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SOME PROPERTIES ABOUT COMPLEX

DIFFERENCE EQUATIONS OF MALMQUIST TYPE

JIANMING QI

(Communicated by T. Cao)

Abstract. This article presents versions of the Malmquist type equation. We study the growth of
transcendental meromorphic solutions of some complex (qz+ c) difference equations and find
lower bounds for Nevanlinna lower order for meromorphic solutions of such equations. We also
obtain a (qz + c) difference version of Tumura-Clunie theorem, which improves the results of
Zheng and Chen[25].

1. Introduction

Let f (z) be a meromorphic function in the whole complex plane C . It is assumed
that the reader is familiar with the standard symbols and fundamental results of Nevan-
linna theory, as found in [14][18][20]. We also use notations ρ( f ) , λ ( f )(λ ( f )) and
λ ( 1

f )(λ ( 1
f )) for the order, the exponent of convergence of zeros(distinct zeros) and the

exponent of convergence of poles (distinct poles) of f (z) respectively.
The celebrated Malmquist theorem states that a complex differential equation of

the form
y′ = R(z,y), (1.1)

where the right-hand side is rational in both arguments, and which admits a transcen-
dental meromorphic solution y in the complex plane, reduces into a Riccati differential
equation

y′ = a(z)+b(z)y+ c(z)y2 (1.2)

with rational coefficients. For more details concerning the equations (1.1) and (1.2), as
well as for generalizations of the Malmquist theorem, see[18].

Recently, meromorphic solutions of complex difference equations have gained in-
creasing interest, due to the apparent role of the existence of such solutions of finite
order for the integrability of difference and q−difference equations. For example, Hal-
burd and Korhonen[12] showed that the existence of sufficiently many meromorphic
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solutions of finite order is enough to single out the second difference Painlevé equa-
tion. A number of papers(see e.g.[1, 2, 3, 4, 6, 9, 12, 13, 16, 17, 19, 26, 27]) focused
on the growth and the existence of meromorphic solutions of difference equations and
q−difference equations.

In 2001, Heittokangas et al.[16] considered the essential growth problem for tran-
scendental meromorphic solutions of complex difference equations, which is to find
lower bounds for their characteristic functions, and obtained the following results.

THEOREM 1. Let c1, ...,cn ∈C\{0} and let m � 2. Suppose that y is a transcen-
dental meromorphic solution of difference equation

n

∑
i=1

ai(z)y(z+ ci) =
m

∑
i=0

bi(z)y(z)i (1.3)

with rational coefficients ai(z) , bi(z) . Denote C = max{|c1|, ..., |cn|} .
(1) If y is entire or has finitely many poles, then there exist constants K > 0 and

r0 > 0 such that logM(r,y) � Km
r
C holds for all r � r0 .

(2) If y has infinitely many poles, then there exist constants K > 0 and r0 > 0
such that n(r,y) � Km

r
c holds for all r � r0 .

(3) Thus, all transcendental meromorphic solutions of (1.3) have infinitely lower
order.

THEOREM 2. Let c1, ...,cn ∈ C \ {0} and y be a transcendental meromorphic
solution of difference equation

n

∑
i=1

di(z)y(z+ ci) =
a0(z)+a1(z)y(z)+ · · ·+ap(z)y(z)p

b0(z)+b1(z)y(z)+ · · ·+bt(z)y(z)t
, (1.4)

where all coefficients in (1.4) are of growth o(T (r,y)) without an exceptional set as
r → ∞ , and d′

i s are non-vanishing. If d = max{p,t} > n, then for any ε (0 < ε <
d−n
d+n) , there exists an r0 such that T (r,y) � K( d

n ( 1−ε
1+ε ))

r
C for all r � r0 , where C =

max{|c1|, ..., |cn|} and K > 0 is a constant.

THEOREM 3. Suppose that all coefficients in (1.4) are of growth S(r,y) and that
all other assumptions of theorem B hold. Then μ(y) = ∞ .

Zheng and Chen[25] considered a similar growth problem for transcendentalmero-
morphic solutions of complex q-difference equations instead of difference equations,
where the usual shift f (z + c) will be replaced by the q-shift f (qz) , and obtain the
following results.

