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DYNAMICS OF THERMOELASTIC PLATE SYSTEM

WITH TERMS CONCENTRATED IN THE BOUNDARY

GLEICIANE S. ARAGÃO, FLANK D. M. BEZERRA ∗ AND CLÁDIO O. P. DA SILVA

(Communicated by D. Hilhorst)

Abstract. In this paper we show the existence, uniform boundedness and upper semicontinuity
of the global attractors of autonomous thermoelastic plate systems with Neumann boundary
conditions when some reaction terms are concentrated in a neighborhood of the boundary and
this neighborhood shrinks to boundary as a parameter ε goes to zero.

1. Introduction

In this work we analyze the behavior of the global compact attractors of au-
tonomous thermoelastic plate systems with Neumann boundary conditions when some
reaction terms are concentrated in a neighborhood of the boundary and this neighbor-
hood shrinks to boundary as a parameter ε goes to zero.

There has been numerous studies to investigate the dynamics, in the sense of global
compact attractors, of systems when reaction terms are concentrated in a neighborhood
of the boundary and this neighborhood shrinks to boundary as a parameter ε goes to
zero. For instance, concentrated terms equations on the strip were initially studied in
[9], where linear elliptic equations with terms concentrated were considered and con-
vergence results of the solutions were proved. Later, the asymptotic behavior of the
attractors of a parabolic problem was analyzed in [14], [15], where the upper semi-
continuity of attractors was proved. In [4], [5], some results of [9], [14], [15] were
extended to reaction-diffusion problems with dealy. In [6] some results of [9] were
adapted to a semilinear elliptic equation posed on an open square contained in R

2 and
considering a strip with oscillatory behavior. Remarks on semilinear parabolic sys-
tems with terms concentrating in the boundary can be found in [21]. The work [7]
was the first to consider the lower semicontinuity of attractors for parabolic problems
with terms concentrating on the boundary. Recently, in [2], [3], the upper semicon-
tinuity of the pullback attractors and the continuity of the set equilibria were proved
for a non-autonomous damped wave equation with Neumann boundary conditions and
terms concentrating on the boundary. But, in this works, thermoelastic plate systems
with Neumann boundary conditions were not considered with concentration technique.
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Here, the Neumann boundary condition for the hyperbolic equation, as well as for the
parabolic equation it will bring us extra difficulties that we need to work around.

To better describe the problem we introduce some notations, let Ω be an open
bounded smooth set in R

N , N � 2, with a smooth boundary Γ = ∂Ω . We define the
strip of width ε and base ∂Ω as

ωε = {x−σ
→
n (x) : x ∈ Γ and σ ∈ [0,ε)},

for sufficiently small ε , say 0 < ε � ε0 , where
→
n (x) denotes the outward normal

vector at x ∈ Γ . We note that the set ωε has Lebesgue measure |ωε | = O(ε) with
|ωε | � k |Γ|ε , for some k > 0 independent of ε , and that for small ε , the set ωε is a
neighborhood of Γ in Ω , that collapses to the boundary when the parameter ε goes to
zero, see Figure 1.

Figure 1: The set ωε ⊂ Ω .

We are interested in the behavior, for small ε , of the solutions of the autonomous
thermoelastic plate systems with concentrated terms given by⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂ 2
t uε + Δ2uε +uε + Δθ ε −θ ε = f (uε )+

1
ε

χωε g(uε) in Ω× (0,+∞),

∂tθ ε −Δθ ε + θ ε −Δ∂tuε + ∂tuε = 0 in Ω× (0,+∞),
∂uε

∂�n
= 0,

∂ (Δuε)
∂�n

= 0,
∂θ ε

∂�n
= 0 on Γ× (0,+∞),

uε(0) = u0 ∈ H2(Ω), uε
t (0) = v0 ∈ L2(Ω), θ ε(0) = θ0 ∈ L2(Ω),

(1.1)
where χωε denotes the characteristic function of the set ωε . We refer to 1

ε χωε g(uε) as
the concentrating reaction in ωε .

We take j : R → R to be C 2 , and assume that it satisfies the growth estimates

| j(s)|+ | j′(s)|+ | j′′(s)| � K, ∀s ∈ R, (1.2)

for some constant K > 0, we also assume the standard dissipative assumption given by

limsup
|s|→+∞

j(s)
s

� 0, (1.3)

with j = f or j = g . We note that (1.3) is equivalent to saying that for any γ > 0 there
exists cγ > 0 such that

s j(s) � γs2 + cγ , ∀s ∈ R. (1.4)
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REMARK 1. The condition (1.2) on the nonlinearities does not represent any re-
striction. Since the nonlinearities are assumed dissipative in (1.3), we have L∞(Ω)
estimates of the attractors of the system (1.1) and these estimates are uniform in the
parameter ε . In particular, all solutions of (1.1) are bounded with a bound independent
of ε , see [8, proposition 3.2] and [8, theorem 3.4]. In case (1.2) is not satisfied we can
cut off the nonlinearity without modifying the solutions of the equation so that (1.2) is
satisfied.

As in (1.1) the nonlinear term g(uε) is only effective on the region ωε which col-
lapses to Γ as ε → 0, then it is reasonable to expect that the family of solutions uε of
(1.1) will converge to a solution of an equation of the same type with nonlinear bound-
ary condition on Γ . Indeed, we will show that the “limit problem” for the problem (1.1)
is given by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂ 2
t u+ Δ2u+u+ Δθ −θ = f (u) in Ω× (τ,+∞),

∂tθ −Δθ + θ −Δ∂tu+ ∂tu = 0 in Ω× (0,+∞),
∂u
∂�n

= 0,
∂ (Δu)

∂�n
= −g(u),

∂θ
∂�n

= 0 on Γ× (0,+∞),

u(0) = u0 ∈ H2(Ω), ut(0) = v0 ∈ L2(Ω), θ (0) = θ0 ∈ L2(Ω).
(1.5)

Moreover, we will show the existence, uniform boundedness and upper semicon-
tinuity of the global attractors at ε = 0 of the problems (1.1) and (1.5).

Initial boundary-value problems associated with thermoelastic plate systems on
bounded smooth domains in Euclidian spaces has been extensively discussed for several
authors in different contexts. For instance, in [10] the authors studied the existence
of almost periodic solutions for an evolution systems like (1.1) and (1.5), in [11] the
authors studied the pullback dynamics of evolution systems like (1.1) and (1.5), in
[19] the authors proved that the linear semigroup defined by systems like (1.1) and
(1.5) with f ,g ≡ 0 with clamped boundary condition for u and Dirichlet boundary
condition for θ is analytic. The typical difficulties in thermoelasticity comes from
the boundary condition, which make more complicated the task of getting estimates
to show the exponential stability of the solutions or analyticity of the corresponding
semigroup. In that direction we have the works of [20], [18] to free - clamped boundary
condition. In this last work the authors show the exponential stability and analyticity
of the semigroup associated with the systems like (1.1) and (1.5). We refer to the book
[20] for a general survey on those topics.

This paper is organized as follow: in section 2, we will define the abstract problems
associated with the initial-boundary value problems (1.1) and (1.5). After we will show
the local existence and the uniqueness of the solutions of these abstract problems and
that the solutions are continuously differentiable with respect to initial conditions. In
section 3, we will show that the solutions are globally defined and the dissipativity of
the nonlinear semigroups associated with the solutions. Finally, in section 4 , we will
prove the existence and upper semicontinuous of the global attractors of the problems
(1.1) and (1.5) at ε = 0.
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2. Local well-posedness and differentiability

To better explain the results in the paper, initially, we will define the abstract prob-
lems associated to (1.1) and (1.5). After we will prove local existence and uniqueness
of the solutions of these abstract problems and that the solutions are continuously dif-
ferentiable with respect to initial conditions.

2.1. Abstract setting

Let us consider the Hilbert space Y := L2(Ω) and the unbounded linear operator
Λ : D(Λ) ⊂ Y → Y defined by

Λu = (−Δ)2u, u ∈ D(Λ),

with domain

D(Λ) :=
{

u ∈ H4(Ω) :
∂u
∂�n

=
∂ (Δu)

∂�n
= 0 on Γ

}
.

The operator Λ has a discrete spectrum formed of eigenvalues satisfying

0 = μ1 � μ2 � · · · � μn � · · · , lim
n→∞

μn = ∞.

Since this operator turns out to be sectorial in Y in the sense of D. Henry [17,
definition 1.3.1] and J. Cholewa and T. Dłotko [13, example 1.3.9], associated to it
there is a scale of Banach spaces (the fractional power spaces) Yα , α ∈R , denoting the
domain of the fractional power operators associated with Λ , that is, Yα := D(Λ α ),α �
0. Let us consider Yα endowed with the norm ‖ · ‖Yα = ‖Λ α · ‖Y +‖ · ‖Y ,α � 0. The
fractional power spaces are related to the Bessel Potentials spaces Hs(Ω) , s ∈ R , and
it is well know that

Yα ↪→ H2α(Ω), Y−α = (Y α)′, α � 0, (2.1)

with

Y
1
2 =

{
u ∈ H2(Ω) :

∂u
∂�n

= 0 on Γ
}
.

We also have

Y− 1
2 = (Y

1
2 )′, Y = Y 0 = L2(Ω) and Y 1 = D(Λ).

