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Abstract. In this manuscript, we consider the nonlinear beam equation with internal damping
and source term

utt +Δ2u+M(|∇u|2)(−Δu)+ut = |u|r−1u

where r > 1 is a constant, M(s) is a continuous function on [0,+∞) . The global solutions are
constructed by using the Faedo-Galerkin approximations, taking into account that the initial data
is in appropriate set of stability created from the Nehari manifold. The asymptotic behavior is
obtained by the Nakao method.

1. Introduction

Let Ω be a bounded domain in R
n with smooth boundary ∂Ω . In this paper,

we study the existence and the energy decay estimate of global solutions for the initial
boundary value problem of the following equation with internal damping and source
terms

utt + Δ2u+M(|∇u|2)(−Δu)+ut = |u|r−1u in Ω× (0,T), (1.1)

u(x,0) = u0(x), ut(x,0) = u1(x), x ∈ Ω, (1.2)

u(x, t) =
∂u
∂η

(x,t) = 0, x ∈ ∂Ω,t � 0, (1.3)

where r > 1 is a constant, M(s) is a continuous function on [0,+∞) . In (1.3), u = 0 is
the homogeneousDirichlet boundary condition and the normal derivative ∂u/∂η = 0 is
the homogeneous Neumann boundary condition where η is the unit outward normal on
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∂Ω . The physical meaning of the clamped boundary conditions (1.3) is that, with the
natural boundary conditions, we imposed no a priori conditions on the function space
and it turns out that a weak solution automatically satisfies the boundary conditions.

In 1955, Berger [10] established the equation

utt −
(

Q+
∫

Ω
|∇u|2dx

)
Δu = p(u,ut ,x), (1.4)

which is called the Berger plate model [12], where the parameter Q describes in-plane
forces applied to the plate and the function p represents transverse loads which may de-
pend on the displacement u and the velocity ut . If n = 2, the equation (1.4) represents
the “Berger approximation” of the Von Kárman equations, modelling the nonlinear vi-
brations of a plate (see [15], pg. 501-507).

When n = 1 and p = 0, the corresponding equation had been introduced by
Woinowsky-Krieger [13] as a model for the transverse motion of an extensible beam. It
means that the equation (1.1) describes the transverse deflection of an extensible beam
of the length L whose ends are attached at a fixed distance is the following equation

∂ 2u
∂ t2

+ α
∂ 4u
∂x4 +

(
β +

∫ L

0
u2

ε(ε,t)dε
)(

−∂ 2u
∂u2

)
= f ,

where α is a positive constant, β is a constant not necessarily positive and the nonlinear
term represents the change in the tension of the beam due to its extensibility.

The physical origin of the problem here relates to the study of the dynamical buck-
ling of the hinged extensible beam which is either stretched or compressed by an axial
force. The readers could also see in Burgreen [24] and Eisley [25] for more physical
justifications and the model background.

Cavalcanti et al [28] studied the equation

utt + Δ2u+M(|∇u|2)(−Δu)+g(ut)+ f (u) = 0 (1.5)

with g(s) = |s|ρ−1s and f (s) = |s|γ−1s where ρ and γ are positive constants such that
1 < ρ ,γ � n/(n−2) if n � 3; ρ ,γ > 1 if n = 1,2. The global existence and asymptotic
stability were proved by means of the fixed point theorem and continuity arguments.

Zhijian [29] investigated the problem (1.5) more generally as follows

utt + Δ2u+M(|∇u|2)(−Δu)+g(ut)+ f (u) = h(x), (1.6)

where the source terms f ,g ∈ C1(R) , | f ′(s)| � C(1+ |s|p−1) and K0|s|q−1 < g′(s) �
C(1+ |s|q−1) , K0,C > 0 with 1� p < ∞,1 � q < ∞ if n � 4; 1 � p � p∗ = (n+4)/(n−
4) and p � q if N � 5. By Galerkin approximation combined with the monotone
arguments, the author proved the existence of global solution.

The equation (1.1) without source terms was studied by several authors in differ-
ent contexts. The problem without damping was considered in Dickey [5], Ball [1],
Medeiros [6], Pereira [7] among others. When the damping term is considered, the
problem was studied by, Brito [4], Biler [3], Ball [2] see also the references therein.
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Beam equation with weak internal damping in domain with moving boundary was stud-
ied by Clark [8]. Extensible beam equation with nonlinearity of Kirchhoff type in do-
mains with moving boundary and memory was studied in [11]. For coupled system of
extensible beam models, we cite [9] and references therein.

