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(Communicated by L. Kong)

Abstract. We derive Lyapunov-type inequalities for certain fractional differential equations of
order α , where 1 < α � 2 or 2 < α � 3 . The methods used within rely on considering the
maximum value of a nontrivial solution in a given interval as opposed to traditional methods
which utilize the Green’s function. This particular method provides versatility and can be ap-
plied to other fractional boundary value problems where the Green’s function is inaccessible.
Furthermore, we demonstrate how the inequalities may be extended to fractional multivariate
equations in both the left and right-fractional cases.

1. Introduction

For the second-order linear differential equation

x′′ +q(t)x = 0 (1.1)

with q ∈C([a,b],R) , the following result is known as the Lyapunov inequality:

THEOREM 1.1. (See [22, 3]) Assume eq. (1.1) has a nontrivial solution x(t) sat-
isfying x(a) = x(b) = 0 and x(t) �= 0 for t ∈ (a,b) . Then

∫ b

a
|q(t)|dt >

4
b−a

. (1.2)

The Lyapunov inequality has been used as an important tool in oscillation, discon-
jugacy, control theory, eigenvalue problems, and other areas of differential equations.
Due to its importance in applications, theorem 1.1 has been extended in many direc-
tions by various authors. The reader is directed to [2, 4, 5, 6, 8, 12, 13, 14, 21, 25, 26, 27,
30, 31, 32, 33, 34] for further reading on extensions of the Lyapunov inequality.

Recently, a search for Lyapunov-type inequalities has begun in the study of frac-
tional differential equations. Fractional differential equations have gained attention for
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their applications to many engineering and scientific disciplines, notably in the mathe-
matical modeling of systems and processes in the fields of physical, mechanics, chem-
istry, and aerodynamics. Although relevant definitions are provided in the next section,
we briefly draw the reader’s attention to one result relating to Lyapunov-type inequal-
ities for fractional differential equations. Ferreira [10] first obtained a Lyapunov-type
inequality with pointwise boundary conditions (BCs). In particular, he considered the
Riemann-Liouville fractional differential equation

Dα
a+x+q(t)x = 0, (1.3)

where q ∈C([a,b],R) and 1 < α � 2 and obtained the following result:

THEOREM 1.2. Assume eq. (1.3) has a nontrivial solution x(t) satisfying x(a) =
x(b) = 0 . Then ∫ b

a
|q(t)|dt > Γ(α)

( 4
b−a

)α−1
,

where Γ(α) =
∫ ∞
0 tα−1e−tdt is the gamma function.

It is easy to see that, for α = 2, the result in theorem 1.2 leads to the classical Lyapunov
inequality (1.2).

Following the Ferreira’s seminal paper [10], the traditional method for obtaining
Lyapunov-type inequalities for a fractional boundary value problem (BVP) has been to
maximize the corresponding fractional Green’s function. The interested reader is in-
vited to review [7, 9, 16, 19, 17, 24, 28] for more Lyapunov-type inequalities involving
the Riemann-Liouville and Caputo fractional derivatives with several types of BCs. In
fact, this technique involving the Green’s function has been employed by virtually all
authors, including those cited, finding Lyapunov-type inequalities for fractional BVPs.
In this article, however, we bypass the Green’s function method by considering the
maximum value of a nontrivial solution in a given interval. This new approach pro-
vides more versatility and can be applied in the future to explore the Lyapunov-type
inequalities for other types of fractional BVPs where finding and analyzing the Green’s
function is not ideal.

There has also been a lot of work on Lyapunov-type inequalities including integer
and fractional order on multivariate domains or for partial differential equations by
many authors. To name a few, we refer the reader to [1, 15, 23, 18]. In particular,
Anastassiou [1] obtained Lyapunov-type inequalities for various multivariate equations
on special domains in R

n . For N � 2, denote

B(0,R) := {x ∈ R
N : |x| < R} for R > 0,

and let A be an open spherical shell in R
N centered at the origin, i.e., A := B(0,b) \

B(0,a) for 0 < a < b . Consider the following equation

∂ 2y(x)
∂ r2 +q(x)y(x) = 0 (1.4)
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with the BCs
y(∂B(0,a)) = y(∂B(0,b)) = 0 (1.5)

where q ∈C(A) and the derivatives with respect to r are directional derivatives in the
radial direction.

