1v(t +T1,u+T1,z1(u))du

− f (t +T1,z2 (t))
∫ t

0
(t−u)β−1v(t +T1,u+T1,z2(u))du

∣∣∣∣
� | f (t +T1,z1 (t))− f (t +T1,z2 (t))|

∫ t

0
(t−u)β−1 |v(t +T1,u+T1,z1(u))|du

+ | f (t +T1,z2 (t))|
∫ t

0
(t−u)β−1×

×|v(t +T1,u+T1,z1(u))− v(t +T1,u+T1,z2(u))|du

� L(t +T1) |z1 (t)− z2 (t)|
∫ t

0
(t −u)β−1 |v(t +T1,u+T1,z1(u))|du

+ | f (t +T1,z2 (t))|
∫ t

0
(t−u)β−1J |z1(u)− z2(u)|du

� ‖z1 − z2‖(L∗ + J)M
∫ t

0
(t −u)β−1du

= ‖z1 − z2‖ (L∗ + J)M
β

tβ ,
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and so, ∣∣∣∣ f (t +T1,z1 (t))
∫ t

0
(t−u)β−1v(t +T1,u+T1,z1(u))du

− f (t +T1,z2 (t))
∫ t

0
(t−u)β−1v(t +T1,u+T1,z2(u))du

∣∣∣∣
� ‖z1 − z2‖ (L∗ + J)M

β
T β , t ∈ [0,T ] ,z1,z2 ∈ G∗

2. (18)

Now let δ ,γ > 0 be such that (11) is satisfied. In particular, in view of T ∈ (0,δ )
for u = T1 we have

L(T1 + t)
∫ T1

0
(T1 + t− s)β−1sup

x∈G
|v(T1 + t,s,x(s))|ds � γ , t ∈ [0,T ] , (19)

thus, by (17), (18) and (19) we have for t ∈ [0,T ] , z1,z2 ∈ G∗
2

|(P1z1)(t)− (P1z2) (t)|
= |g(T1 + t,z1 (t))−g(T1 + t,z2 (t))|

+ | f (t +T,z1 (t))− f (t +T,z2 (t))|
∫ T1

0
(t +T1− s)β−1 |v(t +T1,s,x1(s))|ds

+
∣∣∣∣ f (t +T1,z1 (t))

∫ t

0
(t−u)β−1v(t +T1,u+T1,z1(u))du

− f (t +T1,z2 (t))
∫ t

0
(t−u)β−1v(t +T1,u+T1,z2(u))du

∣∣∣∣
� α ‖z1 − z2‖

+‖z1 − z2‖L(T1 + t)
∫ T1

0
(T1 + t− s)β−1sup

x∈G
|v(T1 + t,s,x(s))|ds

+‖z1 − z2‖ (L∗ + J)M
β

tβ

� α ‖z1 − z2‖+ γ ‖z1− z2‖+
M(L∗ + J)

β
T β ‖z1 − z2‖

= ‖z1− z2‖
[

α + γ +
M(L∗ + J)

β
Tβ
]

i.e.,
|(P1z1)(t)− (P1z2) (t)| � c‖z1 − z2‖ , t ∈ [0,T ] ,

and so, taking (16) into consideration we find

‖P1z1−P1z2‖ � c‖z1 − z2‖ ,

where c < 1 is given in (10). It follows that P2 is a contraction in G∗
2 so it has a unique

fixed point x2 in G∗
2 which is defined on [0,T2] and coincides with x1 on [0,T1] .
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If T2 = E then the procedure is finalized. Otherwise, as T and δ are independent
of Ti , (i = 1, ...,n−1), we may consider the space G∗

3 of continuous functions on
[0,T3 = T2 +T ] coinciding with x2 on [0,T2] (with the sup norm) and the operator P3

acting on G∗
3 and defined in a way analogous to the definition of P2 in (14) and (15),

yet we employ the same argumentation as in Step 2 to prove existence of a unique
solution to (1) on [0,T3 = T2 +T ] , and so on until we reach Tn = E .

To obtain a unique fixed point on [0,∞) we let E successively be 1,2, ... , and
obtain unique fixed points φi on [0, i] , i = 1,2, ... , then extend each of those functions
to the interval [0,∞) by letting Φi(t) = φi(t) for 0 � t � i and let Φi(t) = φi(i) for
t � i . Now consider the sequence of functions {Φi(t)} which converges uniformly on
compact sets to a continuous function Φ(t) which is a fixed point on [0,∞) . It is unique
because each piece is unique and is asymptotically stable. �

While condition (11) seems abstract and rather difficult to verify, the next lemma
presents sufficient conditions so that (11) holds true.

