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THE NEHARI MANIFOLD FOR A p–LAPLACIAN

EQUATION WITH CONCAVE–CONVEX

NONLINEARITIES AND SIGN–CHANGING POTENTIAL

HONG-YING LI

(Communicated by D. Kang)

Abstract. In this paper, we study the multiplicity of solutions for a class of concave-convex p -
Laplacian equations with the combined effect of coefficient functions of concave-convex terms.
By the Nehari method and some analysis techniques, we obtain an exact constant for the effect
of coefficient functions of concave-convex terms to ensure this problem has two nonzero and
nonnegative solutions and give the relation of size of the two solutions. Moreover, under some
stronger conditions, we prove that the two solutions are positive. Our results generalize and
improve some known results in the literature.

1. Introduction

Consider the following concave-convex p -Laplacian equation involving
sign-changing potential{

−Δpu = f (x)uq−1 +g(x)ur−1, x ∈ Ω,

u = 0, x ∈ ∂Ω,
(1.1)

where Ω is a bounded domain in R
N(N � 3) with smooth boundary ∂Ω , 1 < p <

N,1 < r < p < q < p∗ = pN
N−p are constants. The operator Δp is defined by the formula

Δpu = div(|∇u|p−2∇u) , which has lots of interesting applications in the dynamics of
non-Newtonian fluid flows, flows through porous media and glaciology. The coefficient

functions f ∈ L
p∗

p∗−q (Ω) and g ∈ L
p∗

p∗−r (Ω) satisfy the following condition:
(F0) The sets {x ∈ Ω : f (x) > 0} and {x ∈ Ω : g(x) > 0} have positive measures.

When p = 2, problem (1.1) arises in the study of non-Newtonian fluids (in par-
ticular pseudoplastic fluids), boundary-layer phenomena for viscous fluids (see [19],
[21]), in the Langmuir-Hinshelwood model of chemical heterogeneous catalyst kinet-
ics(see [23]), in enzymatic kinetics models (see [2]), as well as in the theory of heat
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conduction in electrically conducting materials (see [15]) and in the study of guided
modes of an electromagnetic field in nonlinear medium (see [7]). Problem (1.1) with
p �= 2 arises specifically in the study of turbulent flow of a gas in porous media (see
[22]).

It is well known that the pioneer work is Ambrosetti, Br ézis and Cerami [1] prob-
lem (1.1) was studied under the hypothesis p = 2, f (x) ≡ 1,g(x) ≡ λ > 0, that is,⎧⎪⎨

⎪⎩
−Δu = uq−1 + λur−1, x ∈ Ω,

u > 0, x ∈ Ω,

u = 0, x ∈ ∂Ω,

(1.2)

where 1 < r < 2 < q � 2∗. By using sub-supersolution and variational methods they
proved that there exists λ0 > 0 such that problem (1.2) has at least two positive solutions
for λ ∈ (0,λ0) , a positive solution for λ = λ0 and no positive solution for λ > λ0 .
After that, many authors considered problem (1.2), see for examples [12], [16], [18],
[26], [31] and [32].

In 1995, Boccardo, Escobedo and Peral [3] studied problem (1.1) with f (x) =
1,g(x) = λ , and obtained that there exists λ0 > 0 such that problem (1.1) has a positive
solution for all 0 < λ � λ0. Moreover, assume that Ω has a smooth boundary, they
proved that there exists λ∗ > 0 such that problem (1.1) has no positive solution for
λ > λ∗. Later, Garcı́a Azorero, Peral Alonso and Manfredi improved the result of [3],
and obtained problem (1.1) has two positive solutions for 0 < λ < λ∗, see [6]. After
that, many authors considered problem (1.1), for examples [4], [5], [9]-[11], [13], [14],
[17], [20], [25], [27], [30] and [33].

Particularly, recently, Silva and Macedo [25] considered problem (1.1) with g≡ λ
and f ∈ L∞(Ω) may change sign, that is,{

−Δpu = f (x)uq−1 + λur−1, x ∈ Ω,

u = 0, x ∈ ∂Ω.
(1.3)

They obtained that there exist ε > 0 and λ ∗ > 0 such that problem (1.3) has two
positive solutions for all 0 < λ < λ ∗ + ε, where λ ∗ is defined by

λ ∗ =
(

q− p
q− r

)(
p− r
q− r

) p−r
q−p

inf
u∈W1,p

0

⎧⎨
⎩ ‖u‖ p(p−r)

q−p

|u|rrF(u)
p−r
q−p

: F(u) > 0

⎫⎬
⎭ ,

here F(u) =
∫

Ω f (x)|u|qdx, |u|q = (
∫

Ω |u|qdx)
1
q is the usual Lq -norm and ‖u‖=

(
∫

Ω |∇u|pdx)
1
p is the standard norm of the Sobolev space W 1,p

0 (Ω). The λ ∗ was firstly

introduced in [13], where the author studied problem (1.3) with f ∈ Lγ (Ω)(γ > p∗
p∗−q )

and f (x) � 0 in Ω, and obtained that problem (1.3) has a positive solution u∈C1,α(Ω)
for some α > 0 when λ < λ ∗ , while 0 < λ < λ ∗ problem (1.3) has a second posi-
tive solution v ∈C1,α(Ω). Moreover, [5] generalized [6] to problem (1.1) with g(x) =
λh(x). When h, f ∈ L∞(Ω) with h has a positive bounded from below on any compact
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of Ω and f has a positive bounded from below on some ball of Ω, they obtained prob-
lem (1.1) has two positive solutions for 0 < λ < λ∗. Further, [13] and [5] also studied
the critical case for problem (1.1).