THEOREM 1.3. Assume eq. (1.4) has a nontrivial solution y(x) satisfying (1.5)
and y(x) �= 0 on A. Then

∫
A
|q(x)|dx >

8πN/2aN−1

Γ(N/2)(b−a)
. (1.6)

Note that inequality (1.6) holds only when the domain A is radially symmetric and
contains a circular hole of radius a > 0 inside. Moreover, it becomes less sharp when a
is small and provides no information when a = 0, i.e., when the hole shrinks to a point.
In fact, this is the case in every multivariate Lyapunov-type inequalities found in [1]. In
section 5, we discuss several multivariate Lyapunov-type inequalities where we correct
this type of issues.

The article is outlined as follows. In section 2, we present necessary definitions
and preliminary results regarding Reimann-Liouville fractional differential equations.
In sections 3 and 4, we establish Lyapunov-type inequalities for univariate Riemann-
Liouville fractional differential equations of order 1 < α � 2 and 2 < α � 3 together
with various pointwise and mixed BCs. All results in sections 3 and 4 use the non-
Green’s function method. Lastly, in section 5, we will further develop Lyapunov-type
inequalities for multivariate fractional BVPs on domains in R

N which are not neces-
sarily radially symmetric.

2. Background materials and preliminaries

For the convenience of the reader, we present the necessary definitions and lemmas
from fractional calculus theory in the sense of Riemann-Liouville. These results can be
found in the monograph [20]. For additional reading, see [11, 29].

DEFINITION 2.1. The left and right fractional integrals of order α > 0 of a func-
tion x(t) is defined as

(
Iα
a+x

)
(t) :=

1
Γ(α)

∫ t

a
(t− s)α−1x(s)ds, t > a,

and (
Iα
b−x

)
(t) :=

1
Γ(α)

∫ b

t
(s− t)α−1x(s)ds, t < b,

respectively. Here Γ(α) is the gamma function.
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DEFINITION 2.2. The left and right fractional derivative of order α > 0 of a
function x(t) is defined as

(
Dα

a+x
)
(t) :=

(
d
dt

)n

(In−α
a+ x)(t)

=
1

Γ(n−α)

(
d
dt

)n ∫ t

a
(t− s)n−α−1x(s)ds, t > a, (2.1)

and

(
Dα

b−x
)
(t) :=

(
− d

dt

)n

(In−α
b− x)(t) =

1
Γ(n−α)

(
− d

dt

)n ∫ b

t
(s− t)n−α−1x(s)ds, t<b,

respectively. Here n = �α�+1 with �α� the integer part of α and Γ(α) is the gamma
function.

In particular, when α = n ∈ N0 , then
(
Dn

a+x
)
(t) = x(n)(t) and

(
Dn

b−x
)
(t) = (−1)nx(n)(t) .

It may be directly verified from definitions 2.1 and 2.2 that for α1 > −1 and
α2 � 0,

Iα2
a+(t −a)α1 =

Γ(α1 +1)
Γ(α1 +1+ α2)

(t−a)α2+α1 ,

and

Dα2
a+(t −a)α1 =

Γ(α1 +1)
Γ(α1 +1−α2)

(t −a)α1−α2 .

Additionally,

Iα2
b−(b− t)α1 =

Γ(α1 +1)
Γ(α1 +1+ α2)

(b− t)α2+α1 ,

and

Dα2
a+(b− t)α1 =

Γ(α1 +1)
Γ(α1 +1−α2)

(b− t)α1−α2 .

Now, we recall a few well known properties in Riemann-Liouville fractional deriva-
tives and integrals. Let x ∈ L[a,b] and α1,α2 > 0. Then the following properties are
referred to as the “semigroup property” for the fractional integral.

Iα1
a+Iα2

a+x(t) = Iα1+α2
a+ x(t) and Iα1

b−Iα2
b−x(t) = Iα1+α2

b− x(t).