THEOREM 4. Suppose that f is a transcendental meromorphic solution of equa-
tion

n

∑
j=1

a j(z) f (q jz) =
d

∑
i=0

bi(z) f (z)i (1.5)
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where q ∈ C , |q| > 1 , d � 2 and the coefficients a j(z) , bi(z) are rational functions.

(1) If f is entire or has finitely many poles, then there exist constants K > 0 and

r0 > 0 such that for all r � r0 , logM(r, f ) � Kd
log r

n log |q| .
(2) If y has infinitely many poles, then there exist constants K > 0 and r0 > 0

such that for all r � r0 , n(r, f ) � Kd
logr

n log|q| .
(3) Thus, the lower order of f satisfies μ( f ) � logd

n log |q| .

THEOREM 5. Suppose that f is a transcendental meromorphic solution of equa-
tion

n

∑
j=1

a j(z) f (q jz) = R(z, f (z)) =
P(z, f (z))
Q(z, f (z))

, (1.6)

where q ∈ C , |q| > 1 , all coefficients a j(z) are rational functions and P, Q are rela-
tively prime polynomials in f over the field of rational functions satisfying p = deg f P ,
t = deg f Q, d = p− t � 2 . If f has infinitely many poles, then for sufficiently large r ,

n(r, f ) � Kd
logr

n log |q| holds of some constant K > 0 . Thus, the lower order of f , which
has infinitely many poles, satisfies μ( f ) � logd

n log |q| .

THEOREM 6. Suppose that f is a transcendental meromorphic solution of equa-
tion

∑λ∈I dλ (z) f (qz)iλ ,1 f (q2z)iλ ,2 · · · f (qnz)iλ ,n

∑μ∈I eμ(z) f (qz) jμ ,1 f (q2z) jμ ,2 · · · f (qnz) jμ ,n
=

a0(z)+a1(z) f (z)+ · · ·+ap(z) f (z)p

b0(z)+b1(z) f (z)+ · · ·+bt(z) f (z)t

(1.7)
where I = {(iλ ,1, iλ ,2, ..., iλ ,n)} , J = {( jμ,1, jμ,2, ..., jμ,n)} are two finite index sets,

max
λ ,μ

{iλ ,1 + iλ ,2 + · · ·+ iλ ,n, jμ,1 + jμ,2 + · · ·+ jμ,n} = σ ,

q ∈ C , |q| > 1 and all coefficients of (1.7) are of growth S(r, f ) . If d = max{p,t} >

2nσ , then for sufficiently large r , T (r, f ) � K( d
2nσ )

logr
n log |q| , where K(> 0) is a constant.

Thus, the lower order of f satisfies μ( f ) � logd−log2nσ
n log |q| .

From the ideas of theorem 1 to theorem 6, It is natural to ask from theorem 1 to
theorem 6 whether the shift f (z+ c) or f (qz) can be replaced by f (qz+ c) in above
theorems. The answer is positive. In 2011, Wang obtained a more general case(see
theorem 1 in [24]), which more improve the theorem 4 and theorem 5. Now, also base
on this idea, we also prove the following result which improve the theorem 6.

THEOREM 7. Let c1, ...,cn ∈ C \ {0} and f be a transcendental meromorphic
solution of difference equation

∑λ∈I dλ (z) f (qz+ c1)iλ ,1 f (q2z+ c2)iλ ,2 · · · f (qnz+ cn)iλ ,n

∑μ∈I eμ(z) f (qz+ c1) jμ ,1 f (q2z+ c2) jμ ,2 · · · f (qnz+ cn) jμ ,n
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=
a0(z)+a1(z) f (z)+ · · ·+ap(z) f (z)p

b0(z)+b1(z) f (z)+ · · ·+bt(z) f (z)t
, (1.8)

where I = {(iλ ,1, iλ ,2, ..., iλ ,n)} , J = {( jμ,1, jμ,2, ..., jμ,n)} are two finite index sets,

max
λ ,μ

{iλ ,1 + iλ ,2 + · · ·+ iλ ,n, jμ,1 + jμ,2 + · · ·+ jμ,n} = σ ,

q ∈ C , |q| > 1 and all coefficients of (1.7) are of growth S(r, f ) . If d = max{p,t} >

2nσ , then for sufficiently large r , T (r, f ) � K( d
2nσ )

logr
(n+1) log |q| , where K(> 0) is a con-

stant. Thus, the lower order of f satisfies μ( f ) � logd−log2nσ
(n+1) log |q| .