Inspired by [5], [6], [13] and [25], in this article, we consider the existence of
solutions for problem (1.1) with the combined effect of coefficient functions of concave-
convex terms. By the Nehari method, firstly, when (F0) holds, we obtain two nonzero
and nonnegative solutions of problem (1.1) and one of the solutions is a ground state
solution; secondly, we get two positive solutions of problem (1.1) under some stronger
constraint conditions on f ,g . When f ,g are nonzero and nonnegative functions, we
can confirm that the ground state solution lies a certain part of Nehari manifold.

Let S be the best Sobolev constant, Θ and Θ̃ be two positive constants, separately
noted by

S := inf

{ ∫
Ω |∇u|pdx

(
∫

Ω |u|p∗dx)
p
p∗

: u ∈W 1,p
0 (Ω),u �= 0

}
, (1.4)

Θ =
(

q− p
q− r

) 1
p−r
(

p− r
q− r

) 1
q−p

S
q−r

(q−p)(p−r) ,

Θ̃ = |Ω|−
(p∗−q)(q−r)+(p∗−r)(q−p)

p∗(q−p)(p−r) Θ.

We define

I(u) =
1
p

∫
Ω
|∇u|pdx− 1

q

∫
Ω

f (x)|u|qdx− 1
r

∫
Ω

g(x)|u|rdx, ∀u ∈W 1,p
0 (Ω).

Obviously, the functional I is of class C1 on W 1,p
0 (Ω). As well known that there exists

a one to one correspondence between the solutions of problem (1.1) and the critical
points of I on W 1,p

0 (Ω). More precisely, we say that a function u ∈W 1,p
0 (Ω) is called

a weak solution of problem (1.1), if for all ϕ ∈W 1,p
0 (Ω) there holds

∫
Ω
[|∇u|p−2(∇u,∇ϕ)− f (x)uq−1ϕ −g(x)ur−1ϕ ]dx = 0. (1.5)

Notice that u is a weak solution of problem (1.1), then u satisfies the following equation∫
Ω
|∇u|pdx−

∫
Ω

f (x)|u|qdx−
∫

Ω
g(x)|u|rdx = 0.

So it suggests that we could define a set

Λ =
{

u ∈W 1,p
0 (Ω) :

∫
Ω
|∇u|pdx−

∫
Ω

f (x)|u|qdx−
∫

Ω
g(x)|u|rdx = 0

}
,

and make the following splitting for Λ :

Λ+ =
{

u ∈ Λ : (p− r)
∫

Ω
|∇u|pdx− (q− r)

∫
Ω

f (x)|u|qdx > 0

}
,
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Λ0 =
{

u ∈ Λ : (p− r)
∫

Ω
|∇u|pdx− (q− r)

∫
Ω

f (x)|u|qdx = 0

}
,

Λ− =
{

u ∈ Λ : (p− r)
∫

Ω
|∇u|pdx− (q− r)

∫
Ω

f (x)|u|qdx < 0

}
.

Assume that u∈W 1,p
0 (Ω) is a solution of problem (1.1), u must belong to Λ. The main

results can be described as follows:

THEOREM 1. Assume that 1 < p < N, 1 < r < p < q < p∗, f ∈ L
p∗

p∗−q (Ω) and

g∈ L
p∗

p∗−r (Ω) satisfy (F0). Then, for | f |
1

q−p
p∗

p∗−q

|g|
1

p−r
p∗

p∗−r

< Θ, problem (1.1) has at least two

nonzero and nonnegative solutions u∗ ∈ Λ+,u∗∗ ∈ Λ− with

I(u∗) < 0 and ‖u∗‖ <

[
q− r

S
r
p (q− p)

] 1
p−r

|g|
1

p−r
p∗

p∗−r

< ‖u∗∗‖.

Moreover, one of the two solutions is a ground state solution.

REMARK 1. To our best knowledge, Theorem 1.1 is up to date. In [5], [6], [13]
and [25], they only studied the relation between the coefficient of the concave term and
the existence of solutions for problem (1.1). While we provide the exact estimate Θ
for the combined action of f and g. Moreover, we give the relation of size for the two
solutions in W 1,p

0 (Ω) .

THEOREM 2. Suppose Ω⊂R
N(N � 3) is a bounded domain with smooth bound-

ary ∂Ω . Assume that 1 < p < N, 1 < r < p < q < p∗, and f ,g satisfy the following
condition,
(F1) f ∈ L∞(Ω) with the set {x ∈ Ω : f (x) > 0} of positive measures, and g ∈ L∞(Ω)
with g(x) � 0,g �≡ 0.

Then, for | f |
1

q−p
∞ |g|

1
p−r
∞ < Θ̃, problem (1.1) has at least two positive solutions u∗ ∈

Λ+,u∗∗ ∈ Λ− with

I(u∗) < 0 and ‖u∗‖ <

⎡
⎣(q− r)|Ω|

p∗
p∗−r

S
r
p (q− p)

⎤
⎦

1
p−r

|g|
1

p−r
∞ < ‖u∗∗‖.

Moreover, one of the two solutions is a ground state solution.

THEOREM 3. Assume that 1 < p < N, 1 < r < p < q < p∗, and f ,g satisfy the
following condition,

(F2) f ∈ L
p∗

p∗−q (Ω) and g ∈ L
p∗

p∗−r (Ω) are nonzero and nonnegative functions.
Then the same conclusions of Theorem 1 hold. Moreover, the two nonzero and nonneg-
ative solutions are positive, and u∗ ∈ Λ+ is the positive ground state solution.
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REMARK 2. On the one hand, under the condition of (F1) or (F2) , by the strong
maximum principle, we prove that the nonzero and nonnegative solutions are positive.
According to [8](pp:158, 198), under the condition of (F1) , in order to obtain positive
solutions, the condition of the boundary of is necessary.