Since the problem (1.5) has a nonlinear term on boundary, choosing 1
2 < s � 1

and using the standard trace theory results that for any function v ∈ Hs(Ω) , the trace
of v is well defined and lies in L2(Γ) . Moreover, the scale of negative exponents
Y−α , for α > 0, is necessary to introduce the nonlinear term of (1.5) in the abstract
equation, since we are using the operator Λ with homogeneous boundary conditions.
Considering the realizations of Λ in this scale, the operator Λ− 1

2
∈ L (Y

1
2 ,Y− 1

2 ) is

given by

〈Λ− 1
2
u,v〉Y =

∫
Ω

ΔuΔvdx+
∫

Ω
uvdx, for u,v ∈ Y

1
2 .



Differ. Equ. Appl. 11, No. 3 (2019), 379–407. 383

With some abuse of notation we will identify all different realizations of this operator
and we will write them all as Λ .

We also consider the operator Λ +I : D(Λ +I)⊂Y →Y , it is a positive defined and
sectorial operator in Y in the sense of D. Henry [17, definition 1.3.1] and J. Cholewa
and T. Dłotko [13, example 1.3.9], associated to it there is a scale of Banach spaces
(the fractional power spaces) D((Λ + I)α) , α � 0, domain of the operator (Λ + I)α .
Let us consider D((Λ + I)α) endowed with the graph norm ‖(·)‖D((Λ+I)α ) = ‖(Λ +
I)α(·)‖Y ,α � 0 (0∈ ρ((Λ + I)α)). Since D(Λ + I) = D(Λ) , we also have that D((Λ +
I)α) = Yα for 0 � α � 1 endowed with equivalent norms.

The operator Λ + I has a discrete spectrum formed of eigenvalues satisfying

1 = μ I
1 � μ I

2 � · · · � μ I
n � · · · , lim

n→∞
μ I

n = ∞.

Also, let us consider the following Hilbert space

X = X0 = Y
1
2 ×Y ×Y

equipped with the inner product〈( u1
v1
θ1

)
,
( u2

v2
θ2

)〉
X

= 〈u1,u2〉
Y

1
2
+ 〈v1,v2〉Y + 〈θ1,θ2〉Y ,

where 〈·, ·〉Y is the usual inner product in L2(Ω) .
We define the unbounded linear operator A : D(A) ⊂ X → X by

A

( u
v
θ

)
=

⎛
⎜⎝

0 I 0

−Λ − I 0 Λ
1
2 + I

0 −Λ
1
2 − I −Λ

1
2 − I

⎞
⎟⎠( u

v
θ

)
=

⎛
⎜⎝

v

−Λu−u+Λ
1
2 θ + θ

−Λ
1
2 v− v−Λ

1
2 θ −θ

⎞
⎟⎠ , (2.2)

for any
( u

v
θ

)
∈ D(A) , with domain

D(A) = Y 1×Y
1
2 ×Y

1
2 . (2.3)

For each ε ∈ (0,ε0] , we write (1.1) in the abstract form as⎧⎨
⎩

dwε

dt
= Awε +Fε(wε ), t > 0,

wε(0) = w0,
(2.4)

with

wε =
( uε

∂t uε

θ ε

)
, w0 =

( u0
v0
θ0

)
∈ X

and nonlinear map Fε : X → H2(Ω)×H−s(Ω)×L2(Ω) , with 1
2 < s � 1, defined by

Fε(w) =

⎛
⎜⎝

0

fΩ(u)+
1
ε

χωε gΩ(u)

0

⎞
⎟⎠ , for w =

( u
v
θ

)
∈ X ,
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where fΩ,
1
ε

χωε gΩ : H2(Ω) → H−s(Ω) are the operators, respectively, given by

〈 fΩ(u),ϕ〉 =
∫

Ω
f (u)ϕdx, ∀u ∈ H2(Ω) and ∀ϕ ∈ Hs(Ω) (2.5)

and 〈1
ε

χωε gΩ(u),ϕ
〉

=
1
ε

∫
ωε

g(u)ϕdx, ∀u ∈ H2(Ω) and ∀ϕ ∈ Hs(Ω) . (2.6)

While the problem (1.5) can be written in the abstract form as⎧⎨
⎩

dw
dt

= Aw+F0(w), t > 0,

w(0) = w0,
(2.7)

with
w =

( u
∂t u
θ

)
and nonlinear map F0 : X → H2(Ω)×H−s(Ω)×L2(Ω) , with 1

2 < s � 1, defined by

F0(w) =

⎛
⎝ 0

fΩ(u)+gΓ(u)
0

⎞
⎠ , for w =

( u
v
θ

)
∈ X ,

where fΩ is defined in (2.5) and gΓ : H2(Ω) → H−s(Ω) is the operator given by

〈gΓ(u),ϕ〉 =
∫

Γ
γ(g(u))γ(ϕ)dS, ∀u ∈ H2(Ω) and ∀ϕ ∈ Hs(Ω) , (2.8)

where γ : Hs(Ω) → L2(Γ) is the trace operator, to according with H. Triebel [22].
Concerning analyticity of a C0−semigroup of contractions on a Hilbert space, we

have following result.

THEOREM 1. Let {S(t) : t � 0} be a C0 -semigroup of contractions of linear op-
erators in a Hilbert space with infinitesimal generator B . Suppose that iR ⊂ ρ(B) .
Then, {S(t) : t � 0} is analytic if and only if limsup

|β |→+∞
‖β (iβ I−B)−1‖ < ∞ .

Proof. For the proof, see Liu and Zheng [20, theorem 1.3.3]. �

LEMMA 1. The unbounded linear operator A : D(A) ⊂ X → X defined in (2.2)-
(2.3) satisfy the following equality

Re
〈

A

( u
v
θ

)
,
( u

v
θ

)〉
X

= −‖Λ
1
4 θ‖2

Y −‖θ‖2
Y � 0, ∀

( u
v
θ

)
∈ D(A). (2.9)
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Proof. Note that

〈
A

( u
v
θ

)
,
( u

v
θ

)〉
X

=

〈( v

−Λu−u+Λ
1
2 θ+θ

−Λ
1
2 v−v−Λ

1
2 θ−θ

)
,
( u

v
θ

)〉
Y

1
2 ×Y×Y

=〈v,u〉
Y

1
2
−〈Λu−Λ

1
2 θ ,v〉Y −〈u−θ ,v〉Y −〈Λ 1

2 v+Λ
1
2 θ ,θ 〉Y −〈v+ θ ,θ 〉Y

=〈Λ 1
2 u,Λ 1

2 v〉Y −〈Λ 1
2 u,Λ

1
2 v〉Y + 〈u,v〉Y −〈u,v〉Y + 〈Λ 1

2 θ ,v〉Y −〈Λ 1
2 θ ,v〉Y + 〈v,θ 〉Y

−〈v,θ 〉Y −‖Λ
1
4 θ‖2

Y −‖θ‖2
Y .

Finally, from this we get (2.9). �

THEOREM 2. The unbounded linear operator A : D(A)⊂X →X defined in (2.2)-
(2.3) is closed and densely defined.

Proof. Let wn = [un vn θn]T ∈ D(A) with wn → [u v θ ]T in X as n → ∞ , and
Awn → ϕ = [ϕ1 ϕ2 ϕ3]T in X as n → ∞ , or equivalently⎧⎪⎨

⎪⎩
vn → ϕ1 in Y

1
2 as n → ∞;

−Λun−un +Λ
1
2 θn + θn → ϕ2 in Y as n → ∞;

−Λ
1
2 vn − vn−Λ

1
2 θn −θn → ϕ3 in Y as n → ∞,

then v = ϕ1 ∈Y
1
2 . Since −(Λ

1
2 + I)θn = [−(Λ

1
2 + I)vn− (Λ

1
2 + I)θn]+ (Λ

1
2 + I)vn →

ϕ3 +Λ
1
2 ϕ1 + ϕ1 in Y as n → ∞ , we have

θ ∈ D(Λ
1
2 + I) = Y

1
2 and − (Λ

1
2 + I)θ = ϕ3 +Λ

1
2 ϕ1 + ϕ1.

Finally, since −(Λ + I)un = [−(Λ + I)un + (Λ
1
2 + I)θn]− (Λ

1
2 + I)θn → ϕ2 + ϕ3 +

Λ
1
2 ϕ1 + ϕ1 in Y as n → ∞ , we conclude

u ∈ D(Λ + I) = Y 1 and − (Λ + I)u = ϕ2 + ϕ3 +Λ
1
2 ϕ1 + ϕ1,

that is, [u v θ ]T ∈ D(A) and [ϕ1 ϕ2 ϕ3]T = [v − (Λ + I)u+(Λ 1
2 + I)θ − (Λ 1

2 +
I)v− (Λ

1
2 + I)θ ]T = A[u v θ ]T . �

THEOREM 3. The unbounded linear operator −A such that A : D(A) ⊂ X → X
is defined in (2.2)-(2.3) is sectorial.