Let α � 0, k ∈ N and D = d/dt . If Dα
a+x(t) , Dα+k

a+ x(t) , Dα
b−x(t) , and Dα+k

b− x(t)
exist, then

Dk(Dα
a+x(t)) = Dα+k

a+ x(t) and Dk(Dα
b−x(t)) = Dα+k

b− x(t) . (2.2)
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The following assertions show that the fractional differentiation is an operation
inverse to fractional integration. Let x ∈ L[a,b] and α > 0. Then

Dα
a+Iα

a+x(t) = x(t) and Dα
b−Iα

b−x(t) = x(t).

The following are the composition relations between fractional differentiation and
fractional integration operators. As earlier, x ∈ L[a,b] , and α > 0. Then

Dα1
a+Iα2

a+x(t) = Iα2−α1
a+ x(t) and Dα1

b−Iα2
b−x(t) = Iα2−α1

b− x(t).

In particular, when α1 = k ∈ N and α2 > k , then

Dk
a+Iα2

a+x(t) = Iα2−k
a+ x(t) and Dk

b−Iα2
b−x(t) = Iα2−k

b− x(t). (2.3)

Finally, let x ∈ L[a,b] , α > 0 and n = �α�+1. Then

Iα
a+Dα

a+x(t) = x(t)+
n

∑
i=1

ci(t−a)α−i (2.4)

with ci ∈ R for 1 � i � n .

3. Results for 1 < α � 2

In this section we consider the linear left-fractional differential equation

Dα
a+x+q(t)x = 0, (3.1)

and the linear right-fractional differential equation

Dα
b−x+q(t)x = 0, (3.2)

where q ∈C([a,b],R) and 1 < α � 2.
We first present a Lyapunov-type inequality for eq. (3.1).

THEOREM 3.1. Assume eq. (3.1) has a nontrivial solution x(t) satisfying the BCs

x(a) = Dα−1
a+ x(c) = 0 (3.3)

for c > a. Then ∫ c

a
|q(s)|ds >

Γ(α)
(c−a)α−1 . (3.4)

Proof. We assume that x(t) satisfies (3.3). Since x(t) is nontrivial and continuous,
there exists a d ∈ (a,c] such that m = maxa�t�c |x(t)|= |x(d)| . From (2.2), we see that

Dα
a+x(t) =

(
Dα−1

a+ x(t)
)′

.
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Hence (3.1) becomes (
Dα−1

a+ x
)′

+q(t)x = 0 . (3.5)

For t ∈ [a,c] , by integrating (3.5) from t to c and utilizing the fact that Dα−1
a+ x(c) = 0,

we have

Dα−1
a+ x(t) =

∫ c

t
q(s)x(s)ds.

Since |x(t)| � m and |x(t)| �≡ m for t ∈ [a,c] , it follows that
∣∣∣Dα−1

a+ x(t)
∣∣∣ =

∣∣∣
∫ c

t
q(s)x(s)ds

∣∣∣ < m
∫ c

a
|q(s)|ds. (3.6)

Note that 0 < α −1 � 1. From (2.4), we have

Iα−1
a+ (Dα−1

a+ x(t)) = x(t)+ c1(t −a)α−2. (3.7)

Now x(a) = 0 implies c1 = 0. Letting c1 = 0 in (3.7), we have

x(t) = Iα−1
a+ (Dα−1

a+ x(t)).

Taking the absolute value on both sides and using (3.6) we see that

|x(t)| = ∣∣Iα−1
a+ (Dα−1

a+ x(t))
∣∣ � Iα−1

a+

∣∣Dα−1
a+ x(t)

∣∣ <
m(t−a)α−1

Γ(α)

∫ c

a
|q(s)|ds

for t ∈ [a,c] . In particular, for t = d we have

m = |x(d)| < m(d−a)α−1

Γ(α)

∫ c

a
|q(s)|ds � m(c−a)α−1

Γ(α)

∫ c

a
|q(s)|ds.

Canceling m from both sides and rearranging terms, we see that (3.4) holds. �
Now we present a Lyapunov-type inequality for eq. (3.2). The proof is essentially

the same as that of theorem 3.1. Therefore, we omit the proof.