On the other hand, it is worth noticing that we could not confirm the ground state
solution lying in Λ+ or Λ− when f may change sign, because Λ+ and Λ− may not
be connected submanifolds. Under the condition of (F2), we obtain that the positive
ground state solution lies in Λ+ .

This paper is organized as follows: in Section 2, we give some preliminaries which
will be used to prove our main result, and in Section 3, we give the proof of Theorems
1-3.

2. Preliminaries

In this section, we give some lemmas to get ready for the proof of our main result.

LEMMA 1. Suppose that 1 < p < N, 1 < r < p < q < p∗, f ∈ L
p∗

p∗−q (Ω) and

g ∈ L
p∗

p∗−r (Ω) satisfy (F0). Then there exists a constant Θ > 0 such that Λ± �= /0 for

| f |
1

q−p
p∗

p∗−q

|g|
1

p−r
p∗

p∗−r

< Θ. Moreover, Λ0 = {0} and Λ− is a closed set for | f |
1

q−p
p∗

p∗−q

|g|
1

p−r
p∗

p∗−r

<

Θ.

Proof. According to the assumptions of f there exists u ∈W 1,p
0 (Ω) such that∫

Ω
f (x)|u|qdx > 0.

In fact, let E = {x ∈ Ω : f (x) > 0}, one obtains that E is a positive measure set.
Then for any ε > 0 there exist a closed set F and a open set G such that F ⊂ E ⊂ G
and meas (G−F) < ε. From the arbitrariness of ε, we have meas F > 0. We choose
ũ ∈ C1

0(Ω) with 0 � ũ � 1 such that ũ = 1 in F and ũ = 0 in Ω \G. Obviously,

ũ ∈W 1,p
0 (Ω). By Hölder’s inequality, one has∫

Ω f (x)|ũ|qdx �
∫
F f (x)dx− ∫G−F | f (x)||ũ|qdx

�
∫
F f (x)dx− (meas(G−F))

q
p∗
(∫

G−F | f |
p∗

p∗−q dx

) p∗−q
p∗

�
∫
F f (x)dx− ε

q
p∗ | f | p∗

p∗−q
� 1

2

∫
F f (x)dx > 0,

where we choose ε = min

⎧⎪⎨
⎪⎩
(∫

F f (x)dx
2| f | p∗

p∗−q

) p∗
q

, meas G
2

⎫⎪⎬
⎪⎭ such that meas F � meas G

2 > 0

and ε
q
p∗ | f | p∗

p∗−q
� 1

2

∫
F f (x)dx. Similarly, we can prove that there exists u ∈W 1,p

0 (Ω)

such that
∫

Ω g(x)|u|rdx > 0.



354 H.-Y. LI

Case one. For any u ∈ W 1,p
0 (Ω) such that

∫
Ω f (x)|u|qdx > 0. we define φ ∈

C(R+,R) by

φ(t) = t p−r‖u‖p− tq−r
∫

Ω
f (x)|u|qdx.

Since

φ ′(t) = (p− r)t p−r−1‖u‖p− (q− r)tq−r−1
∫

Ω
f (x)|u|qdx,

the function φ has a global maximum at

tmax =
[

(p− r)‖u‖p

(q− r)
∫

Ω f (x)|u|qdx

] 1
q−p

.

By calculation, we have

φ(tmax) =
q− p
q− r

(
p− r
q− r

) p−r
q−p ‖u‖ p(q−r)

q−p

(
∫

Ω f (x)|u|qdx)
p−r
q−p

.

By the Hölder inequality and (1.4), we have

∫
Ω

g(x)|u|rdx � |g| p∗
p∗−r

|u|rp∗ � |g| p∗
p∗−r

S−
r
p ‖u‖r, (2.1)

∫
Ω

f (x)|u|qdx � | f | p∗
p∗−q

|u|qp∗ � | f | p∗
p∗−q

S−
q
p ‖u‖q, (2.2)

Then from (2.1)-(2.2), one has

φ(tmax)−
∫

Ω
g(x)|u|rdx >

q− p
q− r

(
p− r
q− r

) p−r
q−p ‖u‖ p(q−r)

q−p(
| f | p∗

p∗−q
|u|qp∗

) p−r
q−p

−|g| p∗
p∗−r

|u|rp∗

=
{

q− p
q− r

(
p− r
q− r

) p−r
q−p
(
‖u‖p

|u|pp∗

) q−r
q−p 1

| f |
p−r
q−p

p∗
p∗−q

−|g| p∗
p∗−r

}
|u|rp∗

�
{

q− p
q− r

(
p− r
q− r

) p−r
q−p

S
q−r
q−p

1

| f |
p−r
q−p

p∗
p∗−q

−|g| p∗
p∗−r

}
|u|rp∗ > 0,

(2.3)

provided that | f |
1

q−p
p∗

p∗−q

|g|
1

p−r
p∗

p∗−r

< Θ, where

Θ =
(

q− p
q− r

) 1
p−r
(

p− r
q− r

) 1
q−p

S
q−r

(q−p)(p−r) .
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On the one hand, assume that
∫

Ω g(x)|u|rdx > 0. From (2.3), we obtain that there exist
unique positive numbers t+ = t+(u) < tmax < t− = t−(u) such that

φ(t+) =
∫

Ω
g(x)|u|rdx = φ(t−)

and
φ ′(t+) > 0, φ ′(t−) < 0.