Proof. First, we will show that iR⊂ ρ(A) . We show this result by a contradiction
argument. That is, let us suppose that there exists 0 �= β ∈ R , such that iβ is in the
spectrum of A . Then iβ must be an eigenvalue of A , because A

−1 is compact. Thus
there is a vector function w = [u v θ ]T ∈ D(A) , ‖w‖X = 1, such that

(iβ I−A)w = 0 in X
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or equivalenty ⎧⎪⎨
⎪⎩

iβu− v = 0,

iβv+(Λ + I)u− (Λ
1
2 + I)θ = 0,

iβ θ +(Λ
1
2 + I)v+(Λ

1
2 + I)θ = 0,

(2.10)

and so
Re〈Aw,w〉X = −‖Λ

1
4 θ‖2

Y −‖θ‖2
Y = 0.

Thus θ = 0 and by (2.10), u = v = 0, which give the contradiction. Therefore, iR ⊂
ρ(A) .

Finally, we show that there exists a positive constant C such that

|β |
∥∥∥( u

v
θ

)∥∥∥
X

� C‖F‖X , for all F =
(

f1
f2
f3

)
∈ X , β ∈ R,

where w = [u v θ ]T = (iβ I−A)−1F ∈ D(A) . In fact, multiplying equation

(iβ I−A)w = F in X (2.11)

with w = [u v θ ]T ; that is, in terms of its components yields

⎧⎪⎨
⎪⎩

iβu− v = f1,

iβv+(Λ + I)u− (Λ 1
2 + I)θ = f2,

iβ θ +(Λ 1
2 + I)v+(Λ 1

2 + I)θ = f3,

we get
iβ‖w‖2

X −〈Aw,w〉X = 〈F ,w〉X . (2.12)

Taking the real part in (2.12) it follows that

|Re〈Aw,w〉X | = ‖Λ
1
4 θ‖2

Y +‖θ‖2
Y � ‖F‖X‖w‖X , (2.13)

and taking the imaginary parts in (2.12), and using (2.13) and Young’s inequality we
have

|β |‖w‖2
X � 2|〈Λ 1

2 u,Λ
1
2 v〉Y |+2|〈u,v〉Y |+2|〈Λ 1

2 v,θ 〉Y |+2|〈v,θ 〉Y |+2‖F‖X‖w‖X

= 2|〈Λ 3
4 u,Λ

1
4 v〉Y |+2|〈u,v〉Y |+2|〈Λ 1

4 v,Λ
1
4 θ 〉Y |+2|〈v,θ 〉Y |+2‖F‖X‖w‖X

� ‖Λ
3
4 u‖2

Y +‖u‖2
Y +2‖Λ

1
4 v‖2

Y +2‖v‖2
Y +‖Λ

1
4 θ‖2

Y +‖θ‖2
Y +2‖F‖X‖w‖X

� ‖Λ
3
4 u‖2

Y +‖u‖2
Y +2‖Λ

1
4 v‖2

Y +2‖v‖2
Y +‖Λ

1
4 θ‖2

Y +‖θ‖2
Y +2‖F‖X‖w‖X .

(2.14)

Thanks to (2.13) and (2.14) we obtain that

|β |‖w‖2
X � ‖Λ

3
4 u‖2

Y +‖u‖2
Y +2(‖Λ

1
4 v‖2

Y +‖v‖2
Y )+3‖F‖X‖w‖X . (2.15)
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Multiplying (2.11) by [0 θ 0]T , in the sense of X , and multiplying (2.11) by
[0 0 v]T , in the sense of X , and using the Young’s inequality we have

2(‖Λ
1
4 v‖2

Y +‖v‖2
Y )

�2(‖ f2‖Y‖θ‖Y +‖ f3‖Y‖v‖Y )+‖Λ
3
4 u‖2

Y +‖u‖2
Y +

(
1+

1
γ 0

)
(‖Λ

1
4 θ‖2

Y +‖θ‖2
Y )

+ γ0(‖Λ
1
4 v‖2

Y +‖v‖2
Y ),

for some constant γ0 > 0 to be chosen later.
Thus

(2− γ0)(‖Λ
1
4 v‖2

Y +‖v‖2
Y ) �2(‖ f2‖Y‖θ‖Y +‖ f3‖Y‖v‖Y )+‖Λ

3
4 u‖2

Y +‖u‖2
Y

+
(

1+
1
γ 0

)
(‖Λ

1
4 θ‖2

Y +‖θ‖2
Y),

for some constant γ0 > 0 to be chosen later.
With this, by (2.13) and choosing 0 < γ0 < 2 we get

(2− γ0)(‖Λ
1
4 v‖2

Y +‖v‖2
Y ) � C1‖F‖X‖w‖X +‖Λ

3
4 u‖2

Y +‖u‖2
Y , (2.16)

for some constant C1 > 0.
Now, multiplying (2.11) by [0 Λ 1

2 u+u 0]T , in the sense of X , we have

〈iβv+(Λ + I)u− (Λ
1
2 + I)θ ,Λ

1
2 u+u〉Y = 〈 f2,Λ 1

2 u+u〉Y ,

that is,

‖Λ
3
4 u‖2

Y +‖Λ
1
2 u‖2

Y +‖Λ
1
4 u‖2

Y +‖u‖2
Y

�(‖Λ
1
2 f1‖Y +‖ f1‖Y )‖v‖Y +‖ f2‖Y (‖Λ

1
2 u‖Y +‖u‖Y )+

2+ γ1

2γ1
‖Λ

1
4 θ‖2

Y +
1
2
‖Λ

3
4 u‖2

Y

+ γ1‖Λ
1
4 u‖2

Y +
1
2
‖θ‖2

Y +
1
2
‖u‖2

Y −‖Λ
1
4 v‖2

Y −‖v‖2
Y

�(‖Λ
1
2 f1‖Y +‖ f1‖Y )‖v‖Y +‖ f2‖Y (‖Λ

1
2 u‖Y +‖u‖Y )+

2+ γ1

2γ1
(‖Λ

1
4 θ‖2

Y +‖θ‖2
Y )

+
1
2
‖Λ

3
4 u‖2

Y + γ1‖Λ
1
4 u‖2

Y +
1
2
‖u‖2

Y ,

for some constant γ1 > 0 to be chosen later.
Thus

1
2
(‖Λ

3
4 u‖2

Y +‖u‖2
Y)+ (1− γ1)‖Λ

1
4 u‖2

Y

�(‖Λ
1
2 f1‖Y +‖ f1‖Y )‖v‖Y +‖ f2‖Y (‖Λ

1
2 u‖Y +‖u‖Y)+

2+ γ1

2γ1
(‖Λ

1
4 θ‖2

Y +‖θ‖2
Y ),

for some constant γ1 > 0 to be chosen later.
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Now, take 0 < γ1 < 1 and see that by (2.13) we get

‖Λ
3
4 u‖2

Y +‖u‖2
Y � C2‖F‖X‖w‖X ,

for some constant C2 > 0.
Thanks to (2.16) we have

‖Λ
1
4 v‖2

Y +‖v‖2
Y � C3‖F‖X‖w‖X ,

for some constant C3 > 0.
Finally, from (2.15) we obtain

|β |‖w‖2
X � c0‖F‖X‖w‖X ,

for some constant c0 > 0, and we conclude that −A is a sectorial operator. �
Below we have some remarks thanks to sectoriality of −A which are important in

the sense of existence and regularity of solutions of initial value problems as (2.4) and
(2.7), where A defines the main part of the differential equation.

REMARK 2. The following startments are hold.

(i) Zero is in the resolvent set of A and

A
−1 =

⎛
⎜⎝−(Λ + I)−1(Λ

1
2 + I) −(Λ + I)−1 −(Λ + I)−1

I 0 0

−I 0 −(Λ
1
2 + I)−1

⎞
⎟⎠ .

(ii) Denote by X−1 the extrapolation space of X = Y
1
2 ×Y ×Y generated by the

operator A
−1 . The following equality holds

X−1 = Y ×Y− 1
2 ×Y− 1

2 .

In fact, recall first that X−1 is the completion of the normed space (X ,‖A
−1 · ‖) .

Now, note that

∥∥∥A
−1

( u
v
θ

)∥∥∥
X

=

∥∥∥∥∥∥∥
⎛
⎜⎝−(Λ + I)−1(Λ

1
2 + I)u− (Λ + I)−1v− (Λ + I)−1θ

u

−u− (Λ
1
2 + I)−1θ

⎞
⎟⎠
∥∥∥∥∥∥∥

X

� C1

∥∥∥( u
v
θ

)∥∥∥
X−1

,

for any
( u

v
θ

)
∈ X−1 and for some constant C1 > 0. We also have that

∥∥∥( u
v
θ

)∥∥∥
X−1

� C2

∥∥∥A
−1

( u
v
θ

)∥∥∥
X

,

for some constant C2 > 0.

So we conclude that the completion of (X ,‖A
−1 · ‖X) and (X ,‖ ·‖X−1) coincide.
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REMARK 3. The operator A can be extended to its closed X−1− realization (see
Amann [1]), which we will still denote by the same symbol so that A considered in
X−1 is then sectorial positive operator. Our next concern will be to obtain embedding
of the spaces from the fractional powers scale Xα−1 , α � 0, generated by (A,X−1) .

Below we have a partial description of the fractional power spaces scale for A :
for convenience we denote X by X0 , then

X0 ↪→ Xα−1 ↪→ X−1, for all 0 < α < 1,

where
Xα−1 = [X−1,X0]α = Y

α
2 ×Y

α−1
2 ×Y

α−1
2 ,

where [·, ·]α denotes the complex interpolation functor (see [22]). The first equality
follows from theorem 3 (since 0 ∈ ρ(A)) see [1, example 4.7.3 (b)] and the second
equality follows from [12, proposition 2].