THEOREM 3.2. Assume eq. (3.2) has a nontrivial solution x(t) satisfying the BCs

Dα−1
b− x(c) = x(b) = 0 (3.8)

for c < b. Then ∫ b

c
|q(s)|ds >

Γ(α)
(b− c)α−1 . (3.9)

REMARK 3.1. Observe in the case when α = 2, eq. (3.1) and eq. (3.2) reduces
to the same differential equation as eq. (1.1), which is used in Lyapunov’s classical
inequality of theorem 1.1. Similarly, the corresponding BCs (3.3) and (3.8) become
the right focal BCs, x(a) = x′(c) = 0 and left focal BCs, x′(c) = x(b) = 0. Hence
inequality (3.4) simplifies to

∫ c

a
|q(s)|ds >

1
c−a
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and inequality (3.9) simplifies to

∫ b

c
|q(s)|ds >

1
b− c

.

Assuming x(t) is a nontrivial solution of (1.1) satisfying both right and left focal BCs,
it follows immediately that

∫ b

a
|q(s)|ds =

∫ c

a
|q(s)|ds+

∫ b

c
|q(s)|ds >

1
c−a

+
1

b− c
>

4
b−a

,

i.e., the classical Lyapunov inequality (1.2).

Now we present a fractional Lyapunov-type inequality for eq. (3.1) with left focal
BCs.

THEOREM 3.3. Assume eq. (3.1) has a nontrivial solution x(t) satisfying the BCs

x′(a) = x(b) = 0 (3.10)

for b > a. Then ∫ b

a
|q(s)|ds >

Γ(α)
(b−a)α−1 . (3.11)

Proof. We assume that x(t) satisfies (3.10). Since 1 < α � 2, we may reduce
eq. (3.1) to an equivalent integral equation

x(t) = −Iα
a+(q(t)x(t))+ c1(t−a)α−1 + c2(t−a)α−2,

where we have used (2.4). Differentiating both sides with respect to t and using (2.3)
we see that

x′(t) = −Iα−1
a+ (q(t)x(t))+ c1(α −1)(t−a)α−2 + c2(α −2)(t−a)α−3,

Now x′(a) = 0 implies c1 = c2 = 0. Hence

−x′(t) = Iα−1
a+ (q(t)x(t)).

Define m := maxa�t�b |x(t)| . Recall that x(b) = 0. Then for a � t � b we have

x(t) =
∫ b

t
−x′(s)ds =

∫ b

t
Iα−1
a+ (q(s)x(s))ds.
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Taking the absolute value on both sides, it follows that

|x(t)| =
∣∣∣∣
∫ b

t
Iα−1
a+ q(s)x(s)ds

∣∣∣∣ �
∣∣∣∣
∫ b

a
Iα−1
a+ q(s)x(s)ds

∣∣∣∣
=

1
Γ(α −1)

∣∣∣∣
∫ b

a

∫ s

a
(s− τ)α−2q(τ)x(τ)dτds

∣∣∣∣
=

1
Γ(α −1)

∣∣∣∣
∫ b

a

(∫ b

τ
(s− τ)α−2ds

)
q(τ)x(τ)dτ

∣∣∣∣
=

1
(α −1)Γ(α −1)

∣∣∣∣
∫ b

a
(b− τ)α−1q(τ)x(τ)dτ

∣∣∣∣ � (b−a)α−1

Γ(α)

∫ b

a
|q(τ)||x(τ)|dτ.

Since |x(t)| � m and |x(t)| �≡ m for t ∈ [a,b] , it follows that

m <
m(b−a)α−1

Γ(α)

∫ b

a
|q(τ)|dτ.

Canceling m from both sides and rearranging terms, we see that (3.11) holds. �
Similarly, we present a Lyapunov-type inequality for eq. (3.2) with right focal

BC. The proof is essentially the same as that of theorem 3.3. Therefore, we omit the
proof.