That is, t+u ∈ Λ+ and t−u ∈ Λ−. On the other hand, assume that
∫

Ω g(x)|u|rdx �
0. Since φ ′(t) > 0 for all 0 < t < tmax and φ ′(t) < 0 for all t > tmax, and φ(0) =
0,φ(tmax) > 0 and φ(t) → −∞ as t → +∞, it follows from (2.3) that there exists a
unique t− > 0 satisfying t− > tmax such that∫

Ω
g(x)|u|rdx = φ(t−), φ ′(t− < 0,

which implies that t−u ∈ Λ−. Thus Λ± �= /0 for all | f |
1

q−p
p∗

p∗−q

|g|
1

p−r
p∗

p∗−r

< Θ.

Next, we prove that Λ0 = {0} for all | f |
1

q−p
p∗

p∗−q

|g|
1

p−r
p∗

p∗−r

< Θ. By contradiction, sup-

pose there exists some u0 ∈ Λ0 \ {0} , such that

(p− r)‖u0‖p− (q− r)
∫

Ω
f (x)|u0|qdx = 0. (2.4)

Since u ∈ Λ , that is

‖u0‖p =
∫

Ω
f (x)|u0|q +

∫
Ω

g(x)|u0|rdx.

Therefore,
q− p
q− r

‖u0‖p−
∫

Ω
g(x)|u0|rdx = 0. (2.5)

Then, according to (2.3)-(2.5), for | f |
1

q−p
p∗

p∗−q

|g|
1

p−r
p∗

p∗−r

< Θ, we have

0 <
q− p
q− r

(
p− r
q− r

) p−r
q−p ‖u0‖

p(q−r)
q−p

(
∫

Ω f (x)|u0|qdx)
p−r
q−p

−
∫

Ω
g(x)|u0|rdx

=
q− p
q− r

(
p− r
q− r

) p−r
q−p ‖u0‖

p(q−r)
q−p(

p−r
q−r ‖u0‖p

) p−r
q−p

− q− p
q− r

‖u0‖p

=
q− p
q− r

‖u0‖p− q− p
q− r

‖u0‖p = 0,

which is a contradiction. Therefore, Λ0 = {0} for all | f |
1

q−p
p∗

p∗−q

|g|
1

p−r
p∗

p∗−r

< Θ.
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Finally, we claim that Λ− is a closed set for | f |
1

q−p
p∗

p∗−q

|g|
1

p−r
p∗

p∗−r

< Θ. Suppose that

{un} ⊂ Λ− such that un → u as n → ∞ in W 1,p
0 (Ω) , we need prove u ∈ Λ− for

| f |
1

q−p
p∗

p∗−q

|g|
1

p−r
p∗

p∗−r

< Θ. Since un ∈ Λ−, one has

‖un‖p−
∫

Ω
f (x)|un|qdx−

∫
Ω

g(x)|un|rdx = 0 (2.6)

and

(p− r)‖un‖p− (q− r)
∫

Ω
f (x)|un|qdx < 0. (2.7)

Since un → u in W 1,p
0 (Ω) as n → ∞, it follows that

‖u‖p−
∫

Ω
f (x)|u|qdx−

∫
Ω

g(x)|u|rdx = 0

and

(p− r)‖u‖p− (q− r)
∫

Ω
f (x)|u|qdx � 0,

thus u ∈ Λ− ∪Λ0. If u ∈ Λ0, since Λ0 = {0} for | f |
1

q−p
p∗

p∗−q

|g|
1

p−r
p∗

p∗−r

< Θ, one has u = 0.

However, from (2.6) and (2.7), for all un ∈ Λ− , we obtain

(p− r)‖un‖p < (q− r)
∫

Ω
f (x)|un|qdx,

consequently, by the Hölder inequality and (1.4), one has

‖un‖ >

⎡
⎣ (p− r)S

q
p

(q− r)| f | p∗
p∗−q

⎤
⎦

1
q−p

> 0, ∀un ∈ Λ−,

which contradicts u = 0. Thus u∈Λ− for | f |
1

q−p
p∗

p∗−q

|g|
1

p−r
p∗

p∗−r

< Θ. Thus our claim is proved

to be true.
Case two. For any u ∈ W 1,p

0 (Ω) such that
∫

Ω g(x)|u|rdx > 0. we define Φ ∈
C(R+,R) by

Φ(t) = t p−q‖u‖p− tr−q
∫

Ω
g(x)|u|rdx.

Since 1 < r < p < q, one has Φ(t) → −∞ as t → 0+ and Φ(t) → 0 as t → +∞.
Moreover, one has

Φ′(t) = −tr−q−1
[
(q− p)t p−r‖u‖p− (q− r)

∫
Ω

g(x)|u|rdx

]
.
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Let Φ′(t) = 0, one has

t̂ =
[
(q− r)

∫
Ω g(x)|u|rdx

(q− p)‖u‖p

] 1
p−r

,

Φ(t̂) =
p− r
q− p

(
q− p
q− r

) q−r
p−r ‖u‖ p(q−r)

p−r

(
∫

Ω g(x)|u|rdx)
q−p
p−r

,

and Φ′(t) > 0 for all 0 < t < t̂, Φ′(t) < 0 for all t > t̂. Then from (2.1)-(2.2), one has

Φ(t̂)−
∫

Ω
f (x)|u|qdx >

p− r
q− p

(
q− p
q− r

) q−r
p−r ‖u‖ p(q−r)

p−r

(
∫

Ω g(x)|u|rdx)
q−p
p−r

−| f | p∗
p∗−q

|u|qp∗

�
{

p− r
q− p

(
q− p
q− r

) q−r
p−r
(
‖u‖p

|u|pp∗

) q−r
p−r 1

|g|
q−p
p−r
p∗

p∗−r

−| f | p∗
p∗−q

}
|u|qp∗

�
{

p− r
q− p

(
q− p
q− r

) q−r
p−r

S
q−r
p−r

1

|g|
q−p
p−r
p∗

p∗−r

−| f | p∗
p∗−q

}
|u|qp∗ > 0,

(2.8)

provided that | f |
1

q−p
p∗

p∗−q

|g|
1

p−r
p∗

p∗−r

< Θ, where Θ is defined in Case one. On the one hand,

when
∫

Ω f (x)|u|qdx > 0, From (2.8), we obtain that there exist unique positive numbers
t+ = t+(u) < t̂ < t− = t−(u) such that

Φ(t+) =
∫

Ω
f (x)|u|qdx = Φ(t−)

and
Φ′(t+) > 0, Φ′(t−) < 0.

