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MULTIPLE SOLUTIONS FOR A FOURTH ORDER

EQUATION WITH NONLINEAR BOUNDARY CONDITIONS:

THEORETICAL AND NUMERICAL ASPECTS

CRISTIANE APARECIDA PENDEZA MARTINEZ, ANDRÉ LUÍS MACHADO

MARTINEZ, GLAUCIA MARIA BRESSAN ∗ , EMERSON VITOR CASTELANI AND

ROBERTO MOLINA DE SOUZA

(Communicated by L. Kong)

Abstract. We consider in this work the fourth order equation with nonlinear boundary condi-
tions. We present the result for the existence of multiple solutions based on the Avery-Peterson
fixed-point theorem. This work is also a study for numerical solutions based on the Levenberg-
Maquardt method with a heuristic strategy for initial points that proposes to numerically deter-
mine multiple solutions to the problem addressed.

1. Introduction

In this paper we present a study on

u(iv)(x)−M

(∫ L

0
u′2(x)dx

)
u′′(x) = f (x,u(x),u′(x)), 0 < x < L, (1)

with border conditions
u(0) = u′′(0) = 0, (2)

u(L) = 0 and u′′(L) = g(u′(L)), (3)

where f : [0,L]×R×R−→ R is a continuous function, g ∈C(R) and M ∈C(R+) .
The problem defined in (1), (2) and (3) models the bending equilibrium of simply

supported extensible beams on nonlinear foundations. In this model, the function f
represents the force that the foundation exerts on the beam and M models the effects of
the small variations in the beam measurements. More arguments about modeling can
be found in references [4], [6], [7] and [8].

Several works consider the non-dependence of f on the problem defined in (1),
(2) and (3) with respect to the term u′ , ([9], [11], [12], [13], [14]).

We noted that the problem defined in (1), (2) and (3) has a non-local M term
and a nonlinear dependence on the first derivatives. As highlighted in [11], the depen-
dence exposed here makes more painful in the study on the existence of solutions even
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using more classical ideas based on the Krasnoselskii Theorem combined with Leray-
Schauder’s Alternatives. Naturally, this difficulty is present when we are dealing with
techniques based on Avery-Peterson Theorem. As a consequence, to the best of our
knowledge, this kind of problem is little considered. Our main objective is to prove
the existence and multiplicity of positive solutions to the problem defined in (1), (2)
and (3), using the Avery-Peterson fixed-point theorem. Following the results of [5],
[12], [11], our results are declared assuming local conditions M , f and g that general-
ize the results presented in [12], which uses Krasnoselskii’s Theorem. In addition, we
present an unprecedented strategy for the determination of numerical solutions. This
new procedure is able to handle with multiple solutions by the theoretical approach of
this work.

The paper is organized as follows: In Section 2 we present preliminary results,
in Section 3, of a theoretical result that guarantees the existence of multiple solutions,
considering certain conditions on the component functions of the problem. In Section
4, we discuss an optimization method with a heuristic strategy for the determination
of approximate solutions to the problem defined in (1), (2) and (3). Finally, Section 5
presents some final considerations about the work.

Then we state hereafter the Avery-Peterson theorem that we will use for proving
multiple solutions.

Now, we need to consider the convex sets

P(γ,d) = {x ∈ P|γ(x) < d},
P(γ,α,b,d) = {x ∈ P|b � α(x) and γ(x) < d},

P(γ,θ ,α,b,c,d) = {x ∈ P|b � α(x),θ (x) � c and γ(x) < d},
and the closed set

R(γ,ψ ,a,d) = {x ∈ P|a � ψ(x) and γ(x) < d}.
THEOREM 1. Let P be a cone in a real Banach space X . Let γ and θ non-

negative continuous convex functionals on P, α be a nonnegative continuous con-
cave functional on P, and ψ be a nonnegative continuous functional on P satisfying
ψ(λx) � λ ψ(x) for 0 � λ � 1 , such that for some positive numbers μ and d ,

α(x) � ψ(x) and ‖x‖ � μγ(x),

for all x ∈ P(γ,d) . Suppose

T : P(γ,d) → P(γ,d)

is completely continuous and there exist positive numbers a, b , c with a < b, such that