REMARK 4. The operator A or, more precisely, a suitable realization of it, gen-
erates an analytic semigroup, {eAt : t � 0} , in X−1 , this semigroup is order preserving
and satisfies the smoothing estimates. Thanks to [17, theorem 1.4.3] we have∥∥∥eAtw

∥∥∥
X

� Me−ωt t−1‖w‖X−1

for any t > 0, w ∈ X−1 , for some constants M > 0 and ω > 0.
Finally, thanks to (2.1) we have Y

1
2 ↪→Hs(Ω) , and consequently, H2(Ω)×H−s(Ω)×

L2(Ω) ↪→ X−1 and ∥∥∥eAtw
∥∥∥

X
� Me−ωt t−1‖w‖H2(Ω)×H−s(Ω)×L2(Ω) (2.17)

for any t > 0, w ∈ H2(Ω)×H−s(Ω)×L2(Ω) , for some constants M > 0 and ω > 0.

2.2. Local well-posedness

We are interested in obtaining the local well-posedness of the parabolic problems
(2.4) and (2.7) (or (1.1) and (1.5)), for this it is necessary to study the behavior of
nonlinearity Fε , ε ∈ [0,ε0] .

The next lemma is one of the crucial result in our analysis.

LEMMA 2. Assme that v ∈ Hs,p(Ω) with 1
p < s � 2 and s− N

p � −N−1
q , or v ∈

H1,1(Ω) , i.e., s = 1 = p and q = 1 below. Then for sufficiently small ε0 , we have

(i) The map

[0,ε0] 
 σ �→
∫

Γσ
|v|qdS

is continuous, where for sufficiently small σ � 0 , Γσ = {x−σ
→
n (x) : x ∈ Γ} is

the “parallel” interior boundary.
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(ii) There exists C > 0 independent of ε and v such that for any 0 < ε � ε0 , we have

sup
σ∈[0,ε)

‖v‖Lq(Γσ ) � C‖v‖Hs,p(Ω),

∫
ωε

|v|qdx =
∫ ε

0

(∫
Γσ

|v|qdS
)
dσ ,

with the same equality, without the absolute value, if q = 1 .

In particular
1
ε

∫
ωε

|v|qdx � C‖v‖q
Hs,p(Ω),

and

lim
ε→0+

1
ε

∫
ωε

|v|qdx =
∫

Γ
|v|qdS.

Proof. See [9, lemma 2.1]. �

LEMMA 3. Suppose that f and g satisfy the growth estimate (1.2) and 1
2 < s � 1 .

Then:

(i) There exists C > 0 , independent of ε , such that

‖Fε(w)‖H2(Ω)×H−s(Ω)×L2(Ω) � C, for all w =
( u

v
θ

)
∈ X and 0 � ε � ε0.

(2.18)

(ii) For each 0 � ε � ε0 , the map Fε : X → H2(Ω)×H−s(Ω)×L2(Ω) is globally
Lipschitz, uniformly in ε .

(iii) For each w =
( u

v
θ

)
∈ X , we have

‖Fε(w)−F0(w)‖H2(Ω)×H−s(Ω)×L2(Ω) → 0, as ε → 0 .

Furthermore, this limit is uniform for w ∈ X such that ‖w‖X � R, for some
R > 0 .

(iv) If wε → w in X , as ε → 0, then

‖Fε(wε )−F0(w)‖H2(Ω)×H−s(Ω)×L2(Ω) → 0, as ε → 0 .

Proof.

(i) Initially note that

‖Fε(w)‖H2(Ω)×H−s(Ω)×L2(Ω) =
∥∥∥∥ fΩ(u)+

1
ε

χωε gΩ(u)
∥∥∥∥

H−s(Ω)
, ε ∈ (0,ε0],

‖F0(w)‖H2(Ω)×H−s(Ω)×L2(Ω) = ‖ fΩ(u)+gΓ(u)‖H−s(Ω) ,
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with fΩ ,
1
ε

χωε gΩ and gΓ defined, respectively, by (2.5), (2.6) and (2.8).

Using (1.2), Cauchy-Schwarz inequality and Sobolev embedding Hs(Ω) ↪→ L2(Ω)
with 1

2 < s � 1, we have

|〈 fΩ(u),ϕ〉| �
∫

Ω
| f (u(x))||ϕ(x)|dx �

∫
Ω

K|ϕ(x)|dx

� cK ‖ϕ‖L2(Ω) � k1 ‖ϕ‖Hs(Ω) , ∀ϕ ∈ Hs(Ω).

Thus,
‖ fΩ(u)‖H−s(Ω) � k1. (2.19)

Using (1.2), Cauchy-Schwarz inequality, |ωε | � k |Γ|ε for some k > 0 indepen-
dent of ε , and lemma 2, we have∣∣∣∣〈1

ε
χωε gΩ(u),ϕ

〉∣∣∣∣ � 1
ε

∫
ωε

|g(u(x))||ϕ(x)|dx � K
ε

∫
ωε

|ϕ(x)|dx

� K

[
1
ε

∫
ωε

1dx

] 1
2
[
1
ε

∫
ωε

|ϕ(x)|2dx

] 1
2

� k2 ‖ϕ‖Hs(Ω) , ∀ϕ ∈ Hs(Ω),

with k2 > 0 independent of ε . Thus,∥∥∥∥1
ε

χωε gΩ(u)
∥∥∥∥

H−s(Ω)
� k2. (2.20)

Now, using (1.2), Cauchy-Schwarz inequality and the continuity of the trace op-
erator
γ : Hs(Ω) → L2(Γ) with 1

2 < s � 1, we have

|〈gΓ(u),ϕ〉| �
∫

Γ
|γ(g(u(x)))||γ(ϕ(x))|dS � K

∫
Γ
|γ(ϕ(x))|dS

� cK

[∫
Γ
|γ(ϕ(x))|2dS

] 1
2

= cK ‖γ(ϕ)‖L2(Γ)

� k3 ‖ϕ‖Hs(Ω) , ∀ϕ ∈ Hs(Ω).

Thus,
‖gΓ(u)‖H−s(Ω) � k3. (2.21)

Now, (2.18) follows in a straightforward from (2.19), (2.20) and (2.21).

(ii) Initially, note that

‖Fε(w1)−Fε(w2)‖H2
N (Ω)×H−s(Ω)×L2(Ω)

=
∥∥∥∥[ fΩ(u1)− fΩ(u2)]+

1
ε

χωε [gΩ(u1)−gΩ(u2)]
∥∥∥∥

H−s(Ω)
, ε ∈ (0,ε0],
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and

‖F0(w1)−F0(w2)‖H2
N (Ω)×H−s(Ω)×L2(Ω)

=‖[ fΩ(u1)− fΩ(u2)]+ [gΓ(u1)−gΓ(u2)]‖H−s(Ω) ,

with fΩ ,
1
ε

χωε gΩ and gΓ defined, respectively, by (2.5), (2.6) and (2.8).

Using (1.2), Cauchy-Schwarz inequality and Sobolev embeddings H2(Ω) ↪→
L2(Ω) and Hs(Ω) ↪→ L2(Ω) with 1

2 < s � 1, we have

|〈 fΩ(u1)− fΩ(u2),ϕ〉| �
∫

Ω
| f (u1(x))− f (u2(x))||ϕ(x)|dx

�
∫

Ω
| f ′(σ(x)u1(x)+ (1−σ(x))u2(x))|
× |u1(x)−u2(x)||ϕ(x)|dx

� K

[∫
Ω
|u1(x)−u2(x)|2dx

] 1
2
[∫

Ω
|ϕ(x)|2dx

] 1
2

= K ‖u1−u2‖L2(Ω) ‖ϕ‖L2(Ω)

� c1 ‖u1−u2‖H2(Ω) ‖ϕ‖Hs(Ω) , ∀ϕ ∈ Hs(Ω),

for some 0 � σ(x) � 1,x ∈ Ω . Thus,

‖ fΩ(u1)− fΩ(u2)‖H−s(Ω) � c1 ‖u1−u2‖H2(Ω) . (2.22)

Using (1.2), Cauchy-Schwarz inequality and lemma 2, we have∣∣∣∣〈1
ε

χωε [gΩ(u1)−gΩ(u2)],ϕ
〉∣∣∣∣ � 1

ε

∫
ωε

|g(u1(x))−g(u2(x))||ϕ(x)|dx

�1
ε

∫
ωε

|g′(σ(x)u1(x)+ (1−σ(x))u2(x))||u1(x)−u2(x)||ϕ(x)|dx

�K

[
1
ε

∫
ωε

|u1(x)−u2(x)|2dx

] 1
2
[

1
ε

∫
ωε

|ϕ(x)|2dx

] 1
2

�c2 ‖u1−u2‖H2(Ω) ‖ϕ‖Hs(Ω) , ∀ϕ ∈ Hs(Ω),

with c2 > 0 independent of ε and for some 0 � σ(x) � 1,x ∈ Ω . Thus,

∥∥∥∥1
ε

χωε [gΩ(u1)−gΩ(u2)]
∥∥∥∥

H−s(Ω)
� c2‖u1−u2‖H2(Ω) . (2.23)

Now, using (1.2), Cauchy-Schwarz inequality and the continuity of the trace op-
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erators γ : H2(Ω) → L2(Γ) and γ : Hs(Ω) → L2(Γ) with 1
2 < s � 1, we have

|〈gΓ(u1)−gΓ(u2),ϕ〉|
�

∫
Γ
|γ(g(u1(x))−g(u2(x)))||γ(ϕ(x))|dS

�
∫

Γ
|γ(g′(σ(x)u1(x)+ (1−σ(x))u2(x)))||γ(u1(x)−u2(x))||γ(ϕ(x))|dS

�K

[∫
Γ
|γ(u1(x)−u2(x))|2dS

] 1
2
[∫

Γ
|γ(ϕ(x))|2dS

] 1
2

�c3 ‖u1−u2‖H2(Ω) ‖ϕ‖Hs(Ω) , ∀ϕ ∈ Hs(Ω),

for some 0 � σ(x) � 1,x ∈ Γ . Thus,

‖gΓ(u1)−gΓ(u2)‖H−s(Ω) � c3 ‖u1−u2‖H2(Ω) . (2.24)

Now, (ii) follows in a straightforward from (2.22), (2.23) and (2.24).