That is, t+u ∈ Λ+ and t−u ∈ Λ−. On the other hand, assume that
∫

Ω f (x)|u|qdx � 0.
From the property of Φ, there exists a unique t+ > 0 satisfying t+ < t̂ such that

∫
Ω

f (x)|u|qdx = Φ(t+), Φ′(t+) > 0,

which implies that t+u∈ Λ+. Thus Λ± �= /0 for all | f |
1

q−p
p∗

p∗−q

|g|
1

p−r
p∗

p∗−r

< Θ. Similar to Case

one, we can also prove that Λ0 = {0} and Λ− is a closed set for | f |
1

q−p
p∗

p∗−q

|g|
1

p−r
p∗

p∗−r

< Θ.

The proof of Lemma 1 is completed. �

LEMMA 2. The functional I is coercive and bounded from below on Λ.
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Proof. For any u ∈ Λ, we have∫
Ω
|∇u|pdx−

∫
Ω

f (x)|u|qdx−
∫

Ω
g(x)|u|rdx = 0,

consequently, it follows from (2.1) and 1 < r < p < q that

I(u) =
1
p
‖u‖p− 1

q

∫
Ω

f (x)|u|qdx− 1
r

∫
Ω

g(x)|u|rdx

= (
1
p
− 1

q
)‖u‖p− (

1
r
− 1

q
)
∫

Ω
g(x)|u|rdx � q− p

pq
‖u‖p− q− r

qr
|g| p∗

p∗−r
S−

r
p ‖u‖r,

which implies that I is coercive and bounded from below on Λ . This completes the
proof of Lemma 2. �

From Lemma 1 and Lemma 2, for | f |
1

q−p
p∗

p∗−q

|g|
1

p−r
p∗

p∗−r

< Θ, the following definitions

are well defined

m = inf
u∈Λ

I(u), m+ = inf
u∈Λ+

I(u), m− = inf
u∈Λ− I(u).

Moreover, we can claim that m+ < 0. In fact, for all u ∈ Λ+, we have

(p− r)‖u‖p > (q− r)
∫

Ω
f (x)|u|qdx,

consequently, since 1 < r < p < q and u �= 0, it follows that

I(u) =
1
p
‖u‖p− 1

q

∫
Ω

f (x)|u|qdx− 1
r

∫
Ω

g(x)|u|rdx =
q− r
qr

∫
Ω

f (x)|u|qdx− p− r
pr

‖u‖p

<
p− r
qr

‖u‖p− p− r
pr

‖u‖p =
(

1
q
− 1

p

)
p− r

r
‖u‖p < 0,

this implies that m+ < 0. Thus, one has m � m+ < 0.

LEMMA 3. Give u ∈ Λ(respectively Λ±) and ϕ ∈ W 1,p
0 (Ω) with ϕ > 0 , then

there exist ε > 0 and a continue and differentiable function t = t(w)> 0,w∈R , |w|< ε
satisfying that

t(0) = 1, t(w)(u+wϕ) ∈ Λ(respectively Λ±), ∀w ∈ R, |w| < ε.

Proof. For all u ∈ Λ,ϕ ∈W 1,p
0 (Ω) with u,ϕ > 0, define F : R×R→ R by:

F(t,w) = t p−r‖(u+wϕ)‖p− tq−r
∫

Ω
f (x)|u+wϕ |qdx−

∫
Ω

g(x)|u+wϕ |rdx.

Consequently, one has

Ft(t,w) = (p− r)t p−r−1‖(u+wϕ)‖p− (q− r)tq−r−1
∫

Ω
f (x)|u+wϕ |qdx
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Since u ∈ Λ with u > 0, one has F(1,0) = 0. Moreover, by Lemma 2.1, one obtains

Ft(1,0) = (p− r)
∫

Ω
|∇u|pdx− (q− r)

∫
Ω
|u|qdx �= 0.

Thus, applying the implicit function theorem at the point (1,0) , we can obtain ε > 0
and a continuous and differentiable t : B(0,ε) → R satisfying that

t(0) = 1, t(w) > 0, t(w)(u+wϕ) ∈ Λ, ∀w ∈ R, |w| < ε.

Similarly, we can prove that the conclusion of the case u ∈ Λ± is true. This completes
the proof of Lemma 3. �

3. Proof of theorems

In this part, we prove that problem (1.1) has a nonnegative local minimizer solution
in Λ+ and Λ−, respectively. Now, we give the proof of Theorem 1.