{u ∈ P(γ,θ ,α,b,c,d)|α(u) > b} �= /0 and

u ∈ P(γ,θ ,α,b,c,d) ⇒ α(Tu) > b, (4)

α(Tu) > b for u ∈ P(γ,α,b,d) with θ (Tu) > c, (5)

0 �∈ R(γ,ψ ,a,d) and ψ(Tu) < a for u ∈ R(γ,ψ ,a,d) with ψ(u) = a. (6)

Then T has at least three distinct fixed points in P(γ,d) .
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2. Preliminary results

We present in this section observations and preliminary results that help and moti-
vate the studies of existence of multiple solutions in the next section.

Let’s represent the problem by an integral equation, for this will reduce the order
of the problem (1)-(2)-(3), with the identification v = u′′ −M(‖u′‖2

2)u , we conclude
that this problem is equivalent to the pair of systems:{

u′′ = M(‖u′‖2
2)u+ v,

u(0) = u(L) = 0
(7)

{
v′′ = f (x,u,u′),

v(0) = 0 v(L) = g(u′(L)). (8)

Let G be the Green function for the problem −w′′ = h , with w(0) = w(L) = 0, defined
by

G(x,t) =

{
x(L−t)

L , 0 � x � t � L,
t(L−x)

L , 0 � t � x � L.
(9)

Next

w(x) =
∫ L

0
G(x,t)h(t)dt.

Therefore we conclude from (7) and (8) that:

u(t) =
∫ L

0
−G(x,t)(M(‖u′‖2

2)u(t)+ v(t))dt,

where

v(t) =
∫ L

0
−G(t,s) f (s,u(s),u′(s))ds+

t
L

g(u′(L)).

By combining u, v, we can expect to find a (1) - (2) - (3) of the problem of fixed point:

Tu(x) =
∫ L

0
G(x,t)

(∫ L

0
(G(t,s) f (s,u(s),u′(s))ds−M(‖u′‖2

2)u(t)−
t
L

g(u′(L))
)

dt. (10)

Due to the term M(‖u′‖2
2) in the equation equation (1) we must obtain an estimate first

to u′ with the norm of L2(0,L) . We could study the possibility of operator fixed points
T in H1

0 (0,L) . But unfortunately, we can not estimate the edge in terms of u′(0) and
u′(L) . Two function spaces suitable for our analysis, would be C1[0,L] or H2(0,L) .
We prefer to work in the space of Banach:

E = C0[0,L]∩C1[0,L] = {u ∈C1[0,L];u(0) = u(L) = 0},

with the norm
‖u‖E = ‖u′‖∞ = max

t∈[0,L]
|u′(t)|.
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LEMMA 1. If u ∈ E , then

‖u′‖2
2 � L‖u′‖2

∞. (11)

Proof. Indeed

‖u′‖2
2 =

∫ L

0
|u′(s)|2ds � ‖u′‖2

∞

∫ L

0
ds = L‖u′‖2

∞. �

LEMMA 2. If u ∈ E , then

‖u‖∞ � L
2
‖u‖E . (12)

Proof. We assume by contradiction that (12) does not occur, then there is u ∈ E
and t0 ∈ (0,L) such that |u(t0)| > L

2‖u‖E . The mean value theorem implies that we
have t1 ∈ (0, t0) and t2 ∈ (t0,L) such that

u′(t1) =
u(t0)−u(0)

t0
=

u(t0)
t0

, u′(t2) =
u(L)−u(t0)

L− t0
=

−u(t0)
L− t0

.

Then

t0 � L
2

implies |u′(t1)| � |u(t0)|
L/2

=
2|u(t0)|

L
,

t0 � L
2

implies |u′(t2)| � |u(t0)|
L/2

=
2|u(t0)|

L
.

Next max{|u′(t1)|, |u′(t2)|} > ‖u′‖∞ , which is a contradiction, so we conclude the
demonstration. �

We assume that f : [0,L]×R×R−→ R is continuous.