(iii) Notice that

‖Fε(w)−F0(w)‖H2
N (Ω)×H−s(Ω)×L2(Ω) =

∥∥∥∥1
ε

χωε gΩ(u)−gΓ(u)
∥∥∥∥

H−s(Ω)
.

As in [15, lemma 5.2] we can prove that there exists M(ε,R) with M(ε,R) → 0
as ε → 0 such that∣∣∣∣〈1

ε
χωε gΩ(u)−gΓ(u),ϕ

〉∣∣∣∣ =
∣∣∣∣1ε

∫
ωε

g(u(x))ϕ(x)dx−
∫

Γ
γ(g(u(x)))γ(ϕ(x))dS

∣∣∣∣
� M(ε,R)‖ϕ‖H1(Ω) , ∀ϕ ∈ H1(Ω).

Thus, ∥∥∥∥1
ε

χωε gΩ(u)−gΓ(u)
∥∥∥∥

H−1(Ω)
→ 0, as ε → 0 , (2.25)

uniformly for u ∈ H2(Ω) such that ‖u‖H2(Ω) � R .

Now, fix 1
2 < s0 < 1. Then for any s such that −1 < −s < −s0 < − 1

2 , using
interpolation we have∥∥∥∥1

ε
χωε gΩ(u)−gΓ(u)

∥∥∥∥
H−s(Ω)

�
∥∥∥∥1

ε
χωε gΩ(u)−gΓ(u)

∥∥∥∥
θ

H−s0 (Ω)

∥∥∥∥1
ε

χωε gΩ(u)−gΓ(u)
∥∥∥∥

1−θ

H−1(Ω)
,

for some 0 < θ < 1. By (2.20) and (2.21), the first term in the right hand side
above is uniformly bounded while, by (2.25), the second goes to zero, both uni-
formly for u ∈ H2(Ω) such that ‖u‖H2(Ω) � R .
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(iv) This item follows from (ii) and (iii) , adding and subtracting Fε(w) . In fact

‖Fε(wε )−F0(w)‖H2(Ω)×H−s(Ω)×L2(Ω)

�‖Fε(wε )−Fε(w)‖H2(Ω)×H−s(Ω)×L2(Ω) +‖Fε(w)−F0(w)‖H2(Ω)×H−s(Ω)×L2(Ω)

�L‖wε −w‖X +‖Fε(w)−F0(w)‖H2(Ω)×H−s(Ω)×L2(Ω) → 0, as ε → 0,

where L > 0 is the constant of Lipschitz, with this we conclude the proof of
lemma 3. �

From lemma 3 follows that the map Fε : X →H2(Ω)×H−s(Ω)×L2(Ω) is bounded,
uniformly in ε , in bounded set of X , and it is globally Lipschitz, uniformly in ε . Thus,
it follows from [16, theorem 4.2.1] that given w0 ∈ X , there is an unique local solu-
tion wε (t,w0) of (2.4), with ε ∈ (0,ε0] , defined on a maximal interval of existence
[0,tε

max(w0)) , and there is an unique local solution w(t,w0) of (2.7) defined on a maxi-
mal interval of existence [0,tmax(w0)) . Moreover, these solutions depend continuously
on the initial data.

Note that the results obtained in the lemma 3 are more general than is necessary
here, but they will be used throughout the paper.

2.3. The differentiability

We will prove that the solutions of (2.4) and (2.7) are continuously differentiable
with respect to initial conditions, for this it is necessary to prove the Fréchet differen-
tiability of Fε : X → H2(Ω)×H−s(Ω)×L2(Ω) , ε ∈ [0,ε0] . It is enough to prove the

Fréchet differentiability of fΩ,
1
ε

χωε gΩ,gΓ : H2(Ω) → H−s(Ω) .

We define the maps DfΩ,
1
ε

χωε DgΩ,DgΓ : H2(Ω) → L (H2(Ω),H−s(Ω)) , with
1
2 < s � 1, respectively by

〈DfΩ(u) ·h,ϕ〉=
∫

Ω
f ′(u)hϕdx, ∀u,h ∈ H2(Ω) and ∀ϕ ∈ Hs(Ω) , (2.26)

〈1
ε

χωε DgΩ(u) ·h,ϕ〉 =
1
ε

∫
ωε

g′(u)hϕdx, ∀u,h ∈ H2(Ω) and ∀ϕ ∈ Hs(Ω) (2.27)

and

〈DgΓ(u) ·h,ϕ〉=
∫

Γ
γ(g′(u)h)γ(ϕ)dS, ∀u,h ∈ H2(Ω) and ∀ϕ ∈ Hs(Ω) , (2.28)

where γ : Hs(Ω) → L2(Γ) is the trace operator.

LEMMA 4. Suppose that f and g satisfy the growth estimate (1.2). Then, fΩ ,
1
ε

χωε gΩ , gΓ : H2(Ω) → H−s(Ω) are Fréchet differentiable, uniformly in ε , and your

Fréchet differentials are respectively given by (2.26), (2.27) and (2.28). Consequently,
for each ε ∈ [0,ε0] , Fε : X → H2(Ω)×H−s(Ω)×L2(Ω) is also Fréchet differentiable,
uniformly in ε .
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Proof. First we check that (2.26), (2.27) and (2.28) are well defined. In fact, for
h ∈ H2(Ω) , using (1.2), Cauchy-Schwarz inequality and Sobolev embeddings, we get

|〈DfΩ(u) ·h,ϕ〉|�
∫

Ω
| f ′(u)h||ϕ |dx � K

∫
Ω
|h||ϕ |dx � K

[∫
Ω
|h|2dx

] 1
2
[∫

Ω
|ϕ |2dx

] 1
2

= K‖h‖L2(Ω)‖ϕ‖L2(Ω) � k1‖h‖H2(Ω)‖ϕ‖Hs(Ω), ∀ϕ ∈ Hs(Ω).

Thus,

‖DfΩ(u) ·h‖H−s(Ω) � k1‖h‖H2(Ω), ∀h ∈ H2(Ω),

and DfΩ(u) ∈ L (H2(Ω),H−s(Ω)) .
Using (1.2), Cauchy-Schwarz inequality and lemma 2, we have

∣∣∣∣〈1ε χωε DgΩ(u) ·h,ϕ〉
∣∣∣∣ � 1

ε

∫
ωε

|g′(u)h||ϕ |dx � K
ε

∫
ωε

|h||ϕ |dx

� K

[
1
ε

∫
ωε

|h|2dx

] 1
2
[

1
ε

∫
ωε

|ϕ |2dx

] 1
2

� k2‖h‖H2(Ω)‖ϕ‖Hs(Ω), ∀ϕ ∈ Hs(Ω),

where the positive constant k2 is independent of ε . Thus,

∥∥∥1
ε

χωε DgΩ(u) ·h
∥∥∥

H−s(Ω)
� k2‖h‖H2(Ω), ∀h ∈ H2(Ω),

and
1
ε

χωε DgΩ(u) ∈ L (H2(Ω),H−s(Ω)) .

Now, using (1.2), Cauchy-Schwarz inequality and trace theorem, we get

|〈DgΓ(u) ·h,ϕ〉| �
∫

Γ
|γ(g′(u)h)||γ(ϕ)|dS � K

∫
Γ
|γ(h)||γ(ϕ)|dS

� K

[∫
Γ
|γ(h)|2dS

] 1
2
[∫

Γ
|γ(ϕ)|2dS

] 1
2

� k3‖h‖H2(Ω)‖ϕ‖Hs(Ω), ∀ϕ ∈ Hs(Ω).