THEOREM 3.4. Assume eq. (3.2) has a nontrivial solution x(t) satisfying the BCs

x(a) = x′(b) = 0

for a < b. Then ∫ b

a
|q(s)|ds >

Γ(α)
(b−a)α−1 .

Now, we present a Lyapunov-type inequality for eq. (3.1) with mixed BCs.

THEOREM 3.5. Assume eq. (3.1) has a nontrivial solution x(t) satisfying the BCs

x(a) = x′(a) = x(b) = 0. (3.12)

Then ∫ b

a
|q(s)|ds >

2Γ(α)
(b−a)α−1 . (3.13)

Proof. We assume that x(t) satisfies (3.12). Since 1 < α � 2, it follows from
(2.4) that

Iα
a+Dα

a+x(t) = x(t)+ c1(t −a)α−1 + c2(t−a)α−2.

Clearly x(a) = 0 implies c2 = 0. Hence

Iα
a+Dα

a+x(t) = x(t)+ c1(t−a)α−1.
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Differentiating both sides with respect to t and using (2.3) we have

Iα−1
a+ Dα

a+x(t) = x′(t)+ c1(α −1)(t−a)α−2.

Now x′(a) = 0 implies c1 = 0. Hence

x(t) = Iα
a+Dα

a+x(t) =
1

Γ(α)

∫ t

a
(t− s)α−1Dα

a+x(s)ds. (3.14)

Since x(t) is nontrivial and continuous, there exists a d ∈ [a,b] such that m =
maxa�t�b |x(t)|= |x(d)| . Now letting t = d and taking the absolute value on both sides
of (3.14) we see that

m = |x(d)| = 1
Γ(α)

∣∣∣∣
∫ d

a
(d− s)α−1Dα

a+x(s)ds

∣∣∣∣ � 1
Γ(α)

∫ d

a
(d− s)α−1

∣∣Dα
a+x(s)

∣∣ds.

Since 1 < α � 2, it follows that

m � 1
Γ(α)

∫ d

a
(b− s)α−1

∣∣Dα
a+x(s)

∣∣ds. (3.15)

Recall that x(b) = 0. Hence letting t = b in (3.14) we have

0 =
1

Γ(α)

∫ b

a
(b− s)α−1Dα

a+x(s)ds

=
1

Γ(α)

∫ d

a
(b− s)α−1Dα

a+x(s)ds+
1

Γ(α)

∫ b

d
(b− s)α−1Dα

a+x(s)ds

� 1
Γ(α)

∫ d

a
(d− s)α−1Dα

a+x(s)ds+
1

Γ(α)

∫ b

d
(b− s)α−1Dα

a+x(s)ds

= m+
1

Γ(α)

∫ b

d
(b− s)α−1Dα

a+x(s)ds.

It follows that

m � 1
Γ(α)

∫ b

d
(b− s)α−1

∣∣Dα
a+x(s)

∣∣ds. (3.16)

Adding (3.15) and (3.16) we have

2m � 1
Γ(α)

∫ b

a
(b− s)α−1

∣∣Dα
a+x(s)

∣∣ds. (3.17)

Note that |x(t)| � m and |x(t)| �≡ m for t ∈ [a,b] . Then for t ∈ [a,b] it follows
from eq. (3.1), that ∣∣Dα

a+x
∣∣ = |−q(t)x(t)| � |q(t)||x(t)| < m|q(t)|. (3.18)

Using (3.18) in (3.17) we have

2m <
m

Γ(α)

∫ b

a
(b− s)α−1 |q(s)|ds � m(b−a)α−1

Γ(α)

∫ b

a
|q(s)|ds.
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Canceling m from both sides and rearranging terms, we see that (3.13) holds. �
Finally, we present a Lyapunov-type inequality for eq. (3.2). The proof is essen-

tially the same as that of theorem 3.5. Therefore, we omit the proof.

THEOREM 3.6. Assume eq. (3.2) has a nontrivial solution x(t) satisfying the BCs

x(a) = x(b) = x′(b) = 0.

Then ∫ b

a
|q(s)|ds >

2Γ(α)
(b−a)α−1 .

REMARK 3.2. Observe in the case when α = 2, BVP (3.1), (3.12) becomes

x′′ +q(t)x = 0, x(a) = x′(a) = x(b) = 0.