We also use the shift f (qz+c) to replace the results of f (qz) or f (z+c) in Zheng
and Chen[25] and in Laine[19]. We also obtain the following results.

THEOREM 8. Let c1, ...,cn ∈ C\{0} and f (z) be a transcendental meromorphic
solution of difference equation

n

∑
j=1

a j(z) f (q jz+ c j) = R(z, f (z)) =
P(z, f (z))
Q(z, f (z))

, (1.9)

where q ∈ C , |q| > 1 , all coefficients a j(z) are rational functions and P, Q are rela-
tively prime polynomials in f over the field of small functions relative to f . Moreover,
we assume that t = deg f Q > 0 , n = max{p,t} = max{deg f P,deg f Q} and that, with-
out restricting generality, Q is a monic polynomial. If there exist α ∈ [0,n) such that
for all sufficiently large r

N(r,
n

∑
j=1

a j(z) f (q jz+ c j)) � αN(|q|nr+ c, f (z))+S(r, f ), (1.10)

then either the order ρ( f ) > 0 , or Q(z, f (z)) ≡ ( f (z)+ h(z))t , where h(z) is a small
meromorphic function and c = max{|c1|, |c2|, ..., |cn|} .

THEOREM 9. Let c1, ...,cn ∈ C \ {0} and f be a transcendental meromorphic
solution of the equation

∑
{J}

αJ(z)(Π j∈J f (q jz+ c j)) = f (p(z)),

where p(z) is a polynomial of degree k � 2 . Moreover, we assume that the coefficients
αJ(z) are small functions relative to f and that n � k . Then

T (r, f ) = O((logr)α+ε),

where α = logn
logk , {J} the collection of non-empty subsets of {1, ...,n} .
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2. Preliminary lemmas

In order to prove our results, we need the following lemmas.

LEMMA 1. (Valiron-Mohon’ko[18]) Let f (z) be a meromorphic function. Then
for all irreducible rational functions in f ,

R(z, f (z)) = ∑m
i=0 ai(z) f (z)i

∑n
j=0 b j(z) f (z) j ,

with meromorphic coefficients ai(z) , b j(z) , the characteristic function of R(z, f (z))
satisfies

T (r,R(z, f (z))) = dT (r, f )+O(ψ(r)),

where d = max{m,n} and ψ(r) = maxi, j{T (r,ai),T (r,b j)} .

LEMMA 2. Given distinct complex numbers c1, ...,cn , a meromorphic function f ,
and small functions αJ(z) relative to f , we have

T (r,Σ{J}αJ(z)(Π j∈J f (z+ c j))) �
n

∑
k=1

T (r, f (z+ ck))+S(r, f )

where {J} the collection of non-empty subsets of {1, ...,n} .

LEMMA 3. Let g : (0,+∞) → R, h : (0,+∞) → R be monotone increasing func-
tions such that g(r) � h(r) outside of an exceptional set of finite linear measure. Then
for any α > 1 , there exist r0 > 0 such that g(r) � h(αr) for all r > r0 .

The following lemma 4 is a variant of the famous Tumura-Clunie theorem([7, 22]).

LEMMA 4. (Tumura-Clunie theorem [23]) Let f be a meromorphic function, and
let φ be given by φ = f n +an−1 f n−1 + · · ·+a0 , where a0,a1, ...,an−1 are small mero-
morphic functions relative to f . Then either

φ = ( f +
an−1

n
)n

or

T (r, f ) � N(r,
1
φ

)+N(r, f )+S(r, f ).

LEMMA 5. [19] Let f be a non-constantmeromorphic function, and let P(z, f ) ,
Q(z, f ) be two polynomials in f with meromorphic coefficients small relative to f . If P
and Q have no common factors of positive degree in f over the field of small functions
relative to f , then

N(r,
1

Q(z, f )
) � N(r,

P(z, f )
Q(z, f )

)+S(r, f ).