Thus,

‖DgΓ(u) ·h‖H−s(Ω) � k3‖h‖H2(Ω), ∀h ∈ H2(Ω),

and DgΓ(u) ∈ L (H2(Ω),H−s(Ω)) .
Now, let u,h ∈ H2(Ω) and using (1.2), Cauchy-Schwarz inequality and Sobolev
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embeddings, we have

|〈 fΩ(u+h)− fΩ(u)−DfΩ(u) ·h,ϕ〉| �
∫

Ω
| f (u+h)− f (u)− f ′(u)h||ϕ |dx

=
∫

Ω
| f ′(u+ σh)− f ′(u)||h||ϕ |dx

=
∫

Ω
| f ′′(θ (u+ σh)+ (1−θ )u)||σh||h||ϕ |dx

� K
∫

Ω
|h|2|ϕ |dx � K‖h‖2

L4(Ω)‖ϕ‖L2(Ω)

� c1‖h‖2
H2(Ω)‖ϕ‖Hs(Ω), ∀ϕ ∈ Hs(Ω),

where σ = σ(x) ∈ [0,1] and θ = θ (x) ∈ [0,1] , x ∈ Ω . Thus,

‖ fΩ(u+h)− fΩ(u)−DfΩ(u) ·h‖H−s(Ω) � c1‖h‖2
H2(Ω).

This proves that fΩ is Fréchet diferentiable and your Fréchet diferential is given by
(2.26).

Let u,h ∈ H2(Ω) and using (1.2), Cauchy-Schwarz and lemma 2, we have∣∣∣〈1ε χωε gΩ(u+h)− 1
ε

χωε gΩ(u)− 1
ε

χωε DgΩ(u) ·h,ϕ〉
∣∣∣

�1
ε

∫
ωε

|g(u+h)−g(u)−g′(u)h||ϕ |dx =
1
ε

∫
ωε

|g′(u+ σh)−g′(u)||h||ϕ |dx

=
1
ε

∫
ωε

|g′′(θ (u+ σh)+ (1−θ )u)||σh||h||ϕ |dx� K

[
1
ε

∫
ωε

|h|4dx

] 1
2
[

1
ε

∫
ωε

|ϕ |2dx

] 1
2

�c2‖h‖2
H2(Ω)‖ϕ‖Hs(Ω), ∀ϕ ∈ Hs(Ω),

where σ = σ(x) ∈ [0,1] and θ = θ (x) ∈ [0,1] , x ∈ Ω , and with c2 > 0 independent of
ε . Thus,∥∥∥1

ε
χωε gΩ(u+h)− 1

ε
χωε gΩ(u)− 1

ε
χωε DgΩ(u) ·h

∥∥∥
H−s(Ω)

� c2‖h‖2
H2(Ω).

This proves that
1
ε

χωε gΩ is Fréchet differentiable, uniformly in ε , and your Fréchet

differential is given by (2.27).
Now, let u,h ∈ H2(Ω) and using (1.2), Cauchy-Schwarz and trace theorems, we

have

|〈gΓ(u+h)−gΓ(u)−DgΓ(u) ·h,ϕ〉|�
∫

Γ
|γ(g(u+h))− γ(g(u))− γ(g′(u)h)||γ(ϕ)|dS

=
∫

Γ
|γ(g′′(θ (u+ σh)+ (1−θ )u))||γ(h)|2|γ(ϕ)|dS

� K‖γ(h)‖2
L4(Γ)‖γ(ϕ)‖L2(Γ)

� c3‖h‖2
H2(Ω)‖ϕ‖Hs(Ω), ∀ϕ ∈ Hs(Ω),
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where σ = σ(x) ∈ [0,1] and θ = θ (x) ∈ [0,1] , x ∈ Γ . Thus,

‖gΓ(u+h)−gΓ(u)−DgΓ(u) ·h‖H−s(Ω) � c3‖h‖2
H2(Ω).

This proves that gΓ is Fréchet differentiable and your Fréchet differential is given by
(2.28).

The Fréchet differentiability of Fε , uniformly in ε , follows immediately. �

LEMMA 5. Suppose that f and g satisfy the growth estimate (1.2). Then, D fΩ ,
1
ε

χωε DgΩ , DgΓ : H2(Ω) → L (H2(Ω),H−s(Ω)) are globally Lipschitz, uniformly in

ε . Consequently, for each ε ∈ [0,ε0] , DFε : X → L (X ,H2(Ω)×H−s(Ω)×L2(Ω)) is
also globally Lipschitz, uniformly in ε .

Proof. Let u,v ∈H2(Ω) and using (1.2), Hölder’s inequality and Sobolev embed-
dings, we have

|〈DfΩ(u) ·h−DfΩ(v) ·h,ϕ〉| �
∫

Ω
| f ′(u)h− f ′(v)h||ϕ |dx

=
∫

Ω
| f ′′(u+ σv)||u− v||h||ϕ |dx � K

∫
Ω
|u− v||h||ϕ |dx

� K‖u− v‖L6(Ω)‖h‖L3(Ω)‖ϕ‖L2(Ω)

� k1‖u− v‖H2(Ω)‖h‖H2(Ω)‖ϕ‖Hs(Ω),

for any h ∈ H2(Ω) and ϕ ∈ Hs(Ω) , where σ = σ(x) ∈ [0,1] , x ∈ Ω . Thus,

‖DfΩ(u)−DfΩ(v)‖L (H2(Ω),H−s(Ω)) � k1‖u− v‖H2(Ω).

Let u,v ∈ H2(Ω) and using (1.2), Hölder’s inequality and lemma 2, we have

∣∣∣〈1
ε

χωε DgΩ(u) ·h− 1
ε

χωε DgΩ(v) ·h,ϕ
〉∣∣∣ � 1

ε

∫
ωε

|g′(u)h−g′(v)h||ϕ |dx

=
1
ε

∫
ωε

|g′′(u+ σv)||u− v||h||ϕ |dx

�K

[
1
ε

∫
ωε

|u− v|4dx

] 1
4
[

1
ε

∫
ωε

|h|4dx

] 1
4
[

1
ε

∫
ωε

|ϕ |2dx

] 1
2

�k2‖u− v‖H2(Ω)‖h‖H2(Ω)‖ϕ‖Hs(Ω),

for any h∈H2(Ω) and ϕ ∈Hs(Ω) , where k2 > 0 is independent of ε and σ = σ(x) ∈
[0,1] , x ∈ Ω . Thus,

∥∥∥1
ε

χωε DgΩ(u)− 1
ε

χωε DgΩ(v)
∥∥∥

L (H2(Ω),H−s(Ω))
� k2‖u− v‖H2(Ω).
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Now, let u,v∈H2(Ω) and using (1.2), Hölder’s inequality and trace theorems, we
have ∣∣∣〈DgΓ(u) ·h−DgΓ(v) ·h,ϕ〉

∣∣∣ �
∫

Γ
|γ(g′(u)h)− γ(g′(v)h)||γ(ϕ)|dS

=
∫

Γ
|γ(g′′(u+ σv))||γ(u− v)||γ(h)||γ(ϕ)|dS

� K‖γ(u− v)‖L4(Γ)‖γ(h)‖L4(Γ)‖γ(ϕ)‖L2(Γ)

� k3‖u− v‖H2(Ω)‖h‖H2(Ω)‖ϕ‖Hs(Ω),

for any h ∈ H2(Ω) and ϕ ∈ Hs(Ω) , where σ = σ(x) ∈ [0,1] , x ∈ Γ . Thus,

‖DgΓ(u)−DgΓ(v)‖L (H2(Ω),H−s(Ω)) � k3‖u− v‖H2(Ω).

Consequently, it is immediate that for each ε ∈ [0,ε0] , DFε is globally Lipschitz,
uniformly in ε . �

Under the assumptions of lemma 4 and lemma 5, we have that the map Fε is
continuously Fréchet differentiable. Now, it follows from [16, theorem 4.2.1] that the
solutions of (2.4) and (2.7) are continuously differentiable with respect to initial condi-
tions.

3. Global well-posedness and dissipativity

In this section we will wish to prove that the solutions wε (t,w0) , ε ∈ (0,ε0] ,
and w(t,w0) of the problems (2.4) and (2.7), respectively, are globally defined, that
is, that for each w0 ∈ X , tε

max(w0) = ∞ and tmax(w0) = ∞ . Moreover, we will show
that the semigroups associated to solutions are strongly bounded dissipativite. To prove
this, we will assume the previous hypotheses and additional dissipativity assumption
(1.3)(which is equivalent to (1.4)) and we will consider continuous functionals on X
which are bounded in bounded subsets of X and non-increasing along solutions of
these problems.

3.1. Perturbed problems

Let Vε : X → R be the continuous functional defined by

Vε

( u
v
θ

)
=

1
2
‖Δu‖2

L2(Ω) +
1
2
‖u‖2

L2(Ω) +
1
2
‖v‖2

L2(Ω) +
1
2
‖θ‖2

L2(Ω) −
∫

Ω

∫ u

0
f (s)dsdx

− 1
ε

∫
ωε

∫ u

0
g(s)dsdx,

(3.1)

where ε ∈ (0,ε0] .
It follows from (1.3) that for any γ1 > 0 and γ2 > 0, there exist k1 = k1(γ1) > 0

and k2 = k2(γ2) > 0 such that∫ u

0
f (s)ds �

∫ u

0

[γ1s
2

+ k1

]
ds � γ1u2

4
+ k1u � γ1u

2 + c1 (3.2)
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and

∫ u

0
g(s)ds �

∫ u

0

[γ2s
2

+ k2

]
ds � γ2u2

4
+ k2u � γ2u

2 + c2, (3.3)

where c1 = c1(γ1) > 0 and c2 = c2(γ2) > 0 are independent of ε .
Using (3.2) and (3.3), it follows that

1
2
‖Δu‖2

L2(Ω) +
1
2
‖u‖2

L2(Ω) +
1
2
‖v‖2

L2(Ω) +
1
2
‖θ‖2

L2(Ω)

=Vε

( u
v
θ

)
+

∫
Ω

∫ u

0
f (s)dsdx+

1
ε

∫
ωε

∫ u

0
g(s)dsdx

�Vε

( u
v
θ

)
+

∫
Ω
(γ1|u|2 + c1)dx+

1
ε

∫
ωε

(γ2|u|2 + c2)dx.