REMARK 1. Note that the function h : [0,L] −→ R defined by

h(t) =
∫ L

0
G(t,s)q(s)ds,

is a solution to the problem of Dirichlet −h′′ = q(s) , with h(0) = h(L) = 0. For q not
negative, h is a concave function with h(t) � 0, ∀t ∈ [0,L] .

In order to demonstrate the existence of multiple solutions we will assume the following
conditions on f :

q(s) � f (s,u1,u2), ∀(s,u1,u2) ∈ [0,L]× [0,
Ld
2

]× [−d,d], (13)

max
t∈[0,L]

∫ L

0
G(t,s)q(s)ds =

A
R

, where A > 0 and R > 0. (14)
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REMARK 2. The function h defined in the observation 1 is concave, and (14),
The function h has the property h(t) = 0 if, and only if, t = 0 or t = L . Thus given
m ∈ (0, 1

2) exist ω ∈ (0,1) such that

h(t) � ω
A
R

, ∀t ∈ [Lm,L(1−m)],m ∈ (0,
1
2
),

and if h(t) � ω0
A
R , ∀t ∈ [Lm,L(1−m)] for some ω0 ∈ (0,1) then ω0 � ω .

From the above notice to m ∈ (0, 1
2) there is ω such that:∣∣∣∣

∫ L

0
G(t,s)q(s)ds

∣∣∣∣ � ω
A
R

∀t ∈ [Lm,(1−m)L]. (15)

LEMMA 3. If f meets the conditions (13), (14) and M meets

M(s) � A, ∀s ∈ [0,Ld2], (16)

to d > 0 then to u ∈C, with ‖u‖E � d , it has

∫ L

0
G(t,s) f (s,u(s),u′(s))ds−M(‖u′‖2

2)u(t) � 0, ∀t ∈ [0,L]. (17)

Proof. Considering d =min{ ω
RLm , 2ω

LR } , where m∈ (0, 1
2) have from equation (16)

that M(‖u′‖2
2) � A, ∀u ∈ E tal que ‖u‖E � d .

Let’s prove (17). If t ∈ [Lm,(1−m)L] , from (13) , (14) and observation 2 we obtain

∫ L

0
G(t,s) f (s,u(s),u′(s))ds � ω

A
R

, ∀u ∈ E and ∀t ∈ [Lm,(1−m)L].

As ‖u‖E � d , then ‖u‖∞ � L‖u′‖∞
2 � Ld

2 � ω
R . Thus ∀t ∈ [Lm,(1−m)L] we conclude:

∫ L

0
G(t,s) f (s,u(s),u′(s))ds � ω

A
R

� M(‖u′‖2
2)

ω
R

� M(‖u′‖2
2)u(t).

It follows that (17) is in range [Lm,(1−m)L] .
Now t ∈ [0,Lm] , as ‖u′‖∞ � ω

RLm then it follows from the average value theorem, that

Au(t) is below the segment passing through (0,0) and (Lm,ω A
R) . As

∫ L
0 G(t,s)q(s)ds

is a concave function, from (15), it follows that this application is above this segment,
and therefore (17) occurs. Analogously, it proves to t ∈ [(1−m)L,L] . �

3. Multiple solutions

We present in this section a result of the existence that motivates the numerical
studies that will be presented in the next section. We demonstrate the existence of
multiple solutions to the problem defined in (1)-(2)-(3) through the theorem (2).
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In order to demonstrate the existence of multiple solutions, let first show that Tu �
0 for ‖u‖E � d , will need the following hypotheses:

(H1) We assume the conditions (13), (14) and (16) imposed on f and M , and
that

g(s) � 0, ∀s ∈ [−d,0], and −g(s) � λ1d
r1

, ∀s ∈ [−d,0],

where, λ1 ∈ (0,1) and

r1 = max

{∫ L

0

(L− t)t
L2 dt,

∫ L

0

t2

L2 dt

}
.

The signal condition imposed here on the g function was motivated by the fact that we
are looking for concave solutions to the problem, so we expect its derivative second is
negative, and also its derivative in L , hence the condition for the sign of g .