The following lemma 6 is a special case of [15, lemma 4].
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LEMMA 6. If T : R+ → R+ is an increasing function such that lim
r→∞

sup logT(r)
logr =

0 , then the set E = {r : T (C1r) �C2T (r)} has logarithmic density 0 for all C1 > 1 and
C2 > 1 .

The following result follows immediately by lemma 6.

LEMMA 7. If f be a non-constant meromorphic function, β > 1 , α < 1 are given
constants, and let F ⊂ R+ be the set of all r such that N(r, f ) � αN(β r, f ) . If the
logarithmic density of F is non-zero, that is logdensF > 0 , then the exponent of con-
vergence of distinct poles λ ( 1

f ) is non-zero. Thus, ρ( f ) is non-zero.

LEMMA 8. ([5, theorem 2.1]) Let f be a meromorphic function of finite order ρ
and c is a non-zero complex constant. Then, for each ε > 0 , we have

T (r, f (z+ c)) = T (r, f )+O(rρ−1+ε)+O(logr).

It is evident that S(r, f (z+ c)) = S(r, f ) from lemma 2.8.

LEMMA 9. ([5, theorem 2.2]) Let f be a meromorphic function with finite expo-
nent of convergence of poles λ ( 1

f ) and c is a non-zero complex constant. Then, for
each ε > 0 , we have

N(r, f (z+ c)) = N(r, f )+O(rλ ( 1
f )−1+ε)+O(logr).

Obviously, by lemma 8 and lemma 9, if ρ( f ) = 0 and f is a transcendental mero-
morphic function then T (r, f (z+c)) = T (r, f )+O(1) , N(r, f (z+c)) = N(r, f )+O(1) .

LEMMA 10. [25] Let f be a meromorphic function

M(r, f (qz)) = M(|q|r, f ), N(r, f (qz)) = N(|q|r, f )+O(1)

and
T (r, f (qz)) = T (|q|r, f )+O(1)

hold for any meromorphic function f and any non-zero constant q.

LEMMA 11. [10] Let P(z) = akzk +ak−1zk−1 + · · ·+a1z+a0 , ak �= 0 , be a non-
constant polynomial of degree k and let f be a transcendental meromorphic function.
Given 0 < δ < |ak| , denote λ := |ak|+ δ and u := |ak|− δ . Then, given ε > 0 and
a ∈ C∪{∞} , we have

kn(μrk,a, f ) � n(r,a, f ◦ p) � kn(λ rk,a, f ),

N(μrk,a, f )+O(logr) � N(r,a, f ◦ p) � N(λ rk,a, f )+O(logr),

(1− ε)T (μrk, f ) � T (r, f ◦ p) � (1+ ε)T(λ rk, f ),

for all r large enough.
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LEMMA 12. [11] Let ψ : [r0,+∞) → (0,+∞) be positive and bounded in every
finite interval, and suppose that ψ(μrm) � Aψ(r) +B holds for all r large enough,
where μ > 0 , m > 1 , A > 1 and B are real constants. Then

ψ(r) = O((logr)α),

where α = logA
logm .

3. Proof of theorem 7

Proof. Given 0 < ε < d−2nσ
d+2nσ , noting that |q| > 1, we have by (1.8), lemma 1 and

lemma 2 that

d(1− ε)T(r, f ) � dT (r, f )+S(r, f ) � 2σ ∑n
j=1 T (r, f (q j(z+ c j

q j )))+S(r, f )

� 2σ ∑n
j=1 T (r+ |c j |

|q| j , f (q jz))+S(r, f )
� 2σ ∑n

j=1 T (r+ c
|q| , f (q jz)))+S(r, f )

= 2σ(1+ ε)∑n
j=1 T (|q| jr+ |q| j−1c, f ),

(3.1)

outside of a possible exceptional set of finite linear measure, where c =
max{|c1|, |c2|, ..., |cn|} . By lemma 3 and (3.1), it follows that for any given α > 1,
there exists an r0 > 0 such that

d(1− ε)T(r, f ) � 2nσ(1+ ε)T(α|q|nr+ α|q|n−1c, f )

holds for all r � r0 . Hence

T (α|q|nr+ α|q|n−1c, f ) � d(1− ε)
2nσ(1+ ε)