Proof of Theorem 1. Let | f |
1

q−p
p∗

p∗−q

|g|
1

p−r
p∗

p∗−r

< Θ. The proof of Theorem 1.1 will be

divided into two steps.
Step 1. We prove that there exists a nonzero and nonnegative solution of problem

(1.1) in Λ+.
Obviously, by Lemma 1, one has that Λ+ ∪ Λ0 is a non-empty closed set in

W 1,p
0 (Ω) for | f |

1
q−p

p∗
p∗−q

|g|
1

p−r
p∗

p∗−r

< Θ. Moreover, from Lemma 2.2, inf
u∈Λ+∪Λ0

I(u) is well

defined. Applying Ekeland’s variational principle to the minimization problem
inf

u∈Λ+∪Λ0
I(u) , there exists a sequence {un} ⊂ Λ+ ∪Λ0 with the following properties:

(i) I(un) < inf
u∈Λ+∪Λ0

I(u)+
1
n

;

(ii) I(u) � I(un)− 1
n
‖u−un‖, ∀u ∈ Λ+∪Λ0.

Since I(u) = I(|u|) , we can assume from the beginning that un(x) � 0 for all x ∈ Ω.

Obviously, {un} is bounded in W 1,p
0 (Ω), going if necessary to a subsequence, still

denoted by {un} , there exists u∗ � 0 such that⎧⎪⎨
⎪⎩

un ⇀ u∗, weakly in W 1,p
0 (Ω),

un → u∗, strongly in Lq(Ω), 2 � q < p∗,
un(x) → u∗(x), a.e. in Ω,

(3.1)

as n → ∞. Since m � m+ < 0, we claim that u∗ �≡ 0 in Ω. By the Vitali theorem (see
[24] pp:133), we can prove that

lim
n→∞

∫
Ω

f (x)|un|qdx =
∫

Ω
f (x)|u∗|qdx. (3.2)
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Indeed, we only need prove that {∫Ω f (x)|un|qdx,n∈N} is equi-absolutely-continuous.
Note that {un} is bounded in W 1,p

0 (Ω), by the Sobolev embedding theorem, then exists
a constant C0 > 0 such that |un|p∗ �C0 < ∞ . From (2.2), for every ε > 0, setting δ > 0,
when E ⊂ Ω with meas E < δ , we have

∫
E

f (x)|un|qdx � |un|qp∗
(∫

E
| f |

p∗
p∗−q dx

) p∗−q
p∗

< ε,

where the last inequality is from the absolutely-continuity of
∫

Ω | f |
p∗

p∗−q dx. Thus, our
claim is true. Similarly,

lim
n→∞

∫
Ω

g(x)|un|rdx =
∫

Ω
g(x)|u∗|rdx. (3.3)

By the weakly lower semicontinuity of the norm, and combining with (3.2) and (3.3),
it follows that

I(u∗) =
1
p
‖u∗‖p− 1

q

∫
Ω

f (x)|u∗|qdx− 1
r

∫
Ω

g(x)|u∗|rdx

� liminf
n→∞

[
1
p
‖un‖p− 1

q

∫
Ω

f (x)|un|qdx− 1
r

∫
Ω

g(x)|un|rdx

]
= liminf

n→∞
I(un)

= inf
u∈Λ+∪Λ0

I(u) < 0,

(3.4)
which implies that u∗ �≡ 0 in Ω. Thus u∗ � 0,u∗ �≡ 0 in Ω. Since m+ = inf

u∈Λ+
I(u) < 0,

one has

inf
u∈Λ+∪Λ0

I(u) = inf
u∈Λ+

I(u) = m+ < 0.

Consequently, combining with (i) , for all n large enough we have I(un) < 0. Thus,
the sequence {un} has a subsequence, still denoted by {un} , such that {un} ⊂ Λ+.
From now on, we could assume that {un} ⊂ Λ+. Now, we will prove that u∗ ∈ Λ+ is a
solution of problem (1.1).

First, we prove that u∗ is a solution of problem (1.1). Applying Lemma 3 with
u = un, and ϕ ∈ W 1,p

0 (Ω), w > 0 small enough, we find a sequence of continuous
functions tn = tn(w) such that tn(0) = 1 and tn(w)(un +wϕ) ∈ Λ+. Obviously, un ∈ Λ,
one has

‖un‖p−
∫

Ω
f (x)|un|qdx−

∫
Ω

g(x)|un|rdx = 0. (3.5)



Differ. Equ. Appl. 11, No. 3 (2019), 349–366. 361

By the subadditivity of the norm, it follows from (ii) that

|tn(w)−1| · ‖un‖+wtn(w)‖ϕ‖
n

� 1
n
‖tn(w)(un +wϕ)−un‖

� I(un)− I[tn(w)(un +wϕ)]

= − t p
n (w)−1

p
‖un‖p +

tqn (w)−1
q

∫
Ω

f (x)|un +wϕ |qdx

+
trn(w)−1

r

∫
Ω

g(x)|un +wϕ |rdx

+
t p
n (w)
p

(‖un‖p−‖un +wϕ‖p)
+

1
q

∫
Ω

f (x)
(|un +wϕ |q−|un|q

)
dx

+
1
r

∫
Ω

g(x)
(|un +wϕ |r −|un|r

)
dx,

consequently, dividing by w > 0 and let w → 0+, combining (3.5), we have

1
n
(|t ′(0)| · ‖un‖+‖ϕ‖) � −

[
‖un‖p−

∫
Ω

f (x)|un|qdx−
∫

Ω
g(x)|un|rdx

]
t ′(0)

−
∫

Ω
|∇un|p−2(∇un,∇ϕ)+

∫
Ω

f (x)|un|q−2unϕdx

+
∫

Ω
g(x)|un|r−2unϕdx

= −
∫

Ω
|∇un|p−2(∇un,∇ϕ)dx+

∫
Ω

f (x)|un|q−2unϕdx

+
∫

Ω
g(x)|un|r−2unϕdx.