(H2)

f (t,u,v) � (1−λ1)d
r2

, ∀(t,u,v) ∈ [0,L]× [0,
Ld
2

]× [−d,d],

com

r2 = max

{∫ L

0

∫ L

0

(L− t)
L

G(t,s)dsdt,
∫ L

0

∫ L

0

t
L

G(t,s)dsdt

}
.

REMARK 3. From (H1) and Lemma 3 such that

Tu(x) � 0, ∀x ∈ [0,L], and (Tu)′′ � 0,

for all u ∈ E such that ‖u‖E � d , therefore T (u) is a concave function.

PROPOSITION 1. If u ∈ E , and u concave then

‖u′‖∞ = max{|u′(0)|, |u′(L)|}.

Proof. In fact being u ∈ C1[0,1] a concave application, so u′ is decreasing in
the interval [0,L] and how u(0) = u(L) = 0, then existc ∈ [0,L] such that u′(c) = 0.
Therefore

u′(x) � 0,∀x ∈ [0,c] and, u′(x) � 0,∀x ∈ [c,L].

So
max
x∈[0,c]

|u′(x)| = u′(0), max
x∈[c,L]

|u′(x)| = |u′(L)|. �

We denote:

z(t) =
∫ L

0
G(t,s) f (s,u(s),u′(s))ds−M(‖u′‖2

2)u(t)− t
L

g(u′(L)).

It is immediate from (H1) and the lemma 3 that z(t) � 0 for all t ∈ [0,L] and ||u||E � d .
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LEMMA 4. If (H1)− (H2) they occur then T applies P(γ,d) in P(γ,d) .

Proof. Using (H1) we have Tu � 0 if γ(u) = ‖u‖E � d , and obtain:

‖Tu‖E = max
x∈[0,L]

∣∣∣∣
∫ L

0
∂xG(x,t)z(t)dt

∣∣∣∣ .
Now follows from Proposition 1 that

‖Tu‖E = max

{∫ L

0

t
L

z(t)dt,
∫ L

0

L− t
L

z(t)dt,

}
.

With u ∈C and M(s) � 0, ∀s ∈ R
+ obtain

z(t) �
∫ L

0
G(t,s) f (s,u(s),u′(s))ds− t

L
g(u′(L)).

This fact, of (H1) and (H2) it has:

‖Tu‖E � max

{∫ L

0

t
L

(∫ L

0
G(t,s)

(1−λ1)d
r2

ds+
t
L

λ1d
r1

)
dt ,

∫ L

0

L− t
L

(∫ L

0
G(t,s)

(1−λ1)d
r2

ds+
t
L

λ1d
r1

)
dt

}

� d max

{
(1−λ1)

r2

∫ L

0

∫ L

0

t
L

G(t,s)dsdt +
λ1

r1

∫ L

0

t2

L2 dt,

(1−λ1)
r2

∫ L

0

∫ L

0

L− t
L

G(t,s)dsdt +
λ1

r1

∫ L

0

(L− t)t
L2 dt

}
� d((1−λ1)+ λ1) � d. �

THEOREM 2. Suppose that the hypothesis (H1)−(H2) hold. Suppose in addition
that there exist a , 0 < a < d such that f , M and g satisfies the following conditions:

(H3) f (t,u,v) <
λ2a
r3

, ∀(t,u,v) ∈ [0,L]× [0,a]× [−d,d] and

−g(y) < min
{

(1−λ2)a
r4

, λ1d
r1

}
with y ∈ [−d,0] ,

where r3 = max
x∈[0,L]

{∫ L

0
G(x,t)

∫ L

0
G(t,s)dsdt

}
,

r4 = max
x∈[0,L]

{∫ L

0
G(x,t)

t
L

dt

}
and λ2 ∈ (0,1) .

(H4) f (t,u,v) >
bλ3

r5
, ∀(t,u,v) ∈ [0,1]× [2a,8

√
2a]× [−d,d] , and

M(s) < min
{

(1−λ3)b
cr6

,A
}

, ∀s ∈ [0,Ld2] , where

r5 = min

{∫ L

0
G(

L
4
,t)

∫ L

0
G(t,s)dsdt,

∫ L

0
G(

3L
4

, t)
∫ L

0
G(t,s)dsdt

}
,

r6 = min

{∫ L

0
G(

L
4
,t)dt,

∫ L

0
G(

3L
4

,t)dt

}
and λ3 ∈ (0,1) .
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Then the problem (1) has at least three positive solutions.