In this case, the inequality (3.13) simplifies to

∫ b

a
|q(s)|ds >

2
b−a

.

A similar comment can be made for theorem 3.6. We omit the details here.

4. Results for 2 < α � 3

In this section we consider the linear left-fractional differential equation

Dα
a+x+q(t)x = 0, (4.1)

and the linear right-fractional differential equation

Dα
b−x+q(t)x = 0, (4.2)

where q∈C([a,b],R) and 2 < α � 3. We first present a Lyapunov- type inequality for
eq. (4.1).

THEOREM 4.1. Assume eq. (4.1) has a nontrivial solution x(t) satisfying the BCs

x(a) = x′(a) = x(b) = 0 and Dα−1
a+ x(ξ ) = 0 (4.3)

for some ξ ∈ [a,b] . Then

∫ b

a
|q(s)|ds >

2(2α −3)1/2Γ(α −1)
(b−a)α−1 .
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Proof. We assume that x(t) satisfies (4.3). From (2.2), we see that

Dα
a+x = (Dα−1

a+ x)′.

Hence eq. (4.1) becomes
(Dα−1

a+ x)′ +q(t)x = 0. (4.4)

Integrating (4.4) from ξ to t and utilizing the fact that Dα−1
a+ x(ξ ) = 0 we have

Dα−1
a+ x+

∫ t

ξ
q(s)x(s)ds = 0. (4.5)

We denote h(t) =
∫ t

ξ q(s)x(s)ds . Now consider the following BVP

Dα−1
a+ x = −h(t), x(a) = x′(a) = x(b) = 0. (4.6)

Since x(t) is nontrivial and continuous, there exists a d ∈ [a,b] such that m =
maxa�t�b |x(t)| = |x(d)| . Also note that 1 < α −1 � 2. Then applying the same tech-
nique to BVP (4.6) as shown in the proof of theorem 3.5 we see that (3.17) holds with
α replaced by α −1, i.e.,

2m � 1
Γ(α −1)

∫ b

a
(b− s)α−2

∣∣Dα−1
a+ x(s)

∣∣ds.

By Cauchy-Schwartz inequality, we have

2mΓ(α −1) �
(∫ b

a
(b− s)2α−4 ds

)1/2 (∫ b

a

∣∣Dα−1
a+ x(s)

∣∣2 ds

)1/2

.

Simplifying the first integral on the right and squaring and rearranging terms we see
that

4m2(2α −3)Γ2(α −1)
(b−a)2α−3 �

∫ b

a

∣∣Dα−1
a+ x(s)

∣∣2 ds. (4.7)

It follows from (4.5) that

|Dα−1
a+ x| =

∣∣∣∣−
∫ t

ξ
q(s)x(s)ds

∣∣∣∣ �
∫ b

a
|q(s)||x(s)|ds.

Note that |x(t)| � m and |x(t)| �≡ m for t ∈ [a,b] . Hence

|Dα−1
a+ x| < m

∫ b

a
|q(s)|ds. (4.8)

Using (4.8) in (4.7) we have

4m2(2α −3)Γ2(α −1)
(b−a)2α−3 � m2(b−a)

(∫ b

a
|q(s)|ds

)2
.

Canceling m from both sides and rearranging terms we see that the conclusion holds
immediately. �

Now, we present a Lyapunov-type inequality for eq. (4.2). The proof is essentially
the same as that of theorem 4.1. Therefore, we omit the proof.
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THEOREM 4.2. Assume eq. (4.2) has a nontrivial solution x(t) satisfying the BCs

x(a) = x(b) = x′(b) = 0 and Dα−1
b− x(ξ ) = 0

for some ξ ∈ [a,b] . Then

∫ b

a
|q(s)|ds >

2(2α −3)1/2Γ(α −1)
(b−a)α−1 .

REMARK 4.1. Observe in the case when α = 3, BVP (4.1), (4.3) becomes

x′′′ +q(t)x = 0, x(a) = x′(a) = x′′(ξ ) = x(b) = 0

for some ξ ∈ [a,b] . In this case, the inequality (4.3) simplifies to

∫ b

a
|q(s)|ds >

4
√

3
(b−a)2 .