In this work we use the potential well theory which approach is completely dif-
ferent from those in [28, 29]. In [28], the existence of global solutions was proved by
means of the Fixed point theorem and the asymptotic behavior was obtained by using
the perturbed energy method. In [29], the global existence and the longtime dynamics
of solutions were considered by using semigroup theory. The outline of the paper is as
follows. In the Section 2, we introduce some notations and the stability set created from
the Nehari Manifold. In the Section 3, we prove the existence of solution through the
Faedo-Galerkin method. By result of M. Nakao [20], the energy decay in the appropri-
ate set of stability will be given in Section 4. In the last section, some final comments
will be presented.

2. The potential well

It is well-known that the energy of a PDE system, in some sense, splits into the
kinetic and the potential energy. By following the idea of Y. Ye [26], we are able to
construct a set of stability. We will prove that there is a valley or a well of the depth d
created in the potential energy. If d is strictly positive, then we find that, for solutions
with the initial data in the good part of the potential well, the potential energy of the
solution can never escape the potential well. In general, it is possible that the energy
from the source term to cause the blow-up in a finite time. However, in the good part
of the potential well, it remains bounded. As a result, the total energy of the solution
remains finite on any time interval [0; T), providing the global existence of the solution.

We started by introducing the functional J : H2
0 (Ω) → R defined by

J(u) =
1
2

(
1− β

λ1

)
|Δu|2− 1

r+1
|u|r+1

r+1.

For u ∈ H2
0 (Ω) , we have

J(λu) =
λ 2

2

(
1− β

λ1

)
|Δu|2− λ r+1

r+1
|u|r+1

r+1,λ > 0.

Associated with J , we have the well-known Nehari Manifold given by

N
de f
=

{
u ∈ H2

0 (Ω)\ {0};
[

d
dλ

J(λu)
]

λ=1
= 0

}
.

Equivalently,

N =
{

u ∈ H2
0 (Ω)\ {0};

(
1− β

λ1

)
|Δu|2 = |u|r+1

r+1

}
.
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We define as in the Mountain Pass theorem due to Ambrosetti and Rabinowitz [14],

d
de f
= inf

u∈H2
0 (Ω)\{0}

sup
λ�0

J(λu).

It is well-known for 1 < r � 5 that the depth of the well is a real constant strictly
positive ([15], theorem 4.2) and d = infu∈N J(u) .

We now introduce the potential well

W =
{
u ∈ H2

0 (Ω); J(u) < d
}∪{0}

and partition it into two sets as follows

W1 =
{

u ∈ H2
0 (Ω);

1
2

(
1− β

λ1

)
|Δu|2 >

1
r+1

|u|r+1
r+1

}
∪{0}

and

W2 =
{

u ∈ H2
0 (Ω);

1
2

(
1− β

λ1

)
|Δu|2 <

1
r+1

|u|r+1
r+1

}
.

We will refer to W1 as the “good” part of the potential well. Then we define by
W1 the set of stability for the problem (1.1)-(1.3).

3. Existence of global solutions

We consider the following hypothesis

(H) M ∈C([0,∞]) with M(λ ) � −β ,∀ λ � 0,0 < β < λ1,
λ1 is the first eigenvalue of the problem Δ2u−λ (−Δu) = 0.

REMARK 1. Let λ1 be the first eigenvalue of Δ2u−λ (−Δu)= 0 with the clamped
boundary conditions

u|∂Ω = 0,
∂u
∂η

|∂Ω = 0,

then (see Miklin [16]),

λ1 = inf
u∈H2

0 (Ω)

|Δu|2
|∇u|2 > 0 and |∇u|2 � 1

λ1
|Δu|2.

THEOREM 1. Let u0 ∈W1 , E(0) < d , u1 ∈ L2(Ω) , 1 < r � 5 . If the hypothesis
(H) holds, then there exists a function u : [0,T ] → L2(Ω) in the class

u ∈ L∞(0,T ;H2
0 (Ω))∩L∞(0,T ;Lr+1(Ω)) (3.1)

ut ∈ [L∞(0,T ;L2(Ω)) (3.2)



Differ. Equ. Appl. 11, No. 3 (2019), 367–377. 371

such that, for all w ∈ H2
0 (Ω)

d
dt

(ut(t),w)+ 〈Δu(t),Δw〉+M(|∇u|2)(−Δu,w)+ (ut(t),w)− (|u(t)|r−1u(t),w) = 0,

(3.3)

u(0) = u0, ut(0) = u1,
(3.4)

in D ′(0,T ) .

Proof. We use the Faedo-Galerkin’s method and potential well to prove the global
existence of solutions.