Proof. We apply Avery-Peterson theorem. Thus, we consider T and P defined as
before. Furthermore, we need to define the following functionals

γ(u) = ‖u‖E , ψ(u) = max
t∈[0,L]

|u(t)|, θ (u) =

[∫ 3L
4

L
4

[u(t)]2dt

] 1
2

, α(u) = min
t∈[ L

4 , 3L
4 ]
|u(t)|.

Using (H1) we have Tu � 0 if γ(u) = ‖u‖E � d , we obtain: From Lemma 4 T applies
P(γ,d) in P(γ,d) .
Now, we consider b = 2a and c = 8

√
2a. Clearly, we have {u∈P(γ,θ ,α,b,c,d)|α(u)>

b} �= /0 . Let us verify (4). Using (H4) we can get

α(Tu) = min
x∈[ L

4 , 3L
4 ]

(Tu)x

� min
x∈[ L

4 , 3L
4 ]

∫ L

0
G(x,t)

[
intL0 G(t,s) f (s,u(s),u′(s))ds−M(‖u′‖2

2)u(t)
]
dt

� min

{∫ L

0
G(

L
4
,t)

[
intL0 G(t,s) f (s,u(s),u′(s))ds−M(‖u′‖2

2)u(t)
]
dt,

∫ L

0
G(

3L
4

,t)
[∫ L

0
G(t,s) f (s,u(s),u′(s))ds−M(‖u′‖2

2)u(t)
]
dt

}

� min

{∫ L

0
G(

L
4
,t)

[
bλ3

r5

∫ L

0
G(t,s)ds− (1−λ3)b

cr6
u(t)

]
dt,

∫ L

0
G(

3L
4

,t)
[
bλ3

r5

∫ L

0
G(t,s)ds− (1−λ3)b

cr6
u(t)

]
dt

}

� min

{∫ L

0
G(

L
4
,t)

[
bλ3

r5

∫ L

0
G(t,s)ds− (1−λ3)b

r6

]
dt,

∫ L

0
G(

3L
4

,t)
[
bλ3

r5

∫ L

0
G(t,s)ds− (1−λ3)b

r6

]
dt

}
� bλ3 +(1−λ3)b = b.

Let us demonstrate (5). Let u ∈ P(γ,α,b,d) with θ (Tu) > c . Then

α(Tu) = min
x∈[ L

4 , 3L
4 ]

[∫ L

0
G(x,t)z(t)dt

]
� 1

4

∫ L

0
G(t, t)z(t)dt

� 1

4
√

2L
θ

(
max
x∈[0,1]

∫ L

0
G(x,t)z(t)dt

)
� 1

4
√

2L
θ

(∫ L

0
G(x, t)z(t)dt

)

� 1

4
√

2L
θ

(∫ L

0
G(x,t)z(t)dt

)
� 1

4
√

2L
θ (Tu) >

1

4
√

2L
c = b.

Now, let us demonstrate (6). Thus, let u ∈ R(γ,ψ ,a,d) with ψ(u) = a . From (H3)−
(H4) we have,

ψ(Tu) = max
x∈[0,L]

|Tu(x)|
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� max
x∈[0,L]

∫ L

0
G(x,t)

[∫ L

0
G(t,s) f (s,u(s),u′(s))ds− t

L
g(u′(L))

]
dt.

Then, from (H4) we get

ψ(Tu) < max
x∈[0,L]

∫ L

0
G(x,t)

[∫ L

0
G(t,s)

λ2a
r3

ds+
t
L

(1−λ2)a
r4

]
dt

� max
x∈[0,L]

[
λ2a
r3

∫ L

0
G(x,t)

∫ L

0
G(t,s)dsdt +

(1−λ2)a
r4

∫ L

0
G(x,t)

t
L

dt

]
� a.

