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ON THE SOLUTIONS FOR AN EXTENSIBLE BEAM EQUATION

WITH INTERNAL DAMPING AND SOURCE TERMS
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Abstract. In this manuscript, we consider the nonlinear beam equation with internal damping
and source term

utt +Δ2u+M(|∇u|2)(−Δu)+ut = |u|r−1u

where r > 1 is a constant, M(s) is a continuous function on [0,+∞) . The global solutions are
constructed by using the Faedo-Galerkin approximations, taking into account that the initial data
is in appropriate set of stability created from the Nehari manifold. The asymptotic behavior is
obtained by the Nakao method.
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