T (r, f ),r � r0. (3.2)

Inductively, for any k ∈ N , we have by (3.1) and (3.2) that

T (αk|q|nkr+
k

∑
μ=1

αμ |q|μn−1c, f ) � (
d(1− ε)

2nσ(1+ ε)
)kT (r, f ),r � r0. (3.3)

For sufficiently large s , using the same method as in the proof of theorem 6(see [25]),
we obtain by (3.3) that

T (s, f ) � (
d(1− ε)

2nσ(1+ ε)
)

logs

logα|q|(n+1) − n
n+1 T (r0, f ). (3.4)

Letting ε → 0 and α → 1, we have by (3.4) that

T (s, f ) � K(
d

2nσ
)

logs
log |q|n+1 ,

where K is a constant. Thus, we get μ( f ) � logd−log2nσ
(n+1) log |q| .

The proof of theorem 7 is complete. �
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4. Proof of theorem 8

Proof. Suppose the second alternative of the assertion do not hold. Then by lem-
mas 4 and 5, we get

T (r, f ) � N(r, 1
Q)+N(r, f )+S(r, f ) � N(r, P(z, f )

Q(z, f ) )+N(r, f )+S(r, f ). (4.1)

By (1.9), (1.10) and (4.1), we obtain that

T (r, f )−N(r, f ) � N(r, P(z, f )
Q(z, f ) )+S(r, f ) = N(r,∑n

j=1 a j(z) f (q jz+ c j))+S(r, f )
� αN(|q|nr+ c, f )+S(r, f ).

(4.2)
where c = max{|c1|, |c2|, ..., |cn|} . Assume contrary to the assertion, that is ρ( f ) = 0.
By lemma 8, lemma 10, we obtain the T (r, f (q jz + c j)) = T (r, |q| jr, f ) + O(1) . So
lemma 6 implies that for any constant C > 1,

T (r, f (q jz+ c j)) = T (|q| jr, f )+O(1) <CT (r, f ), j = 1, ...,n (4.3)

on a set of logarithmic density 1.
We see that if a set is of finite linear measure, then the set is of logarithmic density

0. Thus, combing (4.3), we obtain that for j = 1, ...,n ,

S(r, f (q jz+ c j)) = o(T (r, f (z))) (4.4)

on a set of logarithmic density 1. Now (4.2) applies to f (q j + c j)( j = 1, ...,n) , then by
(4.4) we have

T (r, f (q jz+ c j))−N(r, f (q jz+ c j)) � αN(|q|nr+ c, f (q jz+ c j))+o(T(r, f )),
(4.5)

on a set of logarithmic density 1. Applying lemma 1 on both sides of (1.9), we conclude
by (1.9), lemma 9 and lemma 10 that

nT (r, f ) = T (r,∑n
j=1 a j(z) f (q jz+ c j))+o(T(r, f ))

= T (r,∑n
j=1 a j(z) f (q jz+ c j))−N(r,∑n

j=1 a j(z) f (q jz+ c j))
+N(r,∑n

j=1 a j(z) f (q jz+ c j))+o(T(r, f ))
� m(r,∑n

j=1 a j(z) f (q jz+ c j))+N1(r,∑n
j=1 a j(z) f (q jz+ c j))

+αN(|q|nr+ c, f )+o(T (r, f ))
� ∑n

j=1(m(r, f (q jz+ c j))+N1(r, f (q jz+ c j)))+ αN(|q|nr+ c, f )+o(T (r, f ))
= ∑n

j=1(T (r, f (q jz+ c j)−N(r, f (q jz+ c j)))+ αN(|q|nr+ c, f )+o(T(r, f )),
(4.6)

on a set of logarithmic density 1, where N1(r, f ) = N(r, f )−N(r, f ) . By (4.5),(4.6) and
lemma 9, we have

nT (r, f ) � ∑n
j=1 αN(|q|nr+ c, f (q jz+ c j))+ αN(|q|nr+ c, f )+o(T (r, f ))