Applying Avery-Peterson theorem we have the result. �
In order to show that the previously imposed hypotheses ((H1), (H2), (H3) and

(H4)) and the conditions (1)-(2)-(3) assumed to guarantee the existence of a solution to
the problem are possible give the following example:

EXAMPLE 1. Consider the following functions

f (t,u,v) =

{
7+ u2

4 +
(

v
40

)4
, 0 � u < 2,

8+
(

v
40

)4
, u � 2,

g(s) =
−s
7

,

M(t) =
1
70

+
t

10000
,

q(s) = 7, L = 1 and d = 20.

We obtain the following values for the constants:

r1 =
1
3
, r2 =

7
40

, r3 = 0.215, r4 = 0.065, r5 =
19

2048
, r6 =

3
32

,

A = 0.0546875, R = 0.015625, ω = 0.15625.

From the above values it is immediate that the equations (13), (14) and (16) are satisfied,
now considering λ1 = 0.5 the hypotheses H1 and H2 are satisfied. Now considering
a = 2 and λ2 = 0.9 the hypothesis H3 is satisfied. Considering b = 2a and c = 8

√
2a

and λ3 = 0.018 the hypothesis H4 is satisfied.

4. Numerical solutions

In most studies, numerical solutions are obtained by fixed-point methods, accord-
ing to [12]. More specifically, an iterative sequence based on operator given by equation
10 define the method. However, the convergence of this method depends on the operator
being a contraction in the neighborhood of the solution and consequently depends on
the quality of the initial points. In order not to depend on these characteristics and look
for multiple solutions our basic idea of the proposed method is to use the Levenberg-
Maquardt method [15]. An algorithm of this proposed method to solve Problem (1),
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(2), (3) equivalent representation in two second order problems presented in (7) and
(8).

Algorithm 1

1. Define an uniformly spaced mesh {t j}, j = 1, . . . ,n , in [0,L] .

2. Choose initial approximation u0
j = u0(t j).

3. Discretize the Problem (1) by finite difference.

For j = 2, . . . ,n−1

• u′′k(t j) = uk(t j+1)−2∗uk(t j)+uk(t j−1)
h2 ;

• u′k(t j) = uk(t j+1)−uk(t j−1)
2∗h .

4. Choose initial approximation v0
j = u′′k(t j)−M(‖u′‖2

2) , where approaching ‖u′‖2
2

by using trapezoidal rule.

• v′′k(t j) = vk(t j+1)−2∗vk(t j)+vk(t j−1)
h2 ;

• v′k(t j) = vk(t j+1)−vk(t j−1)
2∗h .

Thus we have the following linear system

r(uk,vk) = 0,

where

r(uk,vk) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u′′k(t j)−M(‖u′‖2
2)u

k(t j)− vk(t j) = 0; j = 2, . . . ,n−1.
uk(t1) = 0
uk(tn) = 0
v′′k(t j)− f (t j,uk(t j),u′k(t j)) = 0; j = 2, . . . ,n−1.
vk(t1) = 0
vk(tn)−g(u′k(tn)) = 0

5. For k = 1,2,3, . . . (Gauss-Newton)

(a) Compute rk = (r1,r2, . . . ,r2n)T and Ak = (ai j)2n×2n ;

ri = ri(uk), ai j = ∇ri(uk).

(b) Find Δk such that:
(AT

k Ak)Δk = −AT
k rk.

(c) Determines αk such that the Armijo’s condition is satisfied.
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(d) Compute

uk+1 = uk + αkΔk.

6. Test convergence.

The motivation for the Algorithm 1 is the fact that fixed point methods are ten-
dentious to find solutions in which the operator T is a contraction and consequently,
chosen an initial approximation u0 we have generally two possibilities: the method
converges to solution given by Banach’s Theorem or the method diverges. Anyway, if
we have multiple solutions (as in Theorem 2), we can try to find these solutions. For
this reason, our proposed algorithm, using an appropriated initial, allows to find others
solutions. So the development of an heuristic for find a better initial approximations is
relevant.