A similar comment can be made for theorem 4.2. We omit the details here.

5. Multivariate Lyapunov-type inequalities

In the last section, we show how the Lyapunov-type inequalities in sections 3 and
4 can be extended to fractional multivariate equations. To avoid redundancy, we only
give the extension for the left-fractional differential equation. First we introduce some
notation.

For N � 2, we denote

SN−1 := {u ∈ R
N : |u| = 1}

as the unit sphere in R
N . It is well known that the surface area of SN−1 is

∫
SN−1

dω =
2πN/2

Γ(N/2)
,

where Γ stands for the gamma function as given in section 2. Note that every u ∈
R

N \ {0} has a unique representation of the form u = rω with |u| = r for some r > 0
and ω ∈ SN−1 .

Assume that a,b,c ∈C(SN−1,R) and 0 < a(ω) < c(ω) < b(ω) for all ω ∈ SN−1 .
We define a doubly connected region A in R

N as

A := {u = rω : r ∈ (a(ω),b(ω)),ω ∈ SN−1},
together with its subregions

A1 := {u = rω : r ∈ (a(ω),c(ω)),ω ∈ SN−1}
and

A2 := {u = rω : r ∈ (c(ω),b(ω)),ω ∈ SN−1}.
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Clearly, A = A1∪A2 . Let the corresponding boundaries be denoted by

Ba = {u = rω : r = a(ω),ω ∈ SN−1},

Bb = {u = rω : r = b(ω),ω ∈ SN−1},
and

Bc = {u = rω : r = c(ω),ω ∈ SN−1}.
Figure 1 gives a graphical interpretation for the region A .

O
Ba

Bc

Bb

A1
A2 Region A1

Region A2

Boundaries: Ba , Bb , Bc

Figure 1: Region A

Let ω ∈ SN−1 be fixed. For any γ > 0 and u = rω with r > a(ω) , we denote by
(D γ

r y)(u) the γ -th order Riemann-Liouville directional derivative of y(u) in the radial
direction at a(ω) , i.e.,

(
D γ

r y
)
(u) :=

1
Γ(n− γ)

∂ n

∂ rn

∫ r

a(ω)
(r− s)n−γ−1y(sω)ds, (5.1)

where n = �γ�+ 1 and Γ is the gamma function. Now, on the region A , we consider
the equation (

Dα
r y

)
(u)+q(u)y = 0, 1 < α � 2, (5.2)

where q ∈C(A) , together with one of the following BC

y(Ba) = 0 and
(
Dα−1

r y
)
(Bc) = 0; (5.3)

∂y(Ba)
∂ r

= 0 and y(Bb) = 0; (5.4)
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or

y(Ba) = y(Bb) = 0 and
∂y(Ba)

∂ r
= 0. (5.5)

We first present a Lyapunov-type inequality for BVP (5.2), (5.3).

THEOREM 5.1. Assume eq. (5.2) has a nontrivial solution y(u) satisfying (5.3)
on A1 . Then ∫

A1

|u|1−N |q(u)|du >
2πN/2Γ(α)

Γ(N/2)(c−a)α−1 , (5.6)

where a = min{a(ω) : ω ∈ SN−1} and c = max{c(ω) : ω ∈ SN−1} .

Proof. For a fixed ω ∈ SN−1 , we denote z(r) := y(rω) . By comparing (5.1) with

(2.1) we see that
(
D

γ
r y

)
(u) =

(
Dγ

a(ω)+z
)
(r) for γ > 0. Since y(u) is a nontrivial

solution of eq. (5.2) satisfying BC (5.3), we have that for ω ∈ SN−1 , z(r) is a nontrivial
solution of the equation(

Dα
a(ω)+z

)
(r)+q(rω)z = 0, 1 < α � 2

satisfying the BC

z(a(ω)) = 0 and
(
Dα−1

a(ω)+z
)
(c(ω)) = 0.