LEMMA 1. Let E > 0 be arbitrary, r > 0 , and the functions L : [0,∞) → [0,∞) ,
v,v1 : {0 � s � t � 2E}× [−r,r] → ℜ+ be continuous with

|v(t,s,x)| � v1(t,s), |x| � r,0 � s � t � 2E. (20)

If

sup
u>0

L(u)
∫ u

0
(u− s)β−1v1(u,s)ds := γ0 < 1−α, (21)

then there are γ , δ > 0 such that (11) is satisfied.

Proof. Firstly we prove that for an arbitrary T ∈ (0,E] the function V (u,t) :
[T,E]× [0,E] → R with

V (u,t) := L(u+ t)
∫ u

0
(u+ t− s)β−1v1(u+ t,s)ds, (22)

is continuous. Continuity at points (u,t) with t 	= 0 follows immediately by continuity
of L on [0,∞) and of the integrand on the sets [T,E]×{d � s � t � E} for any d ∈
(0,E] . For the continuity of V at (u,0) , u ∈ [T,E] , in view of the continuity of the
function L we may consider only continuity of the integral

V1 (u, t) :=
∫ u

0
(u+ t− s)β−1v1(u+ t,s)ds, (u, t) ∈ [T,E]× [0,d] ,

at (u,0) . For t ∈ [0,d] , u,u1 ∈ [T,E] say with u � u1 we have

|V1 (u, t)−V1 (u1,0)| =
∣∣∣∣∫ u

0
(u+ t− s)β−1v1(u+ t,s)ds−

∫ u1

0
(u1− s)β−1v1(u1,s)ds

∣∣∣∣
�
∫ u

0

∣∣∣(u+ t− s)β−1v1(u+ t,s)− (u1− s)β−1v1(u1,s)
∣∣∣ds

+
∫ u1

u
(u1− s)β−1v1(u1,s)ds. (23)
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Let N be a bound of v1(w,s) on S := [T1,2E]× [0,2E] . We may easily see that

∫ u1

u
(u1− s)β−1v1(u1,s)ds � N

(u1−u)β

β
→ 0, for u1 → u. (24)

We find ∫ u

0

∣∣∣(u+ t− s)β−1v1(u+ t,s)− (u1− s)β−1v1(u1,s)
∣∣∣ds

�
∫ u

0
(u+ t− s)β−1 |v1(u+ t,s)− v1(u1,s)|ds

+
∫ u

0

∣∣∣(u+ t− s)β−1− (u1− s)β−1
∣∣∣v1(u1,s)ds, (25)

and note that by uniform continuity of v1 on S , for ε > 0 there exists a sufficiently
small δ > 0 such that for |t| , |u1−u|� δ we have

|v1(u+ t,s)− v1(u1,s)| � ε ,

and so∫ u

0
(u+ t− s)β−1 |v1(u+ t,s)− v1(u1,s)|ds � ε

∫ u

0
(u+ t− s)β−1ds

= ε
(u+ t)β − tβ

β
� ε

(4E)β

β
,

from which we infer that∫ u

0
(u+ t− s)β−1 |v1(u+ t,s)− v1(u1,s)|ds → 0, as t,u1−u → 0. (26)

Finally, we find∫ u

0

∣∣∣(u+ t− s)β−1− (u1− s)β−1
∣∣∣v1(u1,s)ds � N

∫ u

0

∣∣∣(u+ t− s)β−1− (u1− s)β−1
∣∣∣ds

= N

(
(u+ t)β − tβ

β
− u1

β − (u1−u)β

β

)
so ∫ u

0

∣∣∣(u+ t− s)β−1− (u1− s)β−1
∣∣∣v1(u1,s)ds → 0, as t,u1−u → 0. (27)

By (26) and (27) we see that the right-hand-side of (25) tends to zero for t, |u1−u| →
0, which, in view of (24) implies that the right-hand-side of (23) tends to zero when
t, |u1−u| → 0, therefore, V1 is continuous at (u,0) . By continuity of L we conclude
that the function V defined by (22) is continuous.

Now by continuity we have that V is uniformly continuous on [T1,2E]× [0,2E] ,
so for

0 < ε < min

{
1−α − γ0

2
,E

}
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there exists a δ ∈ (0,E) such that

|t1− t2| < δ ,t1,t2 ∈ [0,E] ,u ∈ [T,E] =⇒ |V (u,t1)−V (u,t2)| < ε ,

so, for t1 = 0, t2 = t with 0 � t � δ it holds

|V (u,0)−V (u,t)| < ε , for any u ∈ [T,E] .