Thus

1
2
‖Δu‖2

L2(Ω) +
(1

2
− γ1

)
‖u‖2

L2(Ω) +
1
2
‖v‖2

L2(Ω) +
1
2
‖θ‖2

L2(Ω)

�Vε

( u
v
θ

)
+

γ2

ε

∫
ωε

|u|2dx+ c2k|Γ|+ c1|Ω|,

and from [9, lemma 2.1] there exists C > 0 independent of ε such that

γ2

ε

∫
ωε

|u|2dx � γ2C‖u‖2
H2(Ω), (3.4)

and this implies that

1
2
‖Δu‖2

L2(Ω) +
(1

2
− γ1

)
‖u‖2

L2(Ω)− γ2C‖u‖2
H2(Ω) +

1
2
‖v‖2

L2(Ω) +
1
2
‖θ‖2

L2(Ω)

�Vε

( u
v
θ

)
+ c2k|Γ|+ c1|Ω|.

Consequently, for wε (t) =
(

uε

vε

θ ε

)
(t) being the solution of the problem (1.1) we

have

1
2
‖Δuε‖2

L2(Ω) +
(1

2
− γ1

)
‖uε‖2

L2(Ω)− γ2C‖uε‖2
H2(Ω) +

1
2
‖vε‖2

L2(Ω) +
1
2
‖θ ε‖2

L2(Ω)

�Vε

(
uε

vε

θ ε

)
+ c2k|Γ|+ c1|Ω|.

For 0 < γ1 < 1
2 and choosing γ2 sufficientely small in the inequality above, we

obtain
‖wε (t)‖2

X � C1Vε(wε (t))+C2, (3.5)

for some C1,C2 > 0 independent of ε .
We note that by section 2.3 we obtain that a map t �→ wε(t,w0) is differentiable.
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It is clear that for wε(t) =
(

uε

vε

θ ε

)
(t) being the solution of the problem (1.1) we

have [0, tmax(w0)) 
 t �→Vε(wε (t,w0)) ∈ R is non-increasing because

dVε

dt
(t) = −‖∇θ ε(t)‖2

L2(Ω) −‖θ ε(t)‖2
L2(Ω) � 0,

for Vε(t) = Vε(wε (t,w0)) , t ∈ [0,tmax(w0)) .
Using lemma 2 we can prove that Vε is continuous and uniformly bounded in

uniformly bounded subsets of X . From (3.5) we have that given r > 0, there is a
constant C(r) > 0 independent of ε such that

sup{‖wε(t,w0)‖X : ‖w0‖X � r, t ∈ [0,tε
max(w0))} � C. (3.6)

From (3.6) and [16, theorem 4.2.1] we have that for each w0 ∈ X , the solution of
(2.4) is defined for all t � 0, that is, tε

max(w0) = ∞ . Consequently, for each ε ∈ [0,ε0) ,
we can to define a nonlinear semigroup {Sε(t) : t � 0} in X by

Sε(t)w0 = wε(t,w0), t � 0.

This also implies that each uniformly bounded subset of X has orbit and global orbit
uniformly bounded in ε .

Note that the nonlinear semigroups are given by the variation of constants formula

Sε(t)w0 = eAtw0 +
∫ t

0
eA(t−s)Fε(Sε(s)w0)ds, t � 0,

see [17] for details.

3.2. Limit problem

Let V0 : X → R be the continuous functional defined by

V0

( u
v
θ

)
=

1
2
‖Δu‖2

L2(Ω) +
1
2
‖u‖2

L2(Ω) +
1
2
‖v‖2

L2(Ω) +
1
2
‖θ‖2

L2(Ω) −
∫

Ω

∫ u

0
f (s)dsdx

−
∫

Γ

∫ u

0
g(s)dsdx.

(3.7)

Using (3.2) and (3.3), it follows that

1
2
‖Δu‖2

L2(Ω) +
1
2
‖u‖2

L2(Ω) +
1
2
‖v‖2

L2(Ω) +
1
2
‖θ‖2

L2(Ω)

=V0

( u
v
θ

)
+

∫
Ω

∫ u

0
f (s)dsdx+

∫
Γ

∫ u

0
g(s)dsdS

�V0

( u
v
θ

)
+

∫
Ω
(γ1|u|2 + c1)dx+

∫
Γ
(γ2|γ(u)|2 + c2)dS.
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Thus

1
2
‖Δu‖2

L2(Ω) +
(1

2
− γ1

)
‖u‖2

L2(Ω) +
1
2
‖v‖2

L2(Ω) +
1
2
‖θ‖2

L2(Ω)

�V0

( u
v
θ

)
+ γ2

∫
Γ
|γ(u)|2dS+ c2|Γ|+ c1|Ω|,

and from trace theorem there exist C > 0 such that

γ2

∫
Γ
|γ(u)|2dS � γ2C‖u‖2

H2(Ω),

and this implies that

1
2
‖Δu‖2

L2(Ω) +
(1

2
− γ1

)
‖u‖2

L2(Ω)− γ2C‖u‖2
H2(Ω) +

1
2
‖v‖2

L2(Ω) +
1
2
‖θ‖2

L2(Ω)

�V0

( u
v
θ

)
+ c2|Γ|+ c1|Ω|.

Consequently, for w(t) =
( u

v
θ

)
(t) being the solution of the problem (1.5) we have

1
2
‖Δu‖2

L2(Ω) +
(1

2
− γ1

)
‖u‖2

L2(Ω)− γ2C‖u‖2
H2(Ω) +

1
2
‖v‖2

L2(Ω) +
1
2
‖θ‖2

L2(Ω)

�V0

( u
v
θ

)
+ c2|Γ|+ c1|Ω|.

For 0 < γ1 < 1
2 and choosing γ2 sufficiently small in the inequality above, we have

‖w(t)‖2
X � C1V0(w(t))+C2, (3.8)

for some C1, C2 > 0.
Again in the section 2.3 we obtain that a map t �→ w(t,w0) is differentiable.

It is clear that for w(t) =
( u

v
θ

)
(t) being the solution of the problem (1.5) we have

that
[0,tmax(w0)) 
 t �→V0(w(t,w0)) ∈ R is non-increasing because

dV0

dt
(w(t)) = −‖∇θ (t)‖2

L2(Ω)−‖θ (t)‖2
L2(Ω) � 0,

for V0(t) = V0(w(t,w0)) and t ∈ [0,tmax(w0)) .
Using trace theorem we can prove that V is continuous and uniformly bounded

in uniformly bounded subsets of X . From (3.8) we have that given r > 0, there is a
constant C(r) > 0 such that

sup{‖w(t,w0)‖X : ‖w0‖X � r, t ∈ [0,tmax(w0))} � C. (3.9)

From (3.9) and [16, theorem 4.2.1] we have that for each w0 ∈ X , the solution of
(2.7) is defined for all t � 0, that is tmax(w0) = ∞ . Consequently, we can to define a
nonlinear semigroup {S0(t) : t � 0} in X by

S0(t)w0 = w(t,w0), t � 0.



402 G. S. ARAGÃO, F. D. M. BEZERRA AND C. O. P. DA SILVA

This also implies that each uniformly bounded subset of X has orbit and global orbit
uniformly bounded.

Note that the nonlinear semigroup is given by the variation of constants formula

S0(t)w0 = eAtw0 +
∫ t

0
eA(t−s)F0(S0(s)w0)ds, t � 0,

see [17] for details.

4. Existence and upper semicontinuity of global attractors

From this section onwards we will be assuming all the previous hypotheses. The
results obtained in the previous sections and smoothing effect of the equations assure
us that the nonlinear semigroups generated by our problems (2.4) and (2.7) have global
compact attractors Aε for 0 � ε � ε0 . Moreover, we get a result of boundedness
uniform in ε of the attractores, the convergence of the nonlinear semigroups and upper
semicontinuity of the global attractors.

4.1. Existence of the global attractors

In this subsection, we will establish the existence and characterization of the global
compact attractors for the nonlinear semigroups generated by our problems (2.4) and
(2.7) using the results of Hale [16, Chapter 3]. Moreover, we will obtain uniform
boundedness of the attractors.

THEOREM 4. For sufficiently small ε � 0 , the parabolic problems (2.4) and (2.7)
have a global compact attractor Aε and Aε = Wu(Eε) , where

Wu(Eε) =
{

w ∈ X : Sε(−t)w is defined for t � 0 and lim
t→+∞

dist(Sε(−t)w,Eε) = 0},

and Eε denotes the set of equilibria of the nonlinear semigroup {Sε(t) : t � 0} gener-
ated by our problems (2.4) and (2.7). Moreover, Aε is connected.