3.1. Approximated problem

Let (wν )ν∈N be a basis of H2
0 (Ω) from the eigenvectors of the operator −Δ , and

Vm = span{w1,w2, . . . ,wm} . Let

um(t) =
m

∑
j=1

k jm(t)wj

be a solution of the approximated problem

(um
tt (t),w)+ (Δum(t),Δw)+M(|∇um(t)|2)(−Δum(t),w)

+(um
t (t),w)− (|um(t)|r−1um(t),w

)
= 0,∀ w ∈Vm, (3.5)

um(0) = u0m −→ u0 strongly in H2
0 (Ω, (3.6)

um
t (0) = u1m −→ u1 strongly in L2(Ω). (3.7)

The system (3.5)-(3.7) has a local solution in [0,tm) , 0 < tm � T , by virtue of
Carathéodory’s theorem, see [17]. The extension of the solution to the whole interval
[0,T ] is a consequence of the following estimate.

3.2. A priori estimates

Let w = um
t (t) in (3.5). We get

d
dt

[
1
2
|um

t (t)|2 +
1
2
|Δum(t)|2 +

1
2
M̂|∇um(t)|2− 1

r+1
|um(t)|r+1

r+1

]
= −|um

t (t)| � 0,

(3.8)

where M̂(s) =
∫ s

0
M(ξ )dξ .

Integrating (3.8) from 0 to t , 0 � t � tm , we obtain

1
2
|um

t (t)|2 +
1
2
|Δum(t)|2 +

1
2
M̂|∇um(t)|2− 1

r+1
|um(t)|r+1

r+1 +
∫ t

0
|um

t (t)|2 ds =
1
2
|u1m|2.

(3.9)
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Now, by (H), since β < λ1 , we have

M̂(|∇um(t)|2) � − β
λ1

|Δum(t)|2. (3.10)

By (3.9) and (3.10), it follows

1
2
|um

t (t)|2 +
1
2

(
1− β

λ1

)
|Δum(t)|2 − 1

r+1
|um(t)|r+1

r+1 +
∫ t

0
|um

t (s)|2 ds

�1
2
|u1m|2 +

1
2
|Δu0m|2 +

1
2
M̂

(|∇u0m|2
)− 1

r+1
|u1m|r+1

r+1.

Now,

M̂(|∇u0m|2) � m0|∇u0m|2 � m0

λ1
|Δu0m|2, (3.11)

where m0 = max
0�s�|∇u0m|�C0

M(s) and C0 is a positive constant independent of m and t .

Therefore, the approximate energy

Em(t) =
1
2
|um

t (t)|2 +
1
2
|Δum(t)|2 +

1
2
M̂(|∇um(t)|2)− 1

r+1
|um(t)|r+1

r+1

satisfies

Em(t) � E(0) =
1
2
|u1m|2 +C1J(u0m),

where C1 = C1(m0,λ1,β ) > 0 is a constant independent of m and t .
We have that J(u0m) < d and by convergence (3.7), there exists a constant C2 > 0

independent of m and t such that
1
2
|u1m|2 � C2 . So, there exists a constant C3 > 0

such that

Em(t)+
∫ t

0
|um

t (s)|2 ds = Em(0) < C3,

that is,

1
2
|um

t (t)|2 +
1
2

(
1− β

λ1

)
|Δum(t)|2 − 1

r+1
|um(t)|r+1

r+1 � Em(t) � C3. (3.12)

We can extend the approximate solutions um(t) to the interval [0,T ] , T > 0 ( see [18]).
Then by (3.12) we have

(um)is bounded in L∞(0,T ;H2
0 (Ω))∩L∞(0,T ;Lr+1(Ω)) (3.13)

(um
t )is bounded in L∞(0,T ;L2(Ω))∩L2(0,T ;L2(Ω)) (3.14)

(|um|r−1um)is bounded in L
r+1
r (0,T ;L

r+1
r (Ω)) (3.15)
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3.3. Passage to the limit

From the estimates (3.13)-(3.15), there exists a subsequence of (um) , also denoted
by (um) , such that

um ∗
⇀ u weakly star in L∞(0,T ;H2

0 (Ω)), (3.16)

um
t

∗
⇀ ut weakly star in L∞(0,T ;L2(Ω), (3.17)

|um|r−1um ⇀ χ weakly in L
r+1
r (0,T ;L

r+1
r (Ω)). (3.18)

Applying the Lions-Aubin Lemma [19], we get from (3.16)-(3.17)

um −→ u strongly in L2(0,T ;H1
0 (Ω))

and since M is continous, it follows

M(|∇um|2) −→ M(|∇u|2) strongly in L2(0,T ).