(3.6)

Moreover, Lemma 3 suggests that there exists a constant C > 0, such that |t ′n(0)| � C
for all n∈N+ . Therefore, from the boundedness of {un} , we can choose a subsequence
of {un} still denoted by {un} , passing to the limit as n → ∞ in (3.6), we get∫

Ω
|∇u∗|p−2(∇u∗,∇ϕ)dx−

∫
Ω

f (x)|u∗|q−2u∗ϕdx−
∫

Ω
g(x)|u∗|r−2u∗ϕdx � 0, (3.7)

for any ϕ ∈W 1,p
0 (Ω). Since (3.7) also holds for −ϕ , one has∫

Ω
|∇u∗|p−2(∇u∗,∇ϕ)dx−

∫
Ω

f (x)|u∗|q−2u∗ϕdx−
∫

Ω
g(x)|u∗|r−2u∗ϕdx = 0, (3.8)

for any ϕ ∈W 1,p
0 (Ω). Thus, u∗ is a solution of problem (1.1).

Secondly, we prove that u∗ ∈ Λ+. Choosing ϕ = u∗ in (3.8), one has

‖u∗‖p =
∫

Ω
f (x)uq

∗dx+
∫

Ω
g(x)ur

∗dx, (3.9)

and this implies u∗ ∈ Λ. By (3.2) and (3.3), let n → ∞, it follows from (3.5) that

lim
n→∞

‖un‖p =
∫

Ω
f (x)uq

∗dx+
∫

Ω
g(x)ur

∗dx,
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combining with (3.9), one has

lim
n→∞

‖un‖p = ‖u∗‖p.

Combining with (3.1), un ⇀ u∗ in W 1,p
0 (Ω) , one has un → u∗ in W 1,p

0 (Ω) as n → ∞.
Thus, we can obtain that limn→∞ I(un) = I(u∗) = m+ < 0 and u∗ ∈ Λ+∪Λ0. According

to Lemma 1, Λ0 = {0} for | f |
1

q−p
p∗

p∗−q

|g|
1

p−r
p∗

p∗−r

< Θ, one has u∗ ∈ Λ+. Therefore, u∗ is a

nonzero and nonnegative solution of problem (1.1) in Λ+ with I(u∗) < 0. Moreover,
since u∗ ∈ Λ+, from (2.1), one has

(q− p)‖u∗‖p < (q− r)
∫

Ω
g(x)|u∗|rdx � (q− r)|g| p∗

p∗−r
S−

r
p ‖u∗‖r,

which implies that

‖u∗‖ <

[
q− r

S
r
p (q− p)

] 1
p−r

|g|
1

p−r
p∗

p∗−r

.

Step 2. We prove that there exists a nonzero and nonnegative solution of problem
(1.1) in Λ−.

By Lemma 1, Λ− is close in W 1,p
0 (Ω). Apply Ekeland’s variational principle to

the minimization problem m− = inf
u∈Λ− I(u) , there exists a sequence {vn} ⊂ Λ− with the

following properties:
(i) I(vn) < m− + 1

n ;
(ii) I(v) � I(vn)− 1

n‖v− vn‖, ∀v ∈ Λ−.
Since I(u) = I(|u|) , we could suppose that vn(x) > 0 for all x ∈ Ω . From Lemma 2,
one has {vn} is bounded in W 1,p

0 (Ω). Hence, there exist a subsequence of {vn} , still

denoted by {vn} , and u∗∗ ∈W 1,p
0 (Ω) with u∗∗ � 0 such that

⎧⎪⎨
⎪⎩

vn ⇀ u∗∗, weakly in W 1,p
0 (Ω),

vn → u∗∗, strongly in Lq(Ω), 2 � q < p∗,
vn(x) → u∗∗(x), a.e. in Ω,

(3.10)

as n → ∞. Similar to (3.2), we also have

lim
n→∞

∫
Ω

f (x)|vn|qdx =
∫

Ω
f (x)|u∗∗|qdx, (3.11)

lim
n→∞

∫
Ω

g(x)|vn|rdx =
∫

Ω
g(x)|u∗∗|rdx. (3.12)

Since vn ∈ Λ−, one has

(p− r)‖vn‖p < (q− r)
∫

Ω
f (x)|vn|qdx,
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consequently, by the Hölder inequality and (1.4), it follows that

‖vn‖ �

⎡
⎣ S

q
p (p− r)

| f | p∗
p∗−q

(q− r)

⎤
⎦

1
q−p

> 0,

which implies that u∗∗(x) � 0 in Ω and u∗∗ �≡ 0.
Next, we can repeat Step 1 to prove that u∗∗ is a solution of problem (1.1).
Finally, we prove u∗∗ ∈ Λ−. Since Λ− is closed, we only need to prove vn → u∗∗

as n → ∞ in W 1,p
0 (Ω). As well known, from (3.10), one has

∫
Ω
|∇vn|pdx �

∫
Ω
|∇(vn −u∗∗)|pdx+

∫
Ω
|∇u∗∗|pdx.

Consequently, since vn ∈ Λ− and u∗∗ is a positive solution of problem (1.1), it follows
from (3.11) and (3.12) that

0 =
∫

Ω
|∇vn|pdx−

∫
Ω

f (x)|vn|qdx−
∫

Ω
g(x)|vn|rdx

= lim
n→∞

(∫
Ω
|∇vn|pdx−

∫
Ω

f (x)|vn|qdx−
∫

Ω
g(x)|vn|rdx

)
� lim

k→∞
‖vn−u∗∗‖p +‖u∗∗‖p−

∫
Ω

f (x)|u∗∗|qdx−
∫

Ω
g(x)|u∗∗|rdx = lim

k→∞
‖vn−u∗∗‖p

� 0,

which implies that lim
n→∞

‖vn − u∗∗‖ = 0. Thus, we obtain u∗∗ ∈ Λ− and I(u∗∗) = m−.