4.1. A heuristic procedure for initial guesses

We know that the solutions that we are looking must be concave or convex and
shall satisfy the condition u(0) = u(L) = 0. Thus, approaches by parables are rea-
sonable ways of approaching the solution. In this sense, our heuristic procedure is to
generate parables about initial points as follows:

u0(x) = αxβ (L− x)γ ,

where the constants α, β , γ is a random numbers in [−d
2
,
d
2
]× (0,10]× (0,10] . For

practical purposes, the proposed procedure is defined by Algorithm 2.

Algorithm 2

1. Choose a vector (α,β ,γ) ∈ [− d
2 , d

2 ]N × (0,10]N × (0,10]N .

2. For k = 1, ...,N do:

(a) Compute u0
k,i = u0

k(xi) = αkx
βk
i (1− xi)γk , i = 1, ...,n

(b) Run the Algorithm 1 with initial guess u0
k .

Naturally, this procedure returns multiple responses. So we need to establish a
way to compare solutions in order to distinguish them. Note that the magnitude of the
solutions may be different. In this sense we say that the numerical solutions u∗ and u∗∗
are equivalent if

‖u∗−u∗∗‖ � max{10−3,10−2 min{‖u∗‖,‖u∗∗‖}} (18)

is satisfied.
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4.2. Numerical examples

The examples in sequence show how the Algorithm 2 can be promissor in order
to find multiple solutions. We run the Algorithm 2 with N = 50 and n = 10. For
Algorithm 2 we consider as the criterion of stop ‖uk+1−uk‖ < 10−2 .

EXAMPLE 2.

Consider the example presented in the article [12], where (1), (2), (3) defined by

f (t,u,u′) = t5− t4−21t3 +12t2 +127t−24−u,

M(y) =
1
2

+
2025
1352

y2 and g(v) = −2v.

The solution is u(x) = t5 − t4 − t3 + t . In this example we are considering d = 10
and n = 10 points for the spaced mesh. The numerical result of comparison with the
exacts solutions. Applying Algorithm 2, of the 50 times that algorithm 1 was called it
obtained convergence in 43 times. All converged to the solution u after 12 iterations
(on average) in Algorithm 1 the precision obtained was of max |u12−u|= 0.00193.

EXAMPLE 3.

Consider the problem (1), (2), (3) defined by

f (t,u,u′) =
3
2
u(u2 + v2), g(v) = −s(1+ s) and M(y) =

1
8π

y+
1
4
.

The solutions are u(x) = sin(t) and u(x) = 0. In this example we are considering
d = 10 and n = 10 points for the spaced mesh. The numerical result of comparisonwith
the exacts solutions. Applying Algorithm 2 we obtain in the 50 times that the algorithm
1 was called it obtained convergence in 17 times. 14 initializations converged to the
solution u after 20 iterations (on average) in Algorithm 1 the precision obtained was
max |u12 − u| = 0.01073, three initializations converged to the solution u after of 15
iterations (in average) in Algorithm 1 the precision obtained was of max |u15 − u| =
0.00074.

We introduce an additional test. Let’s run the Algorithm 2 using the functions
defined in Example 1. In this example we are defining n = 10 and d = 20. Using
the criterion established in (18) we obtain tree solutions are different. These results
illustrate the result of existence given in Theorem 2. In Figure 1 we have a graphical
representation of these solutions.

5. Final remarks

We have proved, by using the of the Avery-Peterson theorem, that the problem (1),
(2), (3) can have multiple solutions if the functions f , g and M meet certain conditions.
With regard to the numerical aspects of this work, we present a new algorithm and a
new heuristic that allows us to obtain multiple solutions for the problem addressed.
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Figure 1: Solutions found by algorithm in Example 1.

The proposed method proved to be robust in solving the problem. However, the cost
of this robustness is a slightly higher cost of computer processing, especially when
compared to the classical method based on the contraction principle (using the operator
defined in (10)), but this strategy is generally not able (when it converges, it tends to
converge to the solution with the lowest norm), its convergence depends on properties
that cannot be fulfilled by the integral operator, that is, it must be a contraction in a
neighborhood of the solution. The level of processing is not absurd, even considering
more refined meshes. In addition, the method can be adapted for parallel programming
and, consequently, new features can be explored in the computational field.
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