Therefore,

M(|∇um|2)(−Δum) ⇀ M(|∇u|2)(−Δu) weakly in L2(0,T ;L2(Ω)). (3.19)

Now we prove that χ = |u|r−1u . Observe that

∫ T

0

∣∣|um(t)|r−1um(t)
∣∣ r+1

r d t =
∫ T

0
|um(t)|r+1 d t � C.

So,
|um|r−1um −→ |u|r−1u a.e. in Ω× [0,t).

Therefore, from [19] Lemma 1.3, we have

|um|r−1um ⇀ |u|r−1u weakly in L
r+1
r (0,T ;L

r+1
r (Ω)). (3.20)

So, by (3.18) and (3.20), we have χ = |u|r−1u .
By the convergence (3.16), (3.17) and (3.20), we can pass to the limit in the ap-

proximate equation (3.5) and obtain the equation

d
dt

(ut(t),w)+ 〈Δu(t),Δw〉+M(|∇u|2)(−Δu,w)+ (ut(t),w)− (|u(t)|r−1u(t),w) = 0

in D ′(0,T ) . The proof of existence is complete. �

4. Asymptotic behavior

We use the following result due to Nakao (see [20], Lemma 2].
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LEMMA 1. Suppose that φ(t) is a bounded nonnegative function on R
+ , satisfy-

ing
supess
t�s�t+1

φ(s) � C0[φ(t)−φ(t +1)],

for any t � 0 , where C0 is a positive constant. Then,

φ(t) � Ce−αt ,∀ t � 0,

where C and α are positive constants.

THEOREM 2. Under the hypotheses of theorem 1, the solution of problem (1.1)-
(1.3) satisfies:

1
2
|ut(t)|2 +

1
2

(
1− β

λ1

)
|Δu(t)|2− 1

r+1
|u(t)|r+1

r+1 +
∫ t+1

t
|ut(s)|2 ds � Ce−αt ,

for any t � 0 , where C and α are positive constants.

Proof. Let w = ut(t) in the equation (3.3). Then

d
dt

[
1
2
|ut(t)|2 +

1
2
|Δu(t)|2 +

1
2
M̂(|∇u(t)|2)− 1

r+1
|u(t)|r+1

r+1

]
+ |ut(t)|2 = 0.

That is,
d
d t

E(t)+ |ut(t)|2 = 0, where

E(t) =
1
2
|ut(t)|2 +

1
2
|Δu(t)|2 + M̂(|∇u(t)|2)− 1

r+1
|u(t)|r+1

r+1. (4.1)

Integrating from t to t +1, we obtain

∫ t+1

t
|ut(s)|2 ds = E(t)−E(t +1) def= F2(t). (4.2)

Then there exist t1 ∈
[
t,t + 1

4

]
, t2 ∈

[
t + 3

4 ,t +1
]

such that

|ut(ti)| � 2F(ti), i = 1;2. (4.3)

Let w = u(t) in the equation (3.3). Integrating from t1 to t2 and observing the
hypothesis (H), we obtain

∫ t2

t1

[(
1− β

λ1

)
|Δu(s)|2−|u(s)|r+1

r+1

]
ds

� |ut(t1)||u(t1)|+ |ut(t2)||u(t2)|+
∫ t2
t1
|ut(s)|2 ds+

∫ t2

t1
|ut(s)||u(s)|ds

� C1 supesst�s�t+1 |Δu(s)| [|ut(t1)|+ |ut(t2)|]+F2(t)+
∫ t2

t1
C1|ut(s)||Δu(s)|ds

� 4C1F(t)supesst�s�t+1 |Δu(s)|+F2(t)+
C2

1

δ

∫ t2

t1
|ut(s)|2 ds+ δ

∫ t2

t1
|Δu(s)|2 ds,
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where 0 < δ � 1
2
− β

λ1
and C1 > 0 is a constant such that |u(t)| � C1|Δu(t)| . Then

∫ t2

t1

[(
1− β

λ1
− δ

)
|Δu(s)|2 −|u(s)|r+1

r+1

]
ds �4C1F(t) supess

t�s�t+1
|Δu(s)|+

(
1+

C2
1

δ

)
F2(t).

Whence,∫ t2

t1

[(
1− β

λ1
− δ

)
|Δu(s)|2−|u(s)|r+1

r+1

]
ds� C2

[
F(t) supess

t�s�t+1
|Δu(s)|+F2(t)

]
def= G2(t).

(4.4)
Thanks to (4.2) and (4.3), we have∫ t2

t1

[(
1− β

λ1
− δ

)
|Δu(s)|2−|u(s)|r+1

r+1 + |ut(s)2|
]
ds � F2(t)+G2(t).