Thus, in view of (21) we have for 0 � t � δ , u ∈ [T,E]

|V (u,t)| < ε + |V (u,0)|
= ε +L(u)

∫ u

0
(u− s)β−1v1(u,s)ds

� ε + sup
u>0

L(u)
∫ u

0
(u− s)β−1v1(u,s)ds

� ε + γ0.

It follows that, for t ∈ [0,δ ] , u ∈ [T,E] it holds

L(u+ t)
∫ u

0
(u+ t− s)β−1sup

x∈G
|v(u+ t,s,x(s))|ds

� L(u+ t)
∫ u

0
(u+ t− s)β−1v1(u+ t,s)ds

= |V (u,t)| � ε + γ0

� 1−α − γ0

2
+ γ0 =

1−α + γ0

2
:= γ < 1−α,

that is, for any u ∈ [T,E] we have

L(u+ t)
∫ u

0
(u+ t− s)β−1sup

x∈G
|v(T + t,s,x(s))|ds � γ , t ∈ [0,δ ] ,

which is (11). �
From the proof of Lemma 1 it is clear that it suffices that the supremum in the

left-hand-side in the inequality (21) be taken over (0,E] . However, as we want this
result to hold for arbitrary E > 0, in fact we have to require that the inequality hold for
the supremum taken over the whole half-line [0,∞) .

3. An example

Consider the equation (4.1) in [7, pp. 82-83], namely the equation

x(t) =
1
2π

arctan(t + x(t)) (28)

+
t + t2x(t)
5Γ
( 1

3

) ∫ t

0

|x(s)|e−3t−s + 1
1+5t7/3

(t− s)2/3
ds, t � 0.
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In terms of equation (1), here we have

g(t,x) :=
1
2π

arctan(t + x) , f (t,x) :=
t + t2x

5Γ
( 1

3

) , t � 0,x ∈ ℜ,

and

v(t,s,x) := |x(s)|e−3t−s +
1

1+5t7/3
, (t,s) ∈ {(t,s) : 0 � s � t} , x ∈ ℜ.

Firstly, we note that for any t � 0 and x,y ∈ ℜ we have

|g(t,x)−g(t,y)| � 1
2π

|x− y| ,

that is g is a contraction and (5) is satisfied with α = 1
2π .

Furthermore, we see that the function ĝ(x) := g(0,x) , x ∈ ℜ , is a contraction,
hence the algebraic equation g(0,x) = x , x ∈ ℜ , i.e., the equation

x0 =
1
2π

arctan(x0)

has a unique solution x0 with x0 ∈
(− π

2 , π
2

)
. We may easily see that x0 = 0 and that

(6) is verified.
In view of the calculations in [7, pp. 82-83], we see that taking G := {x ∈ B :

‖x‖� 1} , we have P(G)⊂G . As x0 = 0∈ (−1,1) , it follows that the function ψ (t) =
0, t ∈ [0,E] belongs to the interior of G , thus (2) and (7) are satisfied.

Concerning the function f we see that for x1,x2 ∈ ℜ and t � 0 it holds

| f (t,x1)− f (t,x2)| = t2 |x1− x2|
5Γ
(

1
3

) = L(t) |x1 − x2| ,

i.e., (3) is satisfied with L(t) := t2

5Γ( 1
3 )

, t � 0.

Next, as
|v(t,s,x)− v(t,s,y)| = e−3t−s ||x|− |y|| � |x− y|

we have that v satisfies (4) with J = 1. Moreover, condition (20) is fulfilled with

v1 (t,s) := e−3t−s +
1

1+5t7/3
,

yet v1 is continuous. It remains to show that (11) is satisfied. As v1,v , and L are
continuous, by Lemma 1 in order to show that (11) is satisfied it suffices to show that
(21) holds true, i.e.,

sup
t�0

L(t)
∫ t

0
(t− s)β−1v1(t,s)ds < 1−α .
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We have for t > 0

L(t)
∫ t

0
(t− s)β−1v1(t,s)ds =

t2

5Γ
( 1

3

) ∫ t

0
(t − s)

1
3−1
(

e−3t−s +
1

1+5t7/3

)
ds

� t2

5Γ
( 1

3

) ∫ t

0
(t − s)−

2
3

(
e−3t +

1

1+5t7/3

)
ds

=
(

e−3t +
1

1+5t7/3

)
t2t

1
3

5 1
3Γ
(

1
3

)
=
(

e−3t +
1

1+5t7/3

)
t7/3

5Γ
( 4

3

) ,
or

L(t)
∫ t

0
(t− s)β−1v1(t,s)ds � 1

Γ
(

4
3

) [1
5
t7/3e−3t +

1
5

t7/3

1+5t7/3

]
, t > 0.