Proof. Using the functionals Vε and V0 defined in (3.1) and (3.7), respectively,
for ε � 0 enough small, from the smoothing effect of the systems and the [16, theorem
3.8.5] we get that the problems (2.4) and (2.7) have a global compact attractor Aε in X
with the characterization Aε = Wu(Eε) , for 0 � ε � ε0 . Moreover, Aε is connected
because X is a Hilbert space. �

Here we will present a result on the uniform bounds of the attractors that we will
use to show the upper semicontinuity at ε = 0 of the attractors.

THEOREM 5. For sufficiently small ε � 0 , the union of the global attractors⋃
ε∈[0,ε0] Aε is a bounded set in X .
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Proof. For sufficiently small ε � 0, it is important to note that for global bounded
solutions of (2.4) in (3.5), we can estimate Vε(wε (t)) by a constant independent of ε
thanks to (3.4), as well as, the constant C2 > 0 in (3.5) is independent of ε . Hence, this
boundedness uniform in ε jointly with (3.6), (3.9), and the invariance of the attractors
by the semigroups, allows to conclude that the union of the global attractors

⋃
ε∈[0,ε0] Aε

is a bounded set in X . �

4.2. Convergence of the nonlinear semigroups

From now on we will show the convergence of the nonlinear semigroups as ε → 0.
With this convergence result we concluded that the limit problem for the autonomous
thermoelastic plate system (1.1) is given by (1.5). Initially, we will estimate the linear
semigroup.

We use the remark 4 to show that the nonlinear semigroups behave continuously
at ε → 0.

PROPOSITION 1. Under the above hypothesis, let 1
2 < s � 1 and some fixed τ >

0 . Then, there exists a function C(ε) � 0 with C(ε) → 0 as ε → 0 , such that for
w0 ∈ B, where B ⊂ X is a bounded set, we have

∥∥∥Sε(t)w0−S0(t)w0

∥∥∥
X

� M(τ,B)C(ε), ∀ t ∈ [0,τ], (4.1)

for some constant M(τ,B) > 0 .

Proof. Let B ⊂ X be a bounded set, and let w0 ∈ B . Fixed τ > 0, we consider the
nonlinear semigroups given by the variation of constant formula

Sε(t)w0 = eAtw0 +
∫ t

0
eA(t−ξ )Fε(Sε(ξ )w0)dξ , ε ∈ [0,ε0] (4.2)

associated with (2.4) and (2.7).
Note that from (4.2), for t ∈ (0,τ] , we have

∥∥∥Sε(t)w0−S0(t)w0

∥∥∥
X

�
∫ t

0

∥∥∥eA(t−ξ )
∥∥∥

L (H2(Ω)×H−s(Ω)×L2(Ω),X)

×
∥∥∥Fε(Sε(ξ )w0)−F0(S0(ξ )w0)

∥∥∥
H2(Ω)×H−s(Ω)×L2(Ω)

dξ .

(4.3)

Adding and subtracting the term Fε(S0(ξ )w0) in the second norm on right side of



404 G. S. ARAGÃO, F. D. M. BEZERRA AND C. O. P. DA SILVA

(4.3), from (2.17) we can to write the inequality above of the following form∥∥∥Sε(t)w0 −S0(t)w0

∥∥∥
X

�
∫ t

0

∥∥∥eA(t−ξ )
∥∥∥

L (H2(Ω)×H−s(Ω)×L2(Ω),X)

×
∥∥∥Fε(Sε(ξ )w0)−Fε(S0(ξ )w0)

∥∥∥
H2(Ω)×H−s(Ω)×L2(Ω)

dξ

+
∫ t

0

∥∥∥eA(t−ξ )
∥∥∥

L (H2(Ω)×H−s(Ω)×L2(Ω),X)

×
∥∥∥Fε(S0(ξ )w0)−F0(S0(ξ )w0)

∥∥∥
H2(Ω)×H−s(Ω)×L2(Ω)

dξ

�Mω

∫ t

0
(t− ξ )−1e−ω(t−ξ )

∥∥∥Fε(Sε(ξ )w0)−Fε(S0(ξ )w0)
∥∥∥

H2(Ω)×H−s(Ω)×L2(Ω)
dξ

+Mω

∫ t

0
(t − ξ )−1e−ω(t−s)

∥∥∥Fε(S0(ξ )w0)−F0(S0(ξ )w0)
∥∥∥

H2(Ω)×H−s(Ω)×L2(Ω)
dξ .

(4.4)

We will analyze each term on right side of (4.4) separately.
From (3.6) and (3.9) we have that there exists C = C(w0) > 0 independent of ε ,

such that
‖Sε(ξ )w0‖X � C, ∀ ε ∈ [0,ε0] and ∀ ξ ∈ [0,τ].

Now, from lemma 3 item (ii), Fε is globally Lipschitz, uniformly in ε , thus there
exists L > 0 idependent of ε , such that∫ t

0
(t− ξ )−1e−ω(t−ξ )

∥∥∥Fε(Sε(ξ )w0)−Fε(S0(ξ )w0)
∥∥∥

H2(Ω)×H−s(Ω)×L2(Ω)
dξ

�L
∫ t

0
(t− ξ )−1e−ω(t−ξ )

∥∥∥Sε(ξ )w0−S0(ξ )w0

∥∥∥
X
dξ .

(4.5)

Since {S0(s)w0 : s ∈ [0,τ]} is bounded set contained in X . Thanks to lemma 3
item (iii) , there exists a function C(ε) � 0 with C(ε) → 0 as ε → 0 such that

∫ t

0
(t− ξ )−1e−ω(t−ξ )

∥∥∥Fε(S0(ξ )w0)−F0(S0(ξ )w0)
∥∥∥

H2(Ω)×H−s(Ω)×L2(Ω)
dξ

�M(τ,w0)C(ε)
∫ t

0
(t− ξ )−1e−ω(t−ξ )dξ � M(τ,w0)C(ε)

∫ +∞

0
z−1e−zdz

=M(τ,w0)C(ε)Γ(0), (Γ(0) = 1),

(4.6)

where M(τ,w0) > 0 and Γ(x) =
∫ ∞
0 zx−1e−zdz is the gamma function.

Combining (4.4) with (4.5) and (4.6), we get for all t ∈ (0,τ] ,∥∥∥Sε(t)w0 −S0(t)w0

∥∥∥
X

�C(ε)M(τ,w0)M +LMω

∫ t

0
(t − ξ )−1e−ω(t−ξ )

∥∥∥Sε(ξ )w0 −S0(ξ )w0

∥∥∥
X
dξ ,
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where C(ε) � 0 with C(ε) → 0 as ε → 0.
From Gronwall’s inequality [17, lemma 7.1.1] it follows that∥∥∥Sε(t)w0 −S0(t)w0

∥∥∥
X

� M(τ,ω ,L,B)C(ε)e−ωt ,

and consequently we conclude that (4.1) holds. �
Similarly, we can prove the following result.

PROPOSITION 2. Under the above hypothesis, let 1
2 < s � 1 and some fixed τ >

0 .Then, there exists a function C(ε) � 0 with C(ε) → 0 as ε → 0 , such that for wε ∈
Aε , ε ∈ (0,ε0] , we have∥∥∥Sε(t)wε −S0(t)wε

∥∥∥
X

� M(τ)C(ε), ∀ t ∈ [0,τ], (4.7)

for some constant M(τ) > 0 .

4.3. Upper semicontinuity of the global attractors

Finally, in this subsection we will show the upper semicontinuity of global com-
pact attractors at ε = 0, in the sense of Hausdorff semi-distance in X .

THEOREM 6. The family of global attractors Aε is upper semicontinuous at ε =
0 ; that is,

distX (Aε ,A0) → 0, as ε → 0,

where

distX(Aε ,A0) := sup
wε∈Aε

dist(wε ,A0) = sup
wε∈Aε

inf
w0∈A0

{‖wε −w0‖X}.

Proof. Thanks to theorem 5, there exists B0 ⊂ X a bounded set such that B0 ⊃⋃
ε∈[0,ε0] Aε for some ε0 > 0. Hence, A0 attracts

⋃
ε∈[0,ε0] Aε ⊃Aε under the nonlinear

semigroup S0(·) . Thus, given δ > 0, there exists τ = τ(δ ) > 0 such that

dist(S0(τ)wε ,A0) <
δ
2

, ∀wε ∈ Aε . (4.8)

Since Aε is invariant then given ϕε ∈Aε there exists ϑε ∈Aε such that ϕε = Sε(τ)ϑε .
Thus,

dist(ϕε ,A0) = inf
w0∈A0

‖ϕε −w0‖X � inf
w0∈A0

{‖ϕε −S0(τ)ϑε‖X +‖S0(τ)ϑε −w0‖X}
= ‖Sε(τ)ϑε −S0(τ)ϑε‖X +dist(S0(τ)ϑε ,A0).

From proposition 2, for ε enough small, we get

‖Sε(τ)ϑε −S0(τ)ϑε‖X � δ
2

. (4.9)



406 G. S. ARAGÃO, F. D. M. BEZERRA AND C. O. P. DA SILVA

Using (4.8) and (4.9), for ε enough small, we have

dist(ϕε ,A0) < δ , ∀ ϕε ∈ Aε ,

and thus we conclude the upper semicontinuity of the family of attractors at ε = 0. �
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