Thus by theorem 3.1,
∫ c(ω)

a(ω)
|q(rω)|dr >

Γ(α)
(c(ω)−a(ω))α−1 . (5.7)

Recall that r = |u| and for any Ω ⊂ R
N and f ∈C(Ω) ,∫

Ω
f (u)du =

∫
Ω

rN−1 f (rω)drdω .

Hence ∫
A1

|u|1−N |q(u)|du =
∫

SN−1

(∫ c(ω)

a(ω)
|q(rω)|dr

)
dω .

Integrating both sides of (5.7) with respect to ω on SN−1 and noting that 0 < a �
a(ω) < c(ω) � c , we obtain
∫

A1

|u|1−N |q(u)|du =
∫

SN−1

(∫ c(ω)

a(ω)
|q(rω)|dr

)
dω > Γ(α)

∫
SN−1

dω
(c(ω)−a(ω))α−1

� Γ(α)
(c−a)α−1

∫
SN−1

dω =
2πN/2Γ(α)

Γ(N/2)(c−a)α−1 ,

i.e., (5.6) holds. �
Now we present a Lyapunov-type inequality for BVP (5.2), (5.4) and BVP (5.2),

(5.5). The proofs are essentially the same as the proof of theorem 5.1. We omit the
details here.
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THEOREM 5.2. Assume eq. (5.2) has a nontrivial solution y(u) satisfying (5.4)
on A. Then ∫

A
|u|1−N |q(u)|du >

2πN/2Γ(α)
Γ(N/2)(b−a)α−1 ,

where a = min{a(ω) : ω ∈ SN−1} and b = max{b(ω) : ω ∈ SN−1} .

THEOREM 5.3. Assume eq. (5.2) has a nontrivial solution y(u) satisfying (5.5)
on A. Then ∫

A
|u|1−N |q(u)|du >

4πN/2Γ(α)
Γ(N/2)(b−a)α−1 ,

where a = min{a(ω) : ω ∈ SN−1} and b = max{b(ω) : ω ∈ SN−1} .

REMARK 5.1. Here we discuss some special cases of theorem 5.1. Similar argu-
ments will follow for theorems 5.2 and 5.3. We leave the details to the interested reader.
Let α = 2. Then BVP (5.2), (5.3) becomes

∂ 2y(u)
∂ r2 +q(u)y(u) = 0, y(Ba) =

∂y(Bc)
∂ r

= 0

and the inequality (5.6) becomes
∫

A1

|u|1−N|q(u)|du >
2πN/2

Γ(N/2)(c−a)
.

Furthermore, letting a(ω) = 0 for ω ∈ SN−1 , i.e., the hole shrinks to a point, we have
the nontrivial inequality

∫
A1

|u|1−N |q(u)|du >
2πN/2

cΓ(N/2)
.

Since |u| = r � a > 0, it follows that
∫

A1

|q(u)|du >
2πN/2aN−1

cΓ(N/2)
.

Finally, on the region A , we consider the equation(
Dα

r y
)
(u)+q(u)y = 0, 2 < α � 3, (5.8)

where q ∈C(A) , together with the following BC

y(Ba) =
∂y(Ba)

∂ r
= y(Ba) = 0 and

(
Dα−1

r y
)
(Bξ ) = 0, (5.9)

where a,b,ξ ∈C(SN−1,R) and 0 < a(ω) � ξ (ω) � b(ω) for all ω ∈ SN−1 . Addition-
ally, let

Bξ = {u = rω : r = ξ (ω),ω ∈ SN−1}
and the region A and the boundaries Ba and Bb be defined as before. We now present
a Lyapunov-type inequality for BVP (5.8), (5.9).
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THEOREM 5.4. Assume eq. (5.8) has a nontrivial solution y(u) satisfying (5.9)
on A. Then ∫

A
|u|1−N |q(u)|du >

4πN/2(2α −3)1/2Γ(α −1)
Γ(N/2)(b−a)α−1 ,

where a = min{a(ω) : ω ∈ SN−1} and b = max{b(ω) : ω ∈ SN−1} .

The proof is essentially the same as the proof of theorem 5.1. We leave the details
to the interested reader.
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