Therefore, u∗∗ is a nonzero and nonnegative solution of problem (1.1) in Λ+. Since
u∗∗ ∈ Λ−, similar to u∗ , from (1.1), we can easy obtain

‖u∗∗‖ >

[
q− r

S
r
p (q− p)

] 1
p−r

|g|
1

p−r
p∗

p∗−r

.

Since I(u∗) = m+ and I(u∗∗) = m−, one of u∗ and u∗∗ is a nonzero and nonnegative
ground state solution of problem (1.1). Then we complete the proof of Theorem 1. �

Now, we give the proof of Theorem 2.

Proof of Theorem 2. Since f ,g satisfy (F1), by the Hölder inequality and (1.4),
we have ∫

Ω
g(x)|u|rdx � |g|∞|Ω|

p∗−r
p∗ |u|rp∗ � |g|∞|Ω|

p∗−r
p∗ S−

r
p ‖u‖r, (3.13)

∫
Ω

f (x)|u|qdx � | f |∞|Ω|
p∗−q
p∗ |u|qp∗ � | f |∞|Ω|

p∗−q
p∗ S−

q
p ‖u‖q.

Similar to Lemma 1, we can obtain the exact estimate Θ̃ = |Ω|−
(p∗−q)(q−r)+(p∗−r)(q−p)

p∗(q−p)(p−r) Θ,

where Θ is defined in Lemma 1. Similar to the proof of Theorem 1, for | f |
1

q−p
∞ |g|

1
p−r
∞ <
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Θ̃, we can prove that u∗ and u∗∗ are two nonzero and nonnegative solutions of problem
(1.1) and one of the two solutions is a ground state solution. Moreover, since u∗ ∈ Λ+

and u∗∗ ∈ Λ−, from (3.13), we can get

I(u∗) < 0 and ‖u∗‖ <

⎡
⎣(q− r)|Ω|

p∗
p∗−r

S
r
p (q− p)

⎤
⎦

1
p−r

|g|
1

p−r
∞ < ‖u∗∗‖.

Thus, we only need prove that u∗,u∗∗ > 0 in Ω. Assume that (F1) holds. Since
u∗,u∗∗ ∈ W 1,p

0 (Ω), then by the embedding theorem we have u∗,u∗∗ ∈ Lp∗(Ω). Since

f ,g ∈ L∞(Ω), by the regularity of weak solutions, we have u∗,u∗∗ ∈W 2, p∗
q (Ω). Then,

by the classical bootstrap argument, one has u∗ ∈ W 2,s(Ω) for all 1 � s < ∞. Using
the embedding theorem again, we have u∗ ∈ C1,α(Ω) for some 0 < α < 1. Since
u∗ � 0,u∗ �≡ 0, by the Harnack inequality(see [28]), one has u∗ > 0 in Ω. Similarly,
we can obtain that u∗∗ > 0 in Ω. Then the proof of Theorem 2 is completed. �

Finally, we prove Theorem 3.

Proof of Theorem 3. Since m = infu∈Λ I(u)� m+ < 0, in order to prove the ground
state solution belongs to Λ+, we need prove that m = m+. Obviously, Λ is a non-empty

closed set in W 1,p
0 (Ω) for | f |

1
q−p

p∗
p∗−q

|g|
1

p−r
p∗

p∗−r

< Θ. Applying Ekeland’s variational principle

to the minimization problem m = infu∈Λ , similarly to Step 1 of the proof of Theorem
1, we can prove that there exists a nonzero and nonnegative solution of problem (1.1)

in Λ for | f |
1

q−p
p∗

p∗−q

|g|
1

p−r
p∗

p∗−r

< Θ. Without loss of generality, we also denote this solution

by u∗, then I(u∗) = m and u∗ ∈ Λ.

Now, we claim that u∗ ∈ Λ+. On the contrary, assume that u∗ ∈ Λ−(Λ0 = {0} for

| f |
1

q−p
p∗

p∗−q

|g|
1

p−r
p∗

p∗−r

< Θ). From (F2), one has

∫
Ω

f (x)|u|p+1dx > 0 and
∫

Ω
g(x)|u|q+1dx > 0.

By Lemma 1, then there exist positive numbers t+0 < tmax < t−0 = 1 such that t+0 u∗ ∈Λ+

and t−0 u∗ ∈ Λ− and
I(t+0 u∗) � I(t−0 u∗) = I(u∗) = m,

which is a contradiction. Hence, I(u∗) = m = m− and u∗ ∈ Λ+. Obviously, u∗ is
a nonzero and nonnegative ground state solution of problem (1.1) with I(u∗) = m =
m− < 0. Similarly to Step 2 of the proof of Theorem 1, one obtains that there exists a
nonzero and nonnegative solution u∗∗ ∈ Λ−. And we can also have

‖u∗‖ <

[
q− r

S
r
p (q− p)

] 1
p−r

|g|
1

p−r
p∗

p∗−r

< ‖u∗∗‖.
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Finally, we only need prove that u∗,u∗∗ > 0 in Ω. Assume that (F2) holds. From
(3.7), it follows that∫

Ω
|∇u∗|p−2(∇u∗,∇ϕ)dx � 0, for ϕ ∈W 1,p

0 (Ω),

which means that u∗ satisfies

−Δpu∗ � 0, in Ω.

Since u∗ � 0,u∗ �≡ 0, by the strong maximum principle(see [29]), one has u∗ > 0 in
Ω. Similarly, we can obtain that u∗∗ > 0 in Ω. This completes the proof of Theorem
3. �
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