Hence there exists t∗ ∈ [t1,t2] such that

|ut(t∗)|+
(

1− β
λ1

− δ
)
|Δ(t∗)|2 −|u(t∗)|r+1

r+1 � 2[F2(t)+G2(t)]

or,
|ut(t∗)|2 + |Δu(t∗)|2 −|u(t∗)|r+1

r+1 � C3[F2(t)+G2(t)], (4.5)

where C3 is a positive constant. Now,

M̂(|∇u(t∗)|2) � m0|∇u(t∗)|2 � m0

λ1
|Δu(t∗)|2,

where m0 = max0�s�|∇u(t∗)|2 M(s) . Therefore,

M̂(|∇u(t∗)|2) � C4[F2(t)+G2(t)]. (4.6)

From (4.1), (4.5) and (4.6), it follows that

E(t∗) � C5[F2(t)+G2(t)]. (4.7)

Now, by (4.2) and (4.7), we have

supesst�s�t+1 E(s) � E(t∗)+
∫ t+1

t
|ut(s)|2 ds � C5[F2(t)+G2(t)]+F2(t)

� C6F2(t)+
1
2

supesst�s�t+1 E(s).

Therefore,
supess
t�s�t+1

E(s) � C7 [E(t)−E(t +1)] ,

where Ci , i = 4,5,6,7 are positive constants. By Lemma 1, we have

E(t) � Ce−αt , ∀ t � 0, (4.8)

where C and α are positive constants. So, by hypothesis (H), (4.2) and (4.8), it follows
that

1
2
|ut(t)|2 +

1
2

(
1− β

λ1

)
|Δu(t)|2− 1

r+1
|u(t)|r+1

r+1 +
∫ t+1

t
|u′t(s)|2 ds � Ce−αt , ∀ t � 0,

and the proof of theorem 2 is complete. �
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Final comments

The force term can be more general that |u|r−1u , type f ∈ C1(R) with | f (u)| �
c|u|r for all |u| � 1, where 1 � r < 6 with the suitable Sobolev imbeddings. For
instance, for n = 3 we have H1

0 (Ω) ↪→ L6(Ω) and the Nemytski operator f (u) is locally
Lipschitz continuous from H1

0 (Ω) into L2(Ω) for 1 � r � 3. The source is called sub-
critical if 1 � r < 3, critical if r = 3 and supercritical if 3 < r � 5. When 5 < r < 6,
the source is super-supercritical (see [27]) and in this situation, the potential energy
may not be defined in the finite energy space, so the problem itself is no longer in the
framework of the potential well theory.
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Gauthier Villars, Paris, 1969.
[20] M. NAKAO, Decay of solutions for some nonlinear evolution equations, J. Math. Analysis Appl., 60

(1977), 542–549.
[21] D. C. PEREIRA, Existence, uniqueness and asymptotic behavior for solutions of the nonlinear beam

equation, Nonlinear Analysis, Theory, Methods & Applications, 14, 8 (1990), 613–623.



Differ. Equ. Appl. 11, No. 3 (2019), 367–377. 377

[22] E. PISKIN, Existence, decay and blow up of solutions for the extensible beam equation with nonlinear
damping and source terms, Open Math., 13 (2015), 408–420.

[23] A. H. NAYFEH, D. T. MOOK, Nonlinear Oscillations, Willy Interscience, New York, 1979.
[24] D. BURGREEN, Free vibrations of a pin-ended column with constant distance between pin ends, J.

Appl. Mech., 18 (1951), 135–139.
[25] J. G. EISLEY,Nonlinear vibration of beams and rectangular plates, Z. Angew. Math. Phys., 15 (1964),

167–175.
[26] Y. YE, Global existence and asymptotic behavior of solutions for a class of nonlinear degenerate wave

equations, Differ. Equ. Nonlinear Mech., 019685 (2007).
[27] L. BOCIU, I. LASIECKA,Uniqueness of weak solutions for the semilinear wave equations with super-

critical boundary/interior sources and damping, Discrete Contin. Dyn. Syst., 22 (2008), 835–860.
[28] M. M. CAVALCANTI, V. N. D. CAVALCANTI, J. A. SORIANO, Global existence and asymptotic

stability for the nonlinear and generalized damped extensible plate equation, Commun. Contemp.
Math., 6 (2004), 705–731.

[29] Y. ZHIJIAN,On an extensible beam equation with nonlinear damping and source terms, J. Differential
Equations, 254 (2013), 3903–3927.

(Received December 15, 2018) Ducival C. Pereira
Department of Mathematics

State University of Pará (UEPA)
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