� nαN(|q|2nr+ c, f )+ αN(|q|nr+ c, f )+o(T (r, f ))
= (n+1)αN(|q|2nr+ c, f )+o(T (r, f ))
= (n+1)αN(|q|2nr, f )+o(T (r, f )),

(4.7)
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on a set of logarithmic density 1 and r sufficiently large. Therefore, we have obtained
by (4.7) that

T (r, f )−N(r, f ) � n+1
n

αN(|q|2nr, f )−N(r, f )+o(T (r, f )) (4.8)

on a set of logarithmic density 1.
We now proceed, inductively, to prove that

T (r, f )−N(r, f ) � n+m
n

αN(|q|2mnr, f )−mN(r, f )+o(T (r, f )) (4.9)

on a set of logarithmic density 1. Having already proved the case m = 1 in (4.8), we
continue to the inductive step. To this end, observe that the above reasoning also applies
to the functions f (q jz + c j), j = 1,2, ...,n instead of f (z) . Therefore, we may apply
the inductive assertion to obtain by (4.6) that

nT (r, f ) � ∑n
j=1(T (r, f (q jz+ c j))−N(r, f (q jz)))+ αN(|q|nr+ c, f )+o(T (r, f ))

� ∑n
j=1(

n+m
n αN(|q|2mnr, f )−mN(r, f ))+ αN(|q|nr, f )+o(T (r, f ))+O(1)

� (n+m+1)αN(|q|(2m+1)nr, f )−mnN(r, f )+o(T (r, f ))+O(1)
� (n+m+1)αN(|q|2(m+1)nr, f )−mnN(r, f )+o(T (r, f )

on a set of logarithmic density 1. Therefore, we conclude that

T (r, f )−N(r, f ) � n+m+1
n

αN(|q|2(m+1)nr, f )− (m+1)N(r, f )+o(T (r, f ))

on a set of logarithmic density 1, completing the induction (4.9).
Thus, noting that T (r, f )−o(T (r, f )) � 0, we immediately see by (4.9) that

N(r, f ) � n+m
n(m−1)

αN(|q|2mnr, f )

on a set of logarithmic density 1. Setting α ′ = n+m
n(m−1)α , we obtain

N(r, f ) � α ′N(|q|2mnr, f ) (4.10)

on a set of logarithmic density 1. Since α ∈ [0,n) , we see that for sufficiently large m ,

α ′ � n+m
n(m−1)

α = (
1

m−1
+

1
n

m
m−1

)α < 1. (4.11)

So by lemma 7, (4.10), (4.11) and |q|2mn > 1, we get ρ( f ) > 0, a contradiction.
The proof of theorem 8 is complete. �
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5. Proof of theorem 9

Proof. Combing now the last assertion of lemma 11 with lemma 12, we obtain
that

(1− ε)T(μrk, f ) � T (r, f (p(z))) = T (r,∑
J

αJ(z)(Π j∈J f (q jz+ c j)))

�
n

∑
j=1

T (r, f (q jz+ c j))+S(r, f ).

Defining C := max{|c1|, ..., |cn|} , we immediately infer that

(1− ε)T (μrk, f ) �
n

∑
j=1

T (r, f (q jz+C))+S(r, f ) �
n

∑
j=1

T (|q| jr, f (z+
c j

q j ))+S(r, f )

�
n

∑
j=1

T (|q| jr+
C
|q| , f (z))+S(r, f ).

Since T (r+C, f ) � T (|q|r, f ) holds always for r large enough for given |q| > 1,
we may assume r to be large enough to satisfy

(1− ε)T (μrk, f ) � n(1+ ε)T(|q| j+1r, f )

outside of a possible exceptional set of finite linear measure. By a standard reasoning
to remove the exceptional set, we note that whenever σ > 1,

(1− ε)T(μrk, f ) � n(1+ ε)T(σ |q| j+1r, f )

holds for all r large enough. Set now t := σ |q| j+1r , the last inequality can be written
as

T (
μtk

σ k|q|k( j+1) , f ) � n(1+ ε)
1− ε

T (t, f ).

We now make use of lemma 12 to conclude that

α =
log( n(1+ε)

(1−ε) )

logk
=

logn
logk

+O(1),

which has the required form.
The proof of theorem 9 is complete. �
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