Borrowing calculations from ([7], p. 83) we see that for the function φ (t) := 1
5 t7/3e−3t

we have

φ∗ := sup
t�0

1
5
t7/3e−3t = φ

(
7
6

)
= 0.0277897...,

thus, as Γ
(

4
3

)� 0.8929796... , we take

sup
t�0

L(t)
∫ t

0
(t − s)β−1v1(t,s)ds � 1

Γ
(

4
3

) [t7/3e−3t +
1

5 ·5
]

� 1
0.8929796...

(0.0277897...+0.04)

� 1
0.89

(0.068) < 0.0765

while

1−α = 1− 1
2π

� 0.68169...,

so (21) is satisfied, and by Lemma 1 it follows that condition (11) is also satisfied. As
all assumptions of Theorem 1 are fulfilled we may conclude that equation (28) (i.e.,
equation (4.1) in [7, pp. 82-83]), has a unique solution x which starts from 0, it is
defined on the half-line [0,∞) and is bounded by 1.

We note that the limit of the solution x at infinity may be calculated. Indeed, from
(28) we have

x(t)

[
1− t2

5Γ
(

1
3

)(
1+5t7/3

) ∫ t

0

|x(s)|e−3t−s
(
1+5t7/3

)
+1

(t − s)2/3
ds

]
(29)

=
1
2π

arctan(t + x(t))+
t

5Γ
( 1

3

)(
1+5t7/3

) ∫ t

0

|x(s)|e−3t−s
(
1+5t7/3

)
+1

(t− s)2/3
ds.
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It is a matter of simple calculations to verify that, for any x ∈ G , we have

lim
t→∞

t2

1+5t7/3

∫ t

0

|x(s)|e−3t−s
(
1+5t7/3

)
+1

(t− s)2/3
ds =

3
5
, (30)

lim
t→∞

t

1+5t7/3

∫ t

0

|x(s)|e−3t−s
(
1+5t7/3

)
+1

(t− s)2/3
ds = 0, (31)

and so, as the limit of the function in the brackets as well as that of the right-hand-side
in (29) are nonzero real numbers, we find

lim
t→∞

x(t)

[
1− 1

5Γ
( 1

3

) 1
1
3 ·5

]
=

1
2π

arctan(∞)+0 =
1
4
,

from which we conclude that

lim
t→∞

x(t) =
1

4

(
1− 1

25Γ( 4
3 )

) .

In view of the above discussion, we have the following result.

THEOREM 2. There is a unique solution of (28) on [0,∞) which is bounded by 1 .
It tends to a finite limit as t → ∞ and it is asymptotically stable in the sense of Banas
and Rzepka [1].

Finally, we cite an equation with large nonlinearities. For convenience, we modify
equation (28) by replacing x in f by x2 , yet allowing arbitrarily large exponents of x
in the function v inside the integral, namely the equation

x(t) =
1
2π

arctan(t + x(t)) +
2t + t2x2 (t)

10Γ
(

1
3

) ∫ t

0

x2m (s)e−3t−s + 2m
1+5t7/3

2m(t− s)2/3
ds, t � 0.

One can see that x in the function f has been replaced by x2/2 while |x| in the function
v has been replaced by x2m/(2m),m ∈ N . Clearly neither f nor v are Lipschitzian in
x on the whole real line, however they are in the set G := {φ ∈ B : ||φ || � 1} . It is not
difficult to verify that Theorem 1 still applies yielding that the equation has a unique
solution x which starts from zero, is defined on [0,∞) and is bounded by 1, yet for
t � 1 it is positive and bounded below by 1

2π arctan(t) . In fact, in view of (30) and
(31), we may prove that for t → ∞ , the unique solution x tends to the (unique) root �
of the quadratic equation

1

50Γ
(

4
3

)�2− �+
1
4

= 0,

with � ∈ [0,1] , i.e., we have

lim
t→∞

x(t) =
50Γ

(
4
3

)
2

(
1−
√

1− 1

50Γ
(

4
